
Bypass: A Tool for Building Split Execution Systems

Douglas Thain and Miron Livny

University of Wisconsin
Computer Sciences Department

1210 W. Dayton St. Madison WI 53703
{thain,miron}@cs.wisc.edu

Abstract

Split execution is a common model for providing a
friendly environment on a foreign machine. In this model, a
remotely executing process sends some or all of its system
calls back to a home environment for execution. Unfortu-
nately, hand-coding split execution systems for experimen-
tation and research is difficult and error-prone. We have
built a tool, Bypass, for quickly producing portable and cor-
rect split execution systems for unmodified legacy applica-
tions. We demonstrate Bypass by using it to transparently
connect a POSIX application to a simple data staging sys-
tem based on the Globus toolkit.

1. Introduction

The split execution model allows a process running on a
foreign machine to behave as if it were running on its home
machine. Split execution generally involves three software
components: an application, an agent, and a shadow. Figure
1 shows these components.

Kernel

Agent

ApplicationLocal
System
Calls

Calls
System
Trapped

Kernel

Shadow

Local
System
Calls

Other
Services

System Calls

Remote

Home Machine Foreign Machine

Figure 1. Overview of Split Execution

A foreign machine is a machine that has given permis-
sion for a particular application to use its CPU and mem-

ory, but may or may not have other resources needed by the
application. A home machine is a machine on which the
application could run correctly. A resource is any item that
is accessed via system calls – this most often refers to files,
but also includes items such as network connections, timers,
and system databases. The application is a normal program
running unmodified on the foreign machine. The applica-
tion is supervised by the agent, which traps its system calls
and routes them to various services, including the shadow,
the foreign kernel, or perhaps other third party services. The
shadow serves to execute the application’s system calls on
the home machine and returns the results to the foreign ma-
chine, enabling the application to run as if it were on the
home machine.

This model has been used in a wide variety of kernel-
level [4, 13, 2] and user-level [12, 11, 7] distributed sys-
tems. However, split execution remains an open research
topic because many variations on the basic idea are possi-
ble. For example, data may be lazily or aggressively cached
between the agent and the shadow. Policy decisions regard-
ing system call routing may be implemented at the shadow,
the agent, or explicitly within the user program. Both the
agent and the shadow may be given complex mechanisms
for servicing an application’s system calls.

In this paper, we discuss the difficulties of implement-
ing such systems and our vision of an ideal split execution
framework. We describe Bypass, a tool we have created for
building a wide variety of split execution systems. Bypass
does not implement any particular system, but allows flex-
ible construction of shadows and agents without requiring
the programmer to re-implement any of the difficult system
dependencies we have discovered. We conclude with an ex-
ample of using Bypass to build a data staging system based
on the Globus toolkit.

2. Difficulties

Speaking from the experience of developing the Condor
system, we assert that hand-coding a portable split execu-
tion system is hard. Trapping a few system calls on one par-
ticular operating system is easy, but trapping all of the sys-
tem calls, passing them between dissimilar machines, and
porting the software to a wide variety of platforms involves
coming to terms with the following difficulties:

1. Obscured interfaces. The stat() system call returns
summary information about a file. The structure re-
turned by stat() has changed as architectures have
moved from 16 to 32 to 64 bits. As a result, the
stat() defined in most standard libraries assumes an
obsolete definition of the structure. Recent programs
that appear to use stat() at the source level are ac-
tually redirected, by way of a macro or inline function,
to a system call often named fxstat().

2. Varied implementations. socket() is a well-known
library interface for creating a communication chan-
nel. However, several systems do not implement
socket() by invoking a matching socket() sys-
tem call. Some systems implement it as open() on a
special file, followed by an ioctl(). Others imple-
ment it as a call to so socket(), whose additional
arguments and semantics are undocumented.

3. Binary incompatibilities. Most varieties of UNIX con-
form to source-level standards such as POSIX. These
standards require that certain types, symbols, and
structure elements be defined at the C source level, but
do not specify implementation details such as the num-
ber of bytes in a type, the actual value assigned to a
symbol, the concrete types expected by an interface,
or the number and ordering of elements in a structure.
Figure 2 lists examples of these binary differences on
three platforms supported by Condor.

3. A Framework for Split Execution

We envision a system where the programmer writes a
specification which describes, in plain C, mechanisms for
handling system calls at the agent and shadow. The sys-
tem should provide the knowledge which describes the pe-
culiarities of trapping and forwarding system calls on var-
ious operating systems. A code generator should examine
the user’s specification and create complete source code for
a conforming shadow and agent.

Our goals for this framework are:

1. Allow splitting of unmodified applications. There are
a wide variety of applications already written for the

OSF/1 4.0 Linux 2.2 Solaris 2.6
Alpha Intel Intel

Size of 8 bytes 4 bytes 4 bytes
off t

int, int, int,

Arguments void *, void *, void *,

to send() unsigned, int, unsigned,

int unsigned int

Value of 0x200 0x040 0x100
O CREAT

Elements in
struct 5 6 5
utsname

Figure 2. Binary Incompatibilities

POSIX interface. Very few users are willing to rewrite
their applications to take advantage of specialized dis-
tributed computing interfaces: they may be unwilling
to invest valuable time in exchange for unknown bene-
fits, they may be unable to modify a commercial appli-
cation, or they may simply not have the knowledge to
rewrite an application. Tools for split execution must
work with existing, untouched, executable programs.

2. Allow dissimilar systems to interact. In order to har-
ness the maximum number of worker machines for a
large distributed computation, one must be willing and
able to harness machines of varying architectures and
operating systems. Tools for split execution should
form a translating layer that allows inter-operation be-
tween software components on dissimilar machines.

3. Separate the programmer’s intent from the necessary
mechanism. We have shown that trapping system calls
for split execution involves knowledge of unpleas-
ant implementation details. The programmer of the
shadow and agent is not interested in creating or deal-
ing with this knowledge for every new program. Tools
for split execution should combine the programmer’s
expressed intent implicitly with the details needed to
implement the system.

4. Incur minimal overhead. We expect that this tool will
allow the programmer to attach a variety of (possibly
slow) mechanisms to a program. However, the system
call trapping mechanism itself should not cause a sig-
nificant slowdown. System calls directed to the foreign
machine by the agent should run at nearly native speed.

4. Bypass

Bypass is a tool for creating split execution systems. By-
pass reads two input files, a specification file and a knowl-

2

edge file, and produces source code for an agent and a
shadow. The agent is compiled into a dynamic library and
the shadow is compiled as a standalone executable. The
agent can be easily linked into an existing application at
run-time, yielding a program prepared for split execution.

4.1. Writing Bypass Code

The specification file, provided by the programmer,
names the system calls to be trapped by the agent, describes
the data transfer needed for the parameters, and gives the
code that is to be used in place of each system call at both
the agent and the shadow. Figure 3 shows a specification
that might be used for open(). This example gives a sim-
ple policy for handling files opened by an application: If
the file begins with /tmp, open the file at the foreign ma-
chine, otherwise open it at the home machine and emit a
brief message there.

int open(in "_POSIX_PATH_MAX" const char *path,
int flags,
int mode)

agent_action
{{

if(!strncmp(path,"/tmp",4)) {
return open(path,flags,mode);

} else {
return bypass_shadow_open

(path,flags,mode);
}

}}
shadow_action
{{

printf("program opened %s\n",path);
return open(path,flags,mode);

}}
;

Figure 3. Example Specification File

Each entry in the specification looks like standard C,
with a few notable exceptions.

The function header gives the name of the sys-
tem call (open) and the names and types of its pa-
rameters. The path parameter is annotated with in
" POSIX PATH MAX", indicating the number of bytes to
be transferred to the shadow when a remote procedure call
(RPC) is necessary. All pointer arguments must be anno-
tated like this to clarify the ambiguities inherent in a C in-
terface.

There are two function bodies in each specification.
The agent action body gives the code that is to

be executed by the agent every time the application at-
tempts a system call. This function body may in-
clude calls to the original procedure that the agent re-

placed, or remote procedure calls to the shadow. Each
of these operations are demonstrated by calls to open()
and bypass shadow open() in the example. If the
agent action is omitted, it is assumed to be “invoke the
shadow action by RPC”.

The shadow action body gives the code that is exe-
cuted at the shadow in the event of a remote procedure call.
If the shadow action is omitted, it is assumed to be “in-
voke the real system call here.”

4.2. Using Bypass Code

The code generator creates source code for an agent and
a shadow. The agent is compiled into a shared library, while
the shadow is compiled into a standalone executable. To
split and run an application, three steps are necessary. 1
- The shadow is invoked in the home environment, where
it will listen on a well-known port for the agent to con-
nect. 2 - The foreign environment is prepared by placing the
network address of the shadow into an environment vari-
able and instructing the dynamic linker to “pre-load” the
agent library. On most UNIX-like systems, this is accom-
plished by setting the environment variable LD PRELOAD
or RLD LIST. 3 - The application is invoked as normal.

4.3. Implementation of Bypass

4.3.1. Trapping System Calls

Interoperability requires that system calls be trapped at a
well-known interface, such as those defined by POSIX. We
have noted above that standard interfaces (such as socket)
are not necessarily system calls, so our trapping mechanism
must be capable of intercepting simple procedure calls. A
Bypass agent “traps” calls merely by virtue of being linked
with the application before any other library. This can be
done by explicitly linking the program with the library at
build time, or, as noted above, by using the system linker
to force the library into an existing executable. At the first
invocation of a trapped system call, the agent will exam-
ine the environment for the shadow’s network address, and
make the necessary connection. System calls will then be
executed according to the specification.

4.3.2. Knowledge

The knowledge file contains a laundry list of exceptions
and special cases known about particular operating systems
and libraries. Figure 4 shows simple examples of some
of these entries. The default entry, denoted by *, indi-
cates that for any system call not otherwise specified, ad-
ditional entry points should be generated for the same name
with and prepended. The also clause in the entry for
open() indicates that whenever the programmer wants to

3

replace open(), the code enclosed in {{ }} should be in-
cluded. In this case, the additional code is for trapping calls
to creat(), which is simply a restricted interface to the
same functionality as open(). A variety of other struc-
tures for listing exceptions are detailed in the Bypass man-
ual. [16]

options "*"
entry "_*", "__*"
;

options "open"
also
{{

int creat(const char *path, mode_t mode) {
return open(path,

O_WRONLY|O_CREAT|O_TRUNC,
mode);

}
}}
;

Figure 4. Example Knowledge File

We certainly do not claim that our collection of “knowl-
edge” is complete! Our experience is that every new release
of an operating system contains surprises in the standard
library that must be understood and folded into the knowl-
edge file. However, we expect that the typical programmer
working on a supported platform will not consult or edit the
knowledge file in day to day operations.

4.3.3. Emitted Code

For each system call specified by the programmer, Bypass
emits a number of procedures. The relation between all the
procedures is shown in figure 5.

The entry points are a number of functions which en-
compass all of the myriad ways to invoke a given system
call. These entry points are never specified by the user, but
are provided by the knowledge file. In the example shown,
these entry points include open(), open(), open(),
and creat().

Each of the entry points simply invokes the switch with
the arguments to the system call. The switch examines the
current system call mode, which is a global variable with
one of two values: LOCAL or REMOTE. When the system
call mode is LOCAL, the switch invokes the corresponding
original system call and returns. When the system call mode
is REMOTE, the switch changes the mode to LOCAL and in-
vokes the agent action. Before returning, the switch changes
the mode back to REMOTE. By default, the system runs in
REMOTE mode.

The agent action is the actual code the programmer in-
tends to run on the foreign machine in place of the given

action

sender

switch

receiver

local procedure calls

Application

original
implementation
of open

agent

shadow
action

open _open __open creat

Shadow

Agent

Agent

entry points

Figure 5. Code Structure for One System Call

system call. The agent action can be composed of any ar-
bitrary code, but, because it is run in LOCAL mode, any
references to system calls (such as open()) will be routed
by the switch to the original implementation of the system
call. This allows the agent action to make use of existing
subroutines that expect open() to be defined in the usual
way.

The agent action may optionally perform remote proce-
dure calls to the shadow. These procedure calls are imple-
mented in three parts. The sender transforms the proce-
dure arguments into an external representation and trans-
mits them to the shadow. In the shadow, a corresponding
receiver transforms the external representation into a local
form and then invokes the shadow action given by the pro-
grammer. The shadow action may perform any arbitrary
computation and return a result back to the agent.

4.3.4. External Representation

In order to achieve our goal of interoperation between dis-
similar machines, we must carefully choose an external
representation which is understandable by all participants.

4

As noted above, POSIX interfaces are often defined at the
source level, resulting in binary incompatibilities. Because
Bypass is explicitly designed for trapping at the POSIX
interface, it contains knowledge of POSIX constructs and
converts them into a portable external representation. The
three aspects of this representation are:

• Uniform integer format. All integers are represented
as 64-bit signed integers in network byte order.

• Uniform symbol values. All integers known to contain
symbolic constants, such as the bit fields accepted by
open(), are converted into canonical values.

• Uniform structure encoding. System interface struc-
tures are encoded in canonical orders, regardless of the
ordering of the structure on each platform.

In each of these three aspects, a receiver must decode
the external representation into the best data type available
locally. If this cannot be done, then the system call will
fail with an appropriate error. For example, one system
may represent file offsets with 64 bits while another uses
32. These systems will be able to interact so long as an off-
set never actually reaches a value that cannot be represented
in 32 bits.

5. Performance

We constructed a synthetic testing program to measure
the overhead incurred by Bypass. The results are given in
figure 6. The testing program simply invokes each sys-
tem call a large number of times in a tight loop. The
“open/close” test opens and closes the same file without any
intervening operations. “stat” returns metadata about a file.
“getpid” gets the current process identifier. Finally, reads
and writes of one byte and eight kilobytes are performed
to a file. In all cases, the files were in /tmp and cached
in memory so as to avoid any perturbances due to physical
storage.

System Unmodified Execute Execute
Call Program At Agent At Shadow
open/close 28.2 32.7 914
stat 48.0 52.1 621
getpid 2.4 3.1 406
read 1 byte 12.2 13.9 445
write 1 byte 13.6 16.1 463
read 8 KB 54.5 57.7 988
write 8 KB 66.5 69.2 1019

All times are given in microseconds.

Figure 6. System Call Overhead

The test was run in three configurations. In the first con-
figuration, the testing program was run with no interfer-
ence from Bypass. In the second, a Bypass agent trapped
each system call and re-invoked it without modification at
the foreign machine. For example, the specification for
close() was:

int close(int fd)
agent_action {{ return close(fd); }};

In the third, a Bypass agent trapped each system call and
sent it via RPC to a shadow on the same machine to be
executed. For example, the specification for close()was:

int close(int fd)
shadow_action {{ return close(fd); }};

In each configuration, the wall clock time was measured
for 100,000 iterations of each system call. This process was
repeated 10 times, giving a mean and standard deviation.
Standard deviations for each system call were less than five
percent of the mean. The value reported in figure 6 is the
mean divided by the number of iterations, yielding the time
necessary for a system call in the given configuration. The
testing machine was a 200 MHz Pentium Pro workstation
with 128 MB of memory and running Solaris 2.6.

The results meet our goals. Trapping a system call at the
agent is quite fast – 3 to 4 µs – because the trapping mech-
anism is merely a function call. Sending the system call via
RPC to be executed at the shadow is an order of magnitude
slower, and could be much worse on a wide-area network.
The programmer using Bypass can conscientiously use the
expensive remote procedure call when necessary, but does
not pay a significant cost for trapping a system call and de-
ciding to execute it locally.

6. Related Work

Bypass shares its title metaphor with Detours [9], a sys-
tem for intercepting calls to library procedures. Detours
uses binary rewriting to intercept the flow of control, and so
can be applied to any sort of program at all. Bypass relies
on the system’s dynamic linker, and thus can only be used to
intercept public, dynamically linked procedures. The main
contribution of Detours is to make the un-instrumented tar-
get function available through a special mechanism called
a trampoline. This is roughly comparable to the switch in
Bypass, which makes the target function available through
its original entry point.

An agent created by Bypass is an example of an inter-
position agent. This term was coined by Michael Jones
[10] to describe a technique for placing software between
a program and the operating system kernel. Although we
have built Bypass specifically to understand structures in

5

the POSIX software layer, it can be used to intercept calls
between any procedures, not just those adjacent to the ker-
nel. Jones provides an object-oriented interface to many of
the structures exported by the kernel, while Bypass simply
exposes a procedural interface to individual calls.

The UFO system [3] uses an interposition agent called
the Catcher to attach user-level file systems to arbitrary pro-
cesses. The Catcher relies on a kernel facility to monitor the
system calls performed by another process. This method
has several advantages over Bypass: it can be used on any
program at all, and it can be used as a security mechanism
because it cannot be worked around. On the other hand, the
mechanism incurs a high overhead (trapped calls are 4-7
times slower) and can only be applied at the kernel inter-
face. As noted above, split execution sometimes requires
trapping of procedures that are not kernel calls.

RPC is well described in the literature. [6, 1, 14] Our
facility is similar to other implementations, but is driven by
the need for drop-in software which works without mod-
ifying the target application. To this end, our RPC client
implicitly configures and connects at the first use of an RPC
routine. The address of the server is provided by the user
externally through the use of environment variables. Our
external data representation is also quite similar to existing
standards [15], but goes beyond specifying integer size and
endianness. To provide cross-platform operation, we must
provide consistent value semantics by transforming sym-
bolic constants into canonical values.

7. Example Application: Data Staging

We have used Bypass to create a simple data staging sys-
tem for legacy applications. An unmodified application runs
on a computation node which is assumed to have limited
disk space, and thus is not capable of staging large data
files. The agent traps the application’s I/O operations and
sends them to a shadow running on a high capacity server.
The shadow is responsible for staging the application’s data
files, using the GASS library [5] from the Globus toolkit
[8]. An overview of this application is given in figure 7.

This example is trivial to build using Bypass. The entire
specification file for this system is given in figure 8. The
standard POSIX operations open(), close(), read(),
write(), and lseek() are sent by RPC to the shadow.
There, the open() and close() operations are mapped
to their analogues in the GASS library, while the others are
executed unmodified.

Certainly, this example system is not complete. One
can imagine improving it by adding data buffering or any
number of other features. We feel that Bypass is a flexible
tool for implementing such features without getting bogged
down in the implementation details of system call trapping
and forwarding.

Kernel

Agent

Application

Calls
System
Trapped

Kernel

Shadow I/O Operations

GRID

Staging
Data

THE

Globus
GASS
Operations

Home Machine Foreign Machine

Area

Figure 7. Split Execution for Data Staging

8. Conclusion

In theory, split execution is a convenient model for re-
mote execution. In practice, it is very difficult to cover
the necessary details to create an interoperable and portable
system. Bypass is a tool which hides these practical matters
and allows the programmer to concentrate on the higher-
level problems of split execution.

Software, manuals, and further infor-
mation about Bypass may be found at
http://www.cs.wisc.edu/condor/bypass.

6

shadow_prologue
{{

@include "globus_common.h"
@include "globus_gass_file.h"

}};

int open(in "_POSIX_PATH_MAX" const char *path,
int flags,
int mode)

shadow_action
{{

globus_module_activate
(GLOBUS_GASS_FILE_MODULE);

return globus_gass_open
(name, flags, mode);

}};

int close(int fd)

shadow_action
{{

return globus_gass_close(fd);
}};

int read(int fd,
out "length" void *data,
size_t length);

int write(int fd,
in "length" const void *data,
size_t length);

off_t lseek(int fd,
off_t where,
int whence);

Figure 8. Specification for Data Staging

References

[1] rpcgen Programming Guide. Sun Microsystems, Moun-
tain View CA, 1987.

[2] R. Agrawal and A. K. Ezzat. Location independent remote
execution in nest. IEEE Transactions on Software Engineer-
ing, 13(8):905–912, August 1987.

[3] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.
UFO: A personal global file system based on user-level ex-
tensions to the operating system. ACM Transactions on
Computer Systems, pages 207–233, August 1998.

[4] A. Barak and O. La’adan. The MOSIX multicomputer oper-
ating system for high performance cluster computing. Jour-
nal of Future Generation Computer Systems, 13(4-5):361–
372, March 1998.

[5] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A data movement and access service for wide area
computing systems. 6th Workshop on I/O in Parallel and
Distributed Systems, May 1999.

[6] A. D. Birrell and B. J. Nelson. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems,
2(1):39–59, Februrary 1984.

[7] J. Cruz and K. Park. DUNES: A performance-oriented sys-
tem support environment for dependency maintenance in
workstation networks. In Proceedings of the 8th IEEE Inter-
national Symposium on High Performance Distributed Com-
puting, pages 309–318, August 1999.

[8] I. Foster and C. Kesselman. Globus: A metacomputing in-
trastructure toolkit. International Journal of Supercomputer
Applications, 11(2):115–128, 1997.

[9] G. Hunt and D. Brubacher. Detours: Binary interception
of Win32 functions. Technical Report MSR-TR-98-33, Mi-
crosoft Research, February 1999.

[10] M. B. Jones. Interposition agents: Transparently interposing
user code at the system interface. In Proceedings of the 14th
ACM symposium on operating systems principles, pages 80–
93, 1993.

[11] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, June 1988.

[12] M. J. Litzkow. Remote unix - turning idle workstations into
cycle servers. In USENIX Conference Proceedings, pages
381–384, Summer 1987.

[13] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and
B. Welch. The Sprite network operating system. IEEE Com-
puter, 21(2):23–36, 1988.

[14] R. Srinivasan. RFC-1831: RPC: Remote procedure call pro-
tocol specification version 2. Network Working Group Re-
quests for Comments, August 1995.

[15] R. Srinivasan. RFC-1832: XDR: External data representa-
tion standard. Network Working Group Requests for Com-
ments, August 1995.

[16] D. Thain. Bypass manual. Available from
http://www.cs.wisc.edu/condor/bypass,
2000.

7

