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ABSTRACT
Today, users of the grid may easily authenticate themselves
to computing resources around the world using a public key
security infrastructure. However, users are forced to employ
a patchwork of local identities, each assigned by a different
local authority. This forces each grid system to provide a
mapping from global to local identities, creating a significant
administrative burden and inhibiting many possibilities of
data sharing. To remedy this, we introduce the technique of
identity boxing. This technique allows a high-level identity
to be attached directly to each process and resource that a
user employs, rendering the local account name irrelevant.
This allows a grid user to be known by the same name con-
sistently at all sites, thus reducing administrative burdens
and enabling new forms of sharing. We have implemented
identity boxing at the user level within a secure system-call
interposition agent and applied it to a distributed storage
and execution system. The performance overhead of this
implementation is only 0.7 to 6.5 percent for a selection
of scientific applications, but as high as 35 percent for a
metadata-intensive software build. We conclude with some
reflections on how the operating system might be modified
to better support grid computing.

1. INTRODUCTION
Today, the GSI public key security infrastructure allows

grid users to be identified with strong cryptographic cre-
dentials and and a descriptive, globally-unique name such
as /O=UnivNowhere/CN=Fred. This powerful security in-
frastructure allows users to perform a single login and then
access a variety of remote resources on the grid without fur-
ther authentication steps [17].

However, once connected to a specific system, a user’s grid
credentials must somehow be mapped to a local namespace.
There are a variety of techniques for performing this map-
ping. Systems today employ untrusted accounts, private ac-
counts, group accounts, anonymous accounts, and account
pools. Each of these methods presents some administrative
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difficulties. Most techniques must run as the super-user in
order to create a new protection domain for the calling user.
Many require some explicit interaction with a human ad-
ministrator in order to generate a new account and update
a mapping table. Most permit little or no sharing of data or
resources between users on a given system. Large systems
such as Grid3 have worked around these problems by em-
ploying the old insecure standby of shared user accounts [18].

Even worse, user identities are not employed consistently
across the grid. A single user may be known by a different
account name at every single site that he or she accesses, in
addition to a variety of identity names given by certificate
authorities. In order to access a resource, the user may
need to have a local account generated. In order to share
resources, each user must know the local identities of users
that he/she wishes to share with. However, local identities
are often inconsistent or transient, thus preventing any sort
of sharing at all.

Ideally, a grid computing system would hide these details
from the end user. A user should simply be able to log in
and be identified by his or her grid identity without reference
to local accounts. If several users wish to share data or
resources, they ought to be able to identify each other via
their grid identities rather than by arbitrary local names.
This ideal is difficult to realize in today’s computing systems
because of the inflexible nature of the underlying account
scheme. Every new user of a grid system must be entered by
the administrator into the local account database. Although
it is a small burden to do this for one user, it is a full-time
job for systems with many thousands of users.

To attack these problems, we introduce the technique of
identity boxing. This technique is similar to sandboxing: an
untrusted program is run by a secure supervisor that eval-
uates its actions. The difference is that the identity box
attaches a high-level grid identity to every process and re-
source in the system without regard to the local account
details. This allows a user to execute programs and access
data in a coordinated way using only grid identities. Fur-
ther, the administrator of a resource is relieved of the obli-
gation to create and manage accounts: an identity box can
create and destroy protection domains as they are needed.
A familiar access control interface allows for the controlled
sharing of resources.

We have implemented an identity box using Parrot [41], an
interposition agent that provides operating-system-like ser-
vices at the user level. Parrot works by trapping system calls
using the debugging interface, therefore it is able to perceive
and contain all external effects of an application. Users can-



Account Required Protect Allow Allow Allow Admin Example
Type Privilege Owner? Privacy? Sharing? Return? Burden Systems

Single - no no yes yes - Personal GASS [7]
Untrusted root yes no yes yes per user WWW, FTP

Private root yes yes no yes per user I-WAY [12]
Group root yes fixed fixed yes per group Grid3 [18]

Anonymous root yes yes no no - Condor on NT [42]
Pool root yes yes no no per pool Globus [16] Legion [26]

Identity Box - yes yes yes yes - Parrot [41]

Figure 1: Identity Mapping Methods

not escape from an identity box, so the supervisor becomes
an augmented operating system for grid applications. How-
ever, because of this secure implementation, system calls
are penalized by an order of magnitude in latency. This
has a marginal overhead on a selection of scientific applica-
tions, which are slowed down by 0.7 - 6.5 percent in runtime.
However, identity boxing is more expensive in meta-data in-
tensive application such as a program build, which is slowed
by 35 percent.

To demonstrate the expressive simplicity of identity box-
ing, we have employed it within the Chirp [40] storage sys-
tem. The combination of identity boxing with familiar ac-
cess controls creates a system in which a wide community
of users can share resources with little or no intervention by
a human administrator.

2. CURRENT SOLUTIONS
Figure 1 summarizes methods currently used for admit-

ting grid users to local systems. Each system has vari-
ous strengths and weaknesses that we define as follows. A
method requires privilege if the operator of the service must
be the root to employ it. It protects the owner if it prevents
grid users from harming the service owner after they are
admitted. It allows privacy if grid users are able to easily
protect their data from other users at the same site. It al-
lows sharing if grid users are able to easily share their data
with others at the same site. It allows return if a grid user
may store some data, log out, and then log in again at a
later time and still be able to access that data. Finally, the
administrative burden describes how often a human must
perform some manual activity as root to admit a new user.

Single Account. The simplest method of identity map-
ping is to run all visiting processes in the same account.
This method is easy to implement and is often a necessity
because it requires no special privileges. Obviously, it does
not protect the account holder from malicious users, nor
does it afford visiting users any privacy from each other.
However, it does allow all users admitted to the account to
share data and communicate with each other, if they can be
trusted to do so. This approach can be acceptable if it is
expected that grid credentials will always correspond to one
controlling user. For example, one might reasonably operate
a personal GASS file server [7] using only a single account.

Untrusted Account. If it is desired to protect the re-
source owner from malicious users, a slight variation is to
run all processes in a special account for unknown or un-
trusted users (nobody) that carries fewer privileges than an
ordinary user. This approach is generally used by Web and
FTP servers. The untrusted account has the same shar-
ing properties as the single account approach, but requires

privileges in order to create and use it.
Private Accounts. In systems with distinct users that

wish to be protected from one another, one may create a
distinct local account for every single user. A table called
a “gridmap” file is then needed to map from grid identities
to local accounts. This approach was first demonstrated by
I-WAY [12] and is widely used today. This approach al-
lows each account to maintain privacy, but does not allow
for sharing between accounts. Most importantly, it requires
privileges to execute and requires a human administrator
to be involved for each new local account creation. In this
configuration, the grid credentials are used for securing the
connection, but every user still bears the burden of estab-
lishing an identity at every site.

Group Accounts. Because of the high administrative
burden of creating and maintaining private accounts at ev-
ery grid site, some systems have turned to creating shared
group accounts at every site. This approach is used by the
Grid3 [18] system. In this model, there are a small number
of accounts, each corresponding to a well-known experiment
or collaboration. The involvement of the system administra-
tor is necessary to create the accounts, but once established,
multiple users are mapped onto those accounts. These ac-
counts essentially enforce static privacy and sharing policies.
Within one group, nothing is private, and all data is shared.
Between groups, there is privacy but no sharing. As with the
other approaches, privileges are required to manage group
accounts.

Anonymous Accounts. As an alternative to group ac-
counts, a system may create a temporary account that lasts
only for the duration of a single job. As with private ac-
counts, this requires special privileges, provides privacy, but
does not permit sharing. However, it does not require the
administrator’s involvement for every user. Condor [42] uses
this approach on Windows NT by taking advantage of the
large numeric user ID space to create a fresh user for every
single new job. The primary drawback to this method is
that an ID no longer has any meaning after a job completes.
Thus, this technique is not suitable for any situation where a
job creates persistent data and then must return to it later.

Account Pools. A variation on anonymous accounts
may be employed on Unix-like systems. The system ad-
ministrator may create a pool of anonymous accounts (i.e.
grid0-grid99) for use by a grid system, allowing a resource
manager to assign available accounts to jobs on the fly. This
approach is available in both Globus [16] and Legion [26].
Like anonymous accounts, an account pool does not allow
for return: a given user might be grid9 today and grid33
tomorrow. However, it does protect the system owner from
users and users from each other.
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Figure 2: Example of Identity Boxing in an Interactive Session
An example of identity boxing shown as a schematic and as a shell transcript. The supervising user (dthain) creates a file
secret in his home directory. He then creates an identity box for the visiting user Freddy, who is not allowed to access secret

because there is no ACL present by default. However, Freddy can create a file mydata in his new home directory, where the
ACL has been initialized to give him complete access.

Identity Boxing. Identity boxing, as we will explain
shortly, dispenses with all of the difficulties of account man-
agement that we have described. It allows named protection
domains to be created on the fly without reference to any
account database. Identity boxing can be employed by any
user without root privileges. This allows ordinary users to
create grid services without creating new security risks by
becoming root. Because each visiting user runs in a secure
protection domain, identity boxing protects the owner from
grid users, protects grid users from each other, and allows
for both sharing of data, and return to stored data. No
administrator intervention is needed to create an identity
box.

3. IDENTITY BOXING
An identity box is a secure execution space in which all

processes and resources are associated with an external iden-
tity that need not have any relationship to the set of local
accounts. That is, within an identity box, a program runs
with a high-level name such as /O=UnivNowhere/CN=Fred
rather than with a simple integer UID or account name.

Identity boxing makes it possible to use identities consis-
tently throughout a grid computing system. Regardless of
the machine, account, or resources in use, a program and
all of its data components use and perceive the same iden-
tity everywhere. Permission checks and access control lists
are based upon the high-level name rather than low-level
account information. Further, identity boxing dramatically
reduces the administrative burden of operating a grid com-
puting system. Identity boxes can be created at runtime
by unprivileged users without consulting or modifying local
account databases. A single Unix account may be used to
securely manage several identity boxes simultaneously, thus
eliminating the need to services to run as root.

Ideally, identity boxing would be implemented within the
operating system kernel. However, as many have observed,
practical grid computing requires that we live with unmod-
ified operating systems. Thus, we have implemented iden-
tity boxing using an interposition agent [29] that provides
operating-system-like behavior at the user level without spe-

cial privileges.
We have modified the Parrot [41] interposition agent to

perform identity boxing on arbitrary processes by securely
intercepting and modifying system calls through the debug-
ging interface. Parrot may be thought of as an augmented
operating system. In order to execute system calls on be-
half of applications, it must track a tree of processes, keep
tables of open files, and direct system calls to device drivers.
Such an architecture makes it easy to attach filesystem-like
services to existing applications. For example, Parrot has
been used in the past to access GSI-FTP [2] sites by simply
opening files under the path /gsiftp. Thus, it is natural to
add a new operating-system-like feature such as a change to
user identity and access control.

To implement identity boxing, we have modified Parrot to
carry with each process a free-form text string indicating the
user’s high-level identity. The user calls parrot identity box

with an identity string and a command to run. The su-
pervising user can choose absolutely any name for the visi-
tor. MyFriend, JohnQPublic, and Anonymous429 are all valid
names. This identity is then visible to the child process
through a new system call get user name. We do not ex-
pect programs to be changed to use this system call. Rather,
the identity is used internally for access control, much like
credentials augment identity in Kerberos [38] or AFS [24].

Within an identity box, access control to files and other
objects is somewhat complicated because visiting identities
are free-form strings. These new identities do not fit into the
existing data structures that record integer UIDs, nor can
Parrot modify objects not owned by the supervisor. Our
solution to this problem is to abandon the Unix protection
scheme and adopt access control lists (ACLs) instead. In
each directory, Parrot looks for a file named . acl that de-
scribes what actions users can perform on files in that direc-
tory. Any program run within an identity box will respect
these ACLs. Each entry of an ACL lists an identity and
the set of operations that can be performed. Identities may
contain wildcards in order to match patterns. For example,
this ACL allows /O=UnivNowhere/CN=Fred to read, write,
list, execute and administer this directory. It also allows any



user at /O=UnivNowhere/ to read and list it:

/O=UnivNowhere/CN=Fred rwlax

/O=UnivNowhere/* rl

Visiting users are given a fresh home directory with an
appropriate ACL. Newly-created directories inherit the par-
ent ACL. Of course, Parrot cannot retroactively place ACLs
throughout the file system. When it encounters a directory
without an ACL, Parrot enforces Unix permissions as if the
visiting user was the Unix user nobody. This ensures that
the supervising user’s data is protected from the visiting
user. A user must have the A right to modify an ACL.

Note that ACLs are only respected by processes run within
an identity box. A process outside of the box owned by
dthain would be free to modify such files directly. In this
sense, the supervising user is root with respect to users in
the identity box. A typical server application would place
all visiting users in distinctly named identity boxes.

An example of an interactive identity box is shown in
Figure 2. Here, the Unix user dthain has created an identity
box for Freddy. Note that Freddy does not appear anywhere
in the system account list. Freddy attempts to access a file
secret owned by dthain, but is denied because that file is
private to dthain. However, Freddy is given a home directory
in which he can work and is allowed to write the file mydata.

Figure 2 also shows that the identity box causes the Unix
account name to correspond to that of the identity string.
This allows whoami and similar tools to produce sensible out-
put. This is accomplished by creating a private copy of the
/etc/passwd file, adding an entry at the top corresponding
to the visiting identity, and then redirecting all accesses to
/etc/passwd to that copy. In addition, a temporary home
directory is created for the visiting user’s startup files and
private data. However, this is merely a convenience. Neither
the existing user database nor the private copy play any role
in access control within the identity box.

Although this paper describes mostly the semantics of file
sharing, it is important to note that the external user iden-
tity is employed for all matters that requires some form of
privilege check. For example, a process within an identity
box may only send signals to other processes with the same
identity. This is easily enforced within the supervisor, which
keeps a table of processes under its care. Similar comments
apply to other kernel resources.

One may easily image a variety of uses for identity boxing
on a standalone system. An identity box could be used to
securely loan computer access to a visitor without creating a
new account. Untrusted programs downloaded from the web
could be run within an identity box named by the credentials
associated with the program. However, identity boxing is
most useful in the context of a distributed system or a grid
where there may be an unbounded number of cooperating
users.

4. IDENTITY BOXING
IN A DISTRIBUTED SYSTEM

Identity boxing allows a grid computing system to securely
admit visiting users while retaining their high-level identities
to be used for access control. It also simplifies deployment
and administration by not requiring superuser privileges.
We demonstrate the expressive power of this technique by
applying it to the Chirp [40] distributed storage system.

A Chirp server is a personal file server for grid comput-
ing. It can be deployed by an ordinary user anywhere there
is space available in a file system. A Chirp server exports
the available file space using a protocol that closely resem-
bles the Unix I/O interface. This file space can be accessed
remotely like a distributed filesystem by using Parrot with
ordinary applications. A collection of Chirp servers report
themselves to a catalog, which then publishes the set of avail-
able servers to interested parties.

Of course, there exist a variety of systems for storing data
on the grid. GridFTP [2] provides secure, high-performance
access to legacy systems. SRB [4] combines databases, file
systems, and other archives into a coherent system. SRM [37]
defines semantics for storage allocation in time and space.
IBP [33] makes storage accessible through a malloc-like in-
terface with access control via capabilities. NeST [6] pro-
vides unified access to grid storage through a variety of pro-
tocols. However, Chirp is a particularly interesting platform
in which to explore identity boxing because it has a fully vir-
tual user space. This means that the space of local users is
completely hidden from external users. All data is stored
and referenced by external identities.

A Chirp server supports a variety of authentication meth-
ods, including Globus GSI [17], Kerberos [38], ordinary Unix
names, and a simple hostname scheme. Upon connecting,
the client and server negotiate an acceptable authentication
method and then the client must prove its identity to the
server. If successful, the server then knows the client by a
principal name constructed from the authentication method
and the proven identity. One user might be known by any
of these names:

globus:/O=UnivNowhere/CN=Fred

kerberos:fred@nowhere.edu

hostname:laptop.cs.nowhere.edu

Once identified, a user may access files on the server like
any other file server. Using Parrot, files on a Chirp server
appear as ordinary files in the path /chirp/server/path.
These files are protected by ACLs like those used in Parrot.

Now, imagine the user that wishes to execute a program
using data stored on such a server. Traditionally, the user
would have to arrange for a login on the same server and use
that to access the data directly. However, the user would
also have to arrange for the server to store the data under
that same identity, which would require the server to run
as root. If this was impossible, the user would have to ex-
tract the data from the server and run the computation on
a different host entirely.

The technique of identity boxing allows to sidestep these
difficulties. To demonstrate this, we have added to the Chirp
protocol a simple exec call that invokes a remote process.
This process is run within an identity box corresponding to
the identity negotiated at connection. The identity box en-
forces access to resources as described above, allowing ordi-
nary applications run unmodified in a remote environment.
Of course, the calling user must have the execute (x) right
on the program (and any sub-programs) to be executed.

The combination of file access and remote execution allows
for simple but powerful controls. If the user has the write
and execute (wx) rights on a directory, then he/she can stage
in an executable and run it. If the user has only the read
and execute (rx) rights, then he/she is limited to running
programs already there. For example, this ACL would allow
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Figure 3: Example of Identity Boxing in a Distributed System
Identity boxing can be used to support visiting users in a distributed system. The Chirp file server provides remote file access
and remote file execution to network users. A remote user using a Chirp client creates the /work directory, stages in the
sim.exe program, executes it, and then retrieves the output out.dat. The Chirp server runs sim.exe in an identity box
corresponding to the remote user. The system may be run by any ordinary user and does not require the creation of any
accounts before or during its operation.

any user in nowhere.edu to run existing programs, while
allowing any user holding a UnivNowhere certificate to stage
in and run any program.

/: hostname:*.nowhere.edu rlx

globus:/O=UnivNowhere/* rwlx

The flexibility of identity boxing creates some new chal-
lenges. Identity boxing encourages the use of wildcards in
access controls. But, a large set of users identified by a wild-
card will not necessarily want to share a namespace. Imag-
ine the chaos of allowing one hundred users using the same
directory to store files and run programs! Visiting users will
want a fresh namespace and the ability to adjust the ACL in
order to work with collaborators. For this purpose, an ACL
may also include the reserve right (V), which is a variation
upon amplification [28]. Suppose that the remote users had
been given only the reserve right:

/: hostname:*.nowhere.edu rlx

globus:/O=UnivNowhere/* v(rwlax)

When a user performs a mkdir in a directory in which
he/she only holds the reserve right, the newly-created direc-
tory is initialized with an ACL containing the rights listed in
parentheses after the V. Not only does this create a private
namespace, but it also allows the user to selectively grant
access to others. Suppose that the above ACL is present in
the root directory when globus:/O=UnivNowhere/CN=Fred

invokes mkdir(/work). The ACL in /work would be:

/work: globus:/O=UnivNowhere/Fred rwlax

By virtue of the A right, Fred can further adjust the ACL
to give access to other users. Of course, if the system owner
does not want a visiting user to extend rights to others, then
the A right may simply be left out of the reserve set.

The combination of identity boxing with a virtual user
space and powerful ACLs allows for a dramatically simpli-
fied user experience. Given appropriate ACLs, users may

discover storage, stage data, run programs, and retrieve out-
put without special privileges or interaction with an admin-
istrator. Further, any user is permitted to be a supervisor,
deploying and administering any resource that they are able
to access. Owners of resources remain in control, delegating
and restricting rights as they see fit.

Figure 3 demonstrates how all this fits together. The user
Fred wishes to run sim.exe on a remote machine using his
grid credentials. He uses a client tool to contact a Chirp
server and creates the /work directory using the reserve (V)
right. He then stages in the input data and the executable
to the remote machine. Using the exec call, he invokes the
simulation, which is run in an identity box annotated with
his name. The identity box allows his simulation to run and
access his data securely, even though he does not have an
account on the machine. Finally, he retrieves the output
and cleans up.

At this point, it is worth pointing out an important aspect
of identity boxing. The identity box simplifies the creation
and management of protection domains: a system may cre-
ate an identity box on the fly without regard to any external
user database. However, this does not mean that identity
boxing requires a system to admit arbitrary users. Rather,
identity boxing allows a system to have complex admission
policies, such as access controls with wildcards, or reference
to a community authorization service [32], without the diffi-
culty of reconciling that policy to the existing user database.

5. IMPLEMENTATION DETAILS
Ideally, identity boxing would be a service provided by the

operating system kernel to all users of any privilege level.
This would allow for the highest assurance in the security
of its implementation, and minimize any performance over-
heads. However, it is not practical in the short term to ask
grid computing sites to modify kernels, thus we have cho-
sen interposition via Parrot as way of augmenting existing
kernels. Parrot in particular is implemented only on the
Linux operating system, but the concept of identity boxing
in general is not tied to this platform. Some comments on
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how identity boxing might be implemented in the kernel are
given in the conclusion.

Parrot has been implemented as a user-level process that
securely traps system calls using the ptrace interface on the
Linux operating system. Although the Linux ptrace inter-
face is often reported to be less convenient than the Solaris
proc interface, it is sufficient for performing interposition
and gives access to a more widely deployed platform for sci-
entific computing. Readers interested in even more detail
may consult an earlier paper on Parrot [41].

Figure 4 shows how the system call trapping mechanism
works. The supervisor process (Parrot) runs an application
as a child using the ptrace debugging interface. When the
child attempts a system call, the kernel halts the process
and notifies the supervisor. The supervisor then examines
the detail of the system call, and implements it on behalf
of the child process by either consulting its internal state
and/or making one or more system calls. Thus, Parrot is a
delegation architecture like Ostia [21].

Once the supervisor has computed the result of the sys-
tem call and applied any necessary side effects to the child
process and the surrounding system, it must return a result
to the child. On most operating systems, it is not possible
to abort a system call outright, so instead the supervisor
modifies the child’s registers to convert the system call into
a fast null operation: getpid(). Again, the supervisor gains
control when the getpid() call completes and updates the
child’s registers to reflect the desired result.

This mechanism is used for the majority of system calls
that require a small amount of data to be moved in and out
of the process. Modifications to registers and small amounts
of memory can be performed one work at a time using the
ptrace peek and poke operations. For system calls that re-
quire a large amount of data movement, another technique

is required. Ideally, the supervisor would simply use mmap

to directly access the memory of the child process reflected
in /proc/x/mem. However, recent versions of the Linux ker-
nel prevent writing to this special file, due to concerns of
complexity and security.

Lacking this ability, the application must be coerced into
assisting the supervisor. This is accomplished by converting
many system calls into preads and pwrites on a shared
buffer called the I/O channel. This is small in-memory file
shared among all of its children. The supervisor maps the
channel into memory, while all of the child processes simply
maintain a file descriptor pointing to the channel.

For example, suppose that the application issues a read on
a file. Upon trapping the system call entry, Parrot examines
the parameters of read and retrieves the needed data. These
are copied directly into a buffer in the channel. The read

is then modified (via poke) to be a pread that accesses the
I/O channel instead. The system call is resumed, and the
application pulls in the data from the channel, unaware of
the activity necessary to place it there. This extra data copy
has some performance implications explored below.

6. SECURITY AND CORRECTNESS
System call trapping is a secure interposition method. If

the mechanism is properly implemented, the child process
is unable to escape the control of the supervisor. All side
effects must be performed by making system calls, and each
of these must pass though the supervisor for both approval
and implementation. Unlike other techniques such as library
interposition [42] or binary rewriting [44], no clever linking
tricks nor carefully-crafted assembly code can be used to
elude the trapping mechanism. Of course, an application
can always attempt to trigger bugs in the supervisor by test-
ing boundary conditions in system calls, just as in a system



kernel or a server process.
Parrot supports the vast majority of Unix system calls.

Process management, file access, network access, non-blocking
I/O, asynchronous I/O, and many other details of the inter-
face are working. Multi-threaded applications and inter-
process communication are supported in the same way as in
a real kernel. Blocking system calls place the calling thread
or process into a wait state so that the supervisor can wait
upon and service system calls by other threads and pro-
cesses. A few system calls have not been implemented. For
example, Parrot does not (yet) implement the ptrace inter-
face, so processes under Parrot are not able to debug each
other. In addition, a number of system calls only useful to
the system administrator (such as mount) are also unimple-
mented. However, these are limitations of the implementa-
tion, not the architecture.

To give some sense of the state of implementation, here
is an (incomplete) list of applications used with Parrot on a
daily basis: mozilla, emacs, tcsh, bash, ssh, gcc, vi,

make, xterm as well as a large number of basic utilities such
as grep, less, cp, mv, ls, and rm. Also, a selection of
scientific applications that work with Parrot are given below.

T. Garfinkel has noted [19] that system-call trapping is
a non-trivial problem with many subtleties that can be ex-
ploited by malicious applications. We whole-heartedly agree
with these observations, but modify them slightly in the
context of a delegation oriented architecture such as Parrot.
Here are Garfinkel’s five traps and pitfalls:

Incorrectly replicating the OS. When a supervisor attempts
to mirror some state that is also contained in the operating
system, it is possible for the sandbox to become unsynchro-
nized with the system. Parrot does not have this problem,
because it maintains all state for each process within itself.

Overlooking indirect paths. When there are multiple links
to a single object, the sandbox must be careful to check
permissions on the object, rather than on the links. This
problem is found in the filesystem. Parrot checks for an
ACL in the directory in which a file is located before grant-
ing access. However, if the file is in fact a link elsewhere,
then Parrot must follow that link and examine the target
directory instead. This requires that Parrot examine each
opened file; if the file is actually a symbolic link, the ACL in
the target directory must be examined. No such examina-
tion can be done with hard links, therefore Parrot is obliged
to prevent hard links to files that the user cannot access.

Incorrect subsetting of a complex interface. Many sand-
boxes attempt to outlaw a particular system call or interface
entirely. This has one of two effects: either applications are
rendered unusable, or the complex interface has “leaks” that
allow access in other ways. This is not a problem in Parrot,
as containment is achieved through access control, rather
than by outlawing interfaces.

Race conditions. When a process requests a system call,
a sandbox must perform one sequence of system calls to
implement access control, and another sequence to imple-
ment the action. Because a sequence of system calls cannot
be done atomically, it possible for the access control to be
changed between the check and the access. In the context of
identity boxing this is not a problem. Only the supervising
user would be able to take advantage of this loophole, and
the supervising user is effectively omnipotent to the visiting
users already.

Side effects of denying system calls. Some operating sys-

tems do not allow a debugger to modify the return code of
a system call, but only to change it to an “aborted” value
or to kill the process entirely. On Linux, Parrot is able to
provide any return value, including “permission denied.”

From all these details, we may conclude that system call
interposition as complicated as an operating system kernel.
But, it can be made to work for real applications. Despite
the necessary complexity, interposition is invaluable when
it is simply not possible to modify the operating system.
However, we also believe that identity boxing would find a
better implementation in the operating system proper. We
consider this in the concluding remarks.

7. APPLICATION PERFORMANCE
A user-level implementation of identity boxing has signif-

icant but not insurmountable overhead. In order for Parrot
to trap and interpret the system calls of an application, at
least six context switches are necessary, as shown in Fig-
ure 4(b). These extra context switches increase latency and
also flush processor caches that might otherwise be preserved
in an optimized system call mechanism. An additional data
copy is also needed for bulk I/O operations.

Figure 5 shows the effects of this performance overhead
on individual system calls as well as real applications. Fig-
ure 5(a) shows the latency overhead of system calls handled
within the identity box. Each entry was measured by a
benchmark C program which timed 1000 cycles of 100,000
iterations of various system calls on a 1545 MHz Athlon
XP1800 running Linux 2.4.20. Each system call was per-
formed on an existing file in an ext3 filesystem with the file
wholly in the system buffer cache. Each call is slowed down
by an order of magnitude.

We also ran six real applications in order to measure the
actual overhead of identity boxing amortized over applica-
tion activity. Five of these were scientific applications that
are candidates for execution on grid systems. AMANDA [25]
is a simulation of a gamma-ray telescope. BLAST [3] searches
genomic databases for matching proteins and nucleotides.
CMS [23] is a simulation of a high-energy physics appara-
tus. HF [11] is a simulation of the nucleic and electronic
interactions. IBIS [14] is a climate simulation. These appli-
cations are described in great detail in an earlier paper [39].
An additional application, make, is simply a build of the
Parrot software itself.

The overhead of identity boxing on these applications is
shown in Figure 5(b). The five scientific applications are
slowed down by only 0.7 - 6.5 percent. Although they are
more data intensive than other grid applications, they per-
form primary large-block I/O. An interactive application
such as make is slowed down by 35 percent because it make
extensive use of small metadata operations such as stat.
Thus, identity boxing via an interposition agent has over-
head that is likely to be acceptable for scientific applications,
especially if the technique empowers the user to harness a
larger array of resources.

8. RELATED WORK
Sandboxing. Identity boxing is closely related to sand-

boxing. A sandbox runs an untrusted program underneath
a supervisor process which traps its operations and checks
them with a reference monitor. The mechanism can be bi-
nary rewriting, as in Shepherd [30], a kernel module, as in
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Figure 5: Overhead of Identity Boxing
Within an identity box, individual system calls are slowed by an order of magnitude due to the multiple context switches
between the application, the supervisor, and the host kernel. On real applications, the effective overhead varies. A selection
of five scientific applications are slowed down from 0.7 to 6.5 percent, but a system-call intensive application such as make is
slowed down by 35 percent.

Janus [22], or the debugging interface, as in Systrace [34].
These systems all require the user to state a list of accept-
able operations. Another possibility is to associate rights
with programs rather than users, as in SubDomain [10] and
MAPBox [1]. Ostia [21] delegates all operations to an agent,
allowing for arbitrary policies. One might also consider the
Unix chroot mechanism to be a simplified sandbox. chroot
creates a fresh, empty file space in which an application can
work but not escape.

Traditional sandboxing requires users to provide some spec-
ification or approval of the system calls attempted by an ap-
plication. This is an enormous burden because most users
have no idea what happens deep within an application. For
example, a user running a word processor thinks (quite log-
ically) that the word processor only needs to read and write
the file that he/she is editing. In fact, the program needs
to load an executable, read a configuration file, load plugin
libraries, access the dynamic linker, read the host database,
create backup files, and use a whole host of other resources
that the user has never heard of. In our field experience
with scientific applications [41, 39, 5], even authors of tech-
nical software are surprised to learn exactly what system
calls their programs attempt. Users are insulated from the
system by so many layers of software that we cannot expect
them to think in terms of low-level system calls. Identity
boxing builds upon sandboxing by providing built-in access
controls that correspond to familiar concepts. Rather than
requiring the supervisor to state the access control policy in
advance, identity boxing allows the visiting user to interact
with others as a first class citizen.

Privilege Separation [35] attacks the same problem in
a different way. Many programs, such as login servers, only
need some subset of the super-user’s capabilities. A common
subset is simply the ability to call setuid(). However, the
sheer complexity of a login server makes it difficult to trust
the entire program. Thus, the server itself can be run in an
untrusted mode. When it requires a privileged operation, it
must explicitly request it from a small kernel of privileged
code, which checks the intended operation and then per-
forms it on behalf of the server. This technique is powerful
and effective, but still requires a small amount of privileged
code and perhaps some code transformation [8]. Identity

boxing provides the same power as privilege separation, but
requires no privileged code at all.

Virtual Machines. The virtual machine has been pro-
posed as the solution to a variety of problems in distributed
computing [36, 43], grid computing [13, 9], operating sys-
tem composition [15, 27], and security [20, 31]. A virtual
machine can completely isolate a service provider from the
contained user. This provides both security and an unre-
stricted workspace for the contained user, who can safely be
an administrator in the virtual environment. This is enor-
mously useful ability, particularly when developing a new
operating system or performing whole-system simulation.

A virtual machine provides some of the benefits of identity
boxing. However, it is less practical in two respects. First,
creating a virtual machine is a non-trivial administrative ac-
tivity: one must generate disk images, setup user databases,
and install software within the virtual machine itself. Effec-
tively, the creation and management of virtual machines is
an activity only accessible to those already skilled in system
administration. This also may come at a significant perfor-
mance cost to move data in and out of the virtual machine.
Second, the virtual machine inhibits sharing where it is most
needed. Users that run untrusted programs generally want
those programs to interact with the existing system in a
limited way. They want to retain access to local files, to
interact with existing processes, to communicate over the
existing network. Virtual machines isolate visiting users,
while the identity box encourages controlled sharing.

9. CONCLUSION AND FUTURE WORK
Identity boxing addresses two distinct limitations of tra-

ditional operating systems with respect to distributed com-
puting.

First, the traditional operating system does not allow or-
dinary users to create new protection domains. The creation
of a new account is an activity that only the superuser can
perform. As a result of this, users are forced to choose be-
tween obtaining superuser privileges (if this is even possible),
or running multiple untrusted programs within one account.
The identity box allows users to defend themselves without
obtaining maximum privilege. This permits the ordinary
user to operate a secure grid service.



Second, the traditional operating system does not allow
high-level names to be associated with low level names. This
causes difficulty in the realm of grid computing, where the
system operator is obliged to maintain some mapping be-
tween global and local usernames. Further, without the
high-level name, it is virtually impossible for users to en-
gage in data-sharing on the local system. The identity box
allows for the consistent use of identities globally, allowing
the user to completely ignore the local account name.

One application of identity boxing outside of the grid com-
puting domain might be for untrusted web browsing. Many
programs downloaded from the web are associated with cre-
dentials that identify the owner or creator. Yet, creden-
tials alone do not imply that the program is trusted. Using
an identity box, an ordinary user may run an untrusted
program using a credentialed name such as JoeHacker or
BigSoftwareCorp. In addition to protecting the supervising
user, the identity box could be used for forensic purposes,
recording the objects accessed and the activities taken by
the untrusted user. A suitable graphical interface to iden-
tity boxing would allow the non-technical user to distinguish
between trusted and contained processes.

As we have observed, the implementation of an identity
box using system-call trapping is convenient, but complex
and perhaps too expensive for some applications. We pro-
pose that future operating systems should include the capa-
bility for ordinary users to create new protection domains
with high-level names on the fly. If each user is capable of
creating arbitrary names, then a hierarchical namespace is
necessary to prevent conflicts, much as in the domain name
system. Figure 6 shows an example of this. An ordinary
user might be known as root:dthain, and a new protec-
tion domain for a visitor might be root:dthain:visitor.
In such a system, a web server could create identities for
service processes, and a grid server could create identities
corresponding to grid identities.

Naturally, a change to the namespace would introduce
some complexities into the implementation. For example,
user names would no longer be stored as integer indexes,
but as full text strings. The hierarchy of users would result
in new management relationships between processes. The
filesystem would require some modification in order to store
long names of file owners. In turn, this would require richer
access controls on files (such as the ACLs shown above) in or-
der to accommodate new patterns of sharing between users.

These issues we leave open for future work.
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