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Abstract

Today, users of the grid may easily authenticate
themselves to computing resources around the world
using a public key security infrastructure. However,
mapping a user’s grid credentials to local accounts
has proven to be an administrative hassle. Current
techniques for mapping credentials to accounts have
a high human burden as well as weak privacy and
sharing properties. To remedy this, we introduce the
technique of identity boxing. This technique allows
a high-level identity to be attached directly to each
process and resource that a user employs. Identity
boxing eliminates the need to create, manage, and
use local accounts: a grid user is known consistently
everywhere by his or her credentials. We have im-
plemented identity boxing at the user level within
the Parrot interposition agent and applied it to a
distributed storage and execution system. The per-
formance overhead of this implementation is only
0.7 to 6.5 percent for a selection of scientific appli-
cations, but as high as 35 percent for a metadata-
intensive software build.

1 Introduction

Today, the GSI public key security in-
frastructure allows grid users to be identi-
fied with strong cryptographic credentials and
and a descriptive, globally-unique name such as
/O=UnivNowhere/CN=Fred. [19] This powerful se-
curity infrastructure allows users to perform a single
login and then access a variety of remote resources
on the grid without further authentication steps.
However, once connected to a specific system, a

user’s grid credentials must somehow be mapped
to a local namespace. There are a variety of tech-

niques for performing this mapping. Systems today
employ untrusted accounts, private accounts, group
accounts, anonymous accounts, and account pools.
Each of these methods presents some administrative
difficulties. Most techniques must run as the super-
user in order to create a new protection domain for
the calling user. Many require some explicit in-
teraction with a human administrator in order to
generate a new account and update a mapping ta-
ble. Most permit little or no sharing of data or re-
sources between users on a given system. Large sys-
tems such as Grid3 [14] have worked around these
problems by employing the old insecure standby of
shared user accounts.

Even worse, user identities are not employed con-
sistently across the grid. A single user may be
known by a different account name at every single
site that he or she accesses, in addition to a variety
of identity names given by certificate authorities.
In order to access a resource, the user may need to
have a local account generated. In order to share
resources, each user must know the local identities
of users that he/she wishes to share with. However,
local identities are often inconsistent or transient,
thus preventing any sort of sharing at all.

Ideally, a grid computing system would hide
these ugly details from the end user. A user should
simply be able to log in and be identified by his or
her grid identity without reference to local accounts.
If several users wish to share data or resources, they
ought to be able to identify each other via their
grid identities, rather than by arbitrary local names.
This ideal situation is difficult to realize in today’s
computing systems because of the inflexible nature
of the underlying account scheme. Every new user
of a grid system must be entered by the adminis-
trator into the local account database. Although it
is a small burden to do this for one user, it would



be a full-time administrative job for systems with
hundreds or thousands of users.

To attack these problems, we introduce the tech-
nique of identity boxing. This technique is similar
to sandboxing: an untrusted program is run by a
supervisor that evaluates its actions. The differ-
ence is that the identity box attaches a high-level
grid identity to every process and resource in the
system, without regard to the local account details.
This allows a user to execute programs and access
data in a coordinated way using only grid identities
and ignoring the local account details. Further, the
administrator of a resource is relieved of the obli-
gation to create and manage accounts: an identity
box can create and destroy protection domains as
they are needed. A familiar access control interface
allows for the controlled sharing of resources.

We have implemented a prototype identity box
using Parrot [42], an interposition agent that pro-
vides operating-system-like services at the user
level. Because of the user-level implementation, ap-
plication system calls are penalized by an order of
magnitude in latency. This has a marginal over-
head on a selection scientific applications, which are
slowed down by 0.7 - 6.5 percent in runtime. How-
ever, identity boxing is more expensive in meta-data
intensive application such as a program build, which
is slowed down by 35 percent.

To demonstrate the expressive simplicity of
identity boxing, we have employed it within the
Chirp [39] personal storage server. The combina-
tion of identity boxing with familiar access controls
creates a system in which a wide community of users
can share resources with little or no intervention by
a human administrator.

2 Current Solutions

Figure 1 summarizes methods currently used for
mapping grid credentials to local accounts currently
in use. Each system has various strengths and weak-
nesses that we define as follows. A method requires
privilege if the operator of the service must be the
root to employ it. It protects the owner if it prevents
grid users from harming the service owner after they
are admitted. It allows privacy if grid users are able
to easily protect their data from other users at the
same site. It allows sharing if grid users are able
to easily share their data with others at the same
site. It allows return if a grid user may store some
data, log out, and then log in again at a later time
and still be able to access that data. Finally, the
administrative burden describes how often a human

administrator must perform some manual activity
to admit grid users.

Single Account. The simplest method of iden-
tity mapping is to run all visiting processes in the
same account. This method is easy to implement
and is often a necessity because it requires no spe-
cial privileges. Obviously, it does not protect the ac-
count holder from malicious users, nor does it afford
visiting users any privacy from each other. How-
ever, it does allow all users admitted to the account
to share data and communicate with each other, if
they can be trusted to do so. This approach can
be acceptable if it is expected that grid credentials
will always correspond to one controlling user. For
example, one might reasonably operate a personal
GASS file server [7] using only a single account.

Untrusted Account. If it is desired to protect
the resource owner from malicious users, a slight
variation is to run all processes in a special account
for unknown or untrusted users (nobody) that car-
ries fewer privileges than an ordinary user. This ap-
proach is generally used by Web and FTP servers.
The untrusted account has the same sharing prop-
erties as the single account approach, but requires
privileges in order to create and use it.

Private Accounts. In systems with distinct
users that wish to be protected from one another,
one may create a distinct local account for every
single user. A table called a “gridmap” file is then
needed to map from grid identities to local ac-
counts. This approach was first demonstrated by
I-WAY [12] and is widely used today. This ap-
proach allows each account to maintain privacy, but
does not allow for sharing between accounts. Most
importantly, it requires privileges to execute and
requires a human administrator to be involved for
each new local account creation. In this configura-
tion, the grid credentials are used for securing the
connection, but every user still bears the burden of
establishing an identity at every site.

Group Accounts. Because of the high admin-
istrative burden of creating and maintaining pri-
vate accounts at every grid site, some systems have
turned to creating shared group accounts at ev-
ery site. This approach is used by the Grid3 [14]
system. In this model, there are a small number
of accounts, each corresponding to a well-known
experiment or collaboration. The involvement of
the system administrator is necessary to create the
accounts, but once established, multiple users are
mapped onto those accounts. These accounts es-
sentially enforce static privacy and sharing policies.
Within one group, nothing is private, and all data
is shared. Between groups, there is privacy but no
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Account Required Protect Allow Allow Allow Admin Example

Type Privilege Owner? Privacy? Sharing? Return? Burden Systems

Single - no no yes yes - Personal GASS [7]
Untrusted root yes no yes yes per user WWW, FTP

Private root yes yes no yes per user I-WAY [12]
Group root yes fixed fixed yes per group Grid3 [14]
Anon. root yes yes no no - Condor on NT [43]

Pool root yes yes no no per pool Globus [18] Legion [26]
Identity Box - yes yes yes yes - Parrot [42]

Figure 1. Identity Mapping Methods

sharing. As with the other approaches, privileges
are required to access multiple accounts.

Anonymous Accounts. As an alternative to
group accounts, a system may create a temporary
account that lasts only for the duration of a single
job. As with private accounts, this requires spe-
cial privileges, provides privacy, but does not permit
sharing. However, it does not require the adminis-
trator’s involvement for every user. Condor [43] uses
this approach on Windows NT by taking advantage
of the large numeric user ID space to create a fresh
user for every single new job. The primary draw-
back to this method is that an ID no longer has any
meaning after a job completes. Thus, this technique
is not suitable for any situation where a job creates
persistent data and then must return to it later.

Account Pools. A variation on anonymous ac-
counts may be employed on Unix-like systems. The
system administrator may create a pool of anony-
mous accounts (i.e. grid0-grid99) for use by a grid
system, allowing a resource manager to assign avail-
able accounts to jobs on the fly. This approach is
available in both Globus [18] and Legion [26]. Like
anonymous accounts, an account pool does not al-
low for return: a given user might be grid9 today
and grid33 tomorrow. However, it does protect the
system owner from users and users from each other.

Identity Boxing. Identity boxing, as we will
explain shortly, dispenses with all of the difficulties
of account management that we have described. It
allows named protection domains to be created on
the fly without reference to any account database.
Identity boxing can be employed by any user with-
out root privileges. This allows ordinary users to
create grid services without creating new security
risks by becoming root. Because each visiting user
runs in a protection domain, identity boxing pro-
tects the owner from grid users, protects grid users
from each other, and allows for both sharing of data,
and return to stored data. No administrator inter-
vention is needed to create an identity box.

3 Identity Boxing

An identity box is a well-defined execution
space in which all processes and resources are
associated with an external identity that need
not have any relationship to the set of local ac-
counts. That is, within an identity box, a pro-
gram runs with an explicit high-level name such as
/O=UnivNowhere/CN=Fred rather than with a sim-
ple integer UID or account name.

Identity boxing makes it possible to use identities
consistently throughout a grid computing system.
Regardless of the machine, account, or resources in
use, a program and all of its data components use
and percieve the same identity everywhere. Permis-
sion checks and access control lists are based upon
the high-level name rather than low-level account
information. Of course, it is necessary to employ
some low-level account to run programs and store
data, but this account name is irrelevant to access
control. Further, identity boxing dramatically re-
duces the administrative burden of operating a grid
computing system. Identity boxes can be created at
runtime by unprivileged users without consulting or
modifying local account databases. A service pro-
cess within a grid can run without root privileges,
eliminating a common source of security problems.

Ideally, identity boxing would be implemented
within the operating system kernel. However, as
many have observed, practical grid computing re-
quires that we live with unmodified operating sys-
tems. Thus, we have implemented identity box-
ing using an interposition agent [29] that provides
operating-system-like behavior at the user level
without special privileges.

We have modified the Parrot [42] interposition
agent to perform identity boxing on arbitrary pro-
cesses. Parrot works by trapping and modifying the
system calls of a child process as it runs. This has
been used previously to attach new I/O services to
existing applications. For example, Parrot allows
a program to access GSI-FTP [2] sites by simply
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tcsh

tcsh
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syscalls
trapped

cat vi
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dthain
supervising user:

visiting user:
Freddy
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ACL:
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parrot

access granted
by ACL

access denied
(no ACL)

by Unix
access granted

Figure 2. Example of Identity Boxing in an Interactive Session
An example of identity boxing shown as a schematic and as a shell transcript. The supervising user (dthain)
creates a file secret in his home directory. He then creates an identity box for the visiting user Freddy, who
is not allowed to access secret because there is no ACL present by default. However, Freddy can create a
file mydata in his new home directory, where the ACL has been initialized to give him complete access.

opening files under the path /gsiftp. Internally,
Parrot resembles an operating system: it must track
a tree of processes, service system calls, and direct
I/O requests to drivers. Because of this structure,
it is natural to add an operating-system-like feature
such as identity boxing. We have modified Parrot
to carry with each process a free-form text string
indicating the user’s high-level identity.

The end-user interface to identity boxing is sim-
ple. The user invokes parrot identity box with
an identity string and a command to run. The
supervising user can choose absolutely any name
for the visitor. MyFriend, JohnQPublic, and Anony-
mous429 are all valid names. The visiting user re-
tains the supervising user’s integer UID, but this is
no longer used for access control.

Within an identity box, access control to files
and other objects is somewhat complicated because
visiting identities are free-form strings. These new
identities do not fit into the existing data structures
that record UIDs, nor can Parrot modify objects not
owned by the supervisor. Our solution to this prob-
lem is to abandon the Unix protection scheme and
adopt access control lists (ACLs) instead. In each
directory, Parrot looks for a file named . acl that
describes what actions users can perform on files in
that directory. Any program run within an identity
box will respect these ACLs. The form of each ACL
is similar to those in AFS [24] and similar systems.
Each entry lists an identity and the set of opera-
tions that can be performed. Identities may contain
wildcards in order to match patterns. For exam-
ple, this ACL allows /O=UnivNowhere/CN=Fred to
read, write, list, execute and administer this direc-

tory. It also allows any user at /O=UnivNowhere/
to read and list it:

/O=UnivNowhere/CN=Fred rwlax

/O=UnivNowhere/* rl

The visiting user’s newly-created home directory
is initialized with an appropriate ACL. As in AFS, a
newly-created directory inherits the ACL of its par-
ent. Of course, Parrot cannot retroactively place
ACLs throughout the file system. When it encoun-
ters a directory without an ACL, Parrot enforces
Unix permissions as if the visiting user was the
Unix user nobody. This ensures that the supervising
user’s data is protected from the visiting user.
An example of an interactive identity box is

shown in Figure 2. Here, the Unix user dthain has
created an identity box, naming the contained user
Freddy. Note that Freddy does not appear anywhere
in the system account list. Freddy attempts to ac-
cess a file secret owned by dthain, but is denied be-
cause that file is private to dthain. However, Freddy
is given a home directory in which he can work and
is allowed to write the file mydata.
Figure 2 also shows that the identity box causes

the Unix account name to correspond to that of the
identity string. This allows whoami and similar tools
to produce sensible output. This is accomplished
by creating a private copy of the /etc/passwd file,
adding an entry at the top corresponding to the
visiting identity, and then redirecting all accesses
to /etc/passwd to that copy. In addition, a tem-
porary home directory is created for the visiting
user’s startup files and private data. However, this
is merely a convenience. Neither the existing user
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database nor the private copy play any role in access
control within the identity box.

4 Identity Boxing

in a Distributed System

Identity boxing has a number of uses in an in-
teractive setting. One might imagine using identity
boxes to run untrusted programs downloaded from
the web, or perhaps to allow a visitory to briefly
borrow one’s workstation. However, identity boxing
is most useful in a large distributed system where
there are many resources and no coordination of ac-
counts and identity. An example of this is the Chirp
personal storage server. [39]
A Chirp server is a personal file server for grid

computing. It can be deployed by an ordinary user
anywhere there is space available in a file system.
A Chirp server exports the avaliable file space us-
ing a protocol that closely resembles the Unix I/O
interface. This file space can be accessed remotely
like a distributed filesystem by using Parrot with
ordinary applications. A collection of Chirp servers
report themselves to a catalog, which then publishes
the set of available servers to interested parties.
Of course, there exist a variety of systems for

storing data on the grid. GridFTP [2] provides
secure, high-performance access to legacy systems.
SRB [4] combines databases, file systems, and other
archives into a coherent system. SRM [37] defines
semantics for storage allocation in time and space.
IBP [33] makes storage accessible through a malloc-
like interface with access control via capabilities.
NeST [6] provides unified access to grid storage
through a variety of protocols. However, Chirp is
a particularly interesting platform in which to ex-
plore identity boxing because it has a fully virtual
user space. This means that the space of local users
is completely hidden from external users. All data
is stored and referenced by external identities.
A Chirp server supports a variety of authenti-

cation methods, including Globus GSI [19], Ker-
beros [38], ordinary Unix names, and a simple
hostname scheme. Upon connecting, the client
and server negotiate an acceptable authentication
method and then the client must prove its identity
to the server. If successful, the server then knows
the client by a principal name constructed from the
authentication method and the proven identity. For
example, a single user might be known by any of of
these identities:

globus:/O=UnivNowhere/CN=Fred

kerberos:fred@nowhere.edu

hostname:laptop.cs.nowhere.edu

Once identified, a user may access files on
the Chirp server much like any other file server.
If the user is employing Parrot, files on a
Chirp server appear as ordinary files in the path
/chirp/server/path. These files are protected by
ACLs like those used in Parrot.
Now, imagine the user that wishes to execute a

program using data stored on such a server. Tra-
ditionally, the user would have to arrange for a lo-
gin on the same server and use that to access the
data directly. However, the user would also have to
arrange for the server to store the data under that
same identity, which would require the server to run
as root. If this was impossible, the user would have
to extract the data from the server and run the com-
putation on a different host entirely.
The technique of identity boxing allows to

sidestep thse difficulties. To demonstrate this, we
have added to the Chirp protocol a simple exec call
that invokes a remote process. This process is run
within an identity box corresponding to the identity
negotiated at connection. The identity box enforces
access to resources as described above, allowing or-
dinary applications run unmodified in a remote en-
vironment. Of course, the calling user must have
the execute (x) right on the program (and any sub-
programs) to be executed.
The combination of file access control and remote

execution allows for simple controls with powerful
meaning. If the user has the write and execute
(wx) rights on a directory, then he/she can stage
in an executable and run it. If the user has only
the read and execute (rx) rights on a directory, then
he/she is limited to running programs already there.
For example, this ACL would allow any user within
nowhere.edu to run existing programs, while allow-
ing any user holding a UnivNowhere certificate to
stage in and run any program.

/: hostname:*.nowhere.edu rlx

globus:/O=UnivNowhere/* rwlx

This flexibility also introduces new challenges.
The ACL given above admits a large set of users
that will not necessarily want to share a namespace.
Imagine the chaos of allowing one hundred users
using the same directory to store files and run pro-
grams. Typically, visiting users will require a fresh
namespace and the ability to adjust the ACL in or-
der to permit access to their collaborators. For this
purpose, an ACL may also include the reserve right
(V), which is a variation upon amplification. [28]
Suppose that the remote users had been given only
the reserve right:
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syscalls
trapped
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(root)
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1. mkdir /work
2. cd /work
3. put sim.exe
4. exec sim.exe
5. get out.dat

and remote exec
then remote file access

establish GSI identity

/O=UnivNowhere/CN=Fred
GSI Credentials: /O=UnivNowhere/CN=Fred

/O=UnivNowhere/CN=Fred    rwlax

/O=UnivNowhere/*              v(rwlax)

ACL:

ACL:

visiting user:

/O=NotreDame/*                 v(rwlax)

1,2,3,5: local file access

4: local exec

load executable

execute anything he can stage in.
The /work ACL allows Fred to

create  a directory with rights rwlax.
The root ACL allows many users to

Figure 3. Example of Identity Boxing in a Distributed System
Identity boxing can be used to support visiting users in a distributed system. The Chirp file server provides
remote file access and remote file execution to network users. A remote user using a Chirp client creates
the /work directory, stages in the sim.exe program, executes it, and then retrieves the output out.dat. The
Chirp server runs sim.exe in an identity box corresponding to the remote user. The system may be run by
any ordinary user and does not require the creation of any accounts before or during its operation.

/: hostname:*.nowhere.edu rlx

globus:/O=UnivNowhere/* v(rwlax)

When a user performs a mkdir in a directory
in which he/she only holds the reserve right, the
newly-created directory is initialized with an ACL
containing the rights listed in parentheses after the
V. Not only does this create a private namespace,
but it also allows the user to selectively grant ac-
cess to others. Suppose that the above ACL is
present in the root directory when a user identi-
fied as globus:/O=UnivNowhere/CN=Fred invokes
mkdir(/work). The ACL in /work would be:

/work: globus:/O=UnivNowhere/Fred rwlax

By virtue of the A right, Fred can further adjust
the ACL to give access to other users. Of course, if
the system owner does not want a visiting user to
extend rights to others, then the A right may simply
be left out of the top-level reserve set.
(As an aside, the conscientous reader might won-

der how remote users should be expected to choose
unique directory names as they create their own
workspaces. Although one could imagine server-side
support for generating unique directory names, it
is sufficient to ask clients to employ the Ethernet
approach. [41] Each client may choose a directory
name with a random component. In the event of a
collision between names, the losing user would not
have permission to access the already-existing di-
rectory, and should try again after an exponentially
increasing delay.)
The combination of identity boxing with a virtual

user space and powerful ACLs allows for a dramat-

ically simplified user experience. Given appropriate
ACLs, users may discover storage, stage data, run
programs, and retrieve output without special privi-
leges or interaction with an administrator. Further,
any user is permitted to be a supervisor, deploying
and administering any resource that they are able
to access. Owners of resources remain in control,
delegating and restricting rights as they see fit.

Figure 3 demonstrates how all this fits together.
The user Fred wishes to run sim.exe on a remote
machine using his grid credentials. He uses a client
tool to contact a Chirp server and creates the /work
directory using the reserve (V) right. He then stages
in the input data and the executable to the remote
machine. Using the exec call, he invokes the simula-
tion, which is run in an identity box annotated with
his name. The identity box allows his simulation to
run and access his data securely, even though he
does not have an account on the machine. Finally,
he retrieves the output and cleans up.

At this point, it is worth pointing out an im-
portant aspect of identity boxing. The identity
box simplifies the creation and management of pro-
tection domains: a system may create an identity
box on the fly without regard to any external user
database. However, this does not mean that iden-
tity boxing requires a system to admit arbitrary
users. Rather, identity boxing allows a system to
have complex admission policies, such as access con-
trols with wildcards, or reference to a community
authorization service [32], without the difficulty of
reconciling that policy to the existing user database.
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Figure 4. Overhead of Identity Boxing
Within an identity box, individual system calls are slowed by an order of magnitude due to the multiple
context switches between the application, the supervisor, and the host kernel. On real applications, the
effective overhead varies. A selection of five scientific applications are slowed down from 0.7 to 6.5 percent,
but a system-call intensive application such as make is slowed down by 35 percent.

5 Application Performance

A user-level implementation of identity boxing
is fundamentally expensive. In order for Parrot to
trap and interpret the system calls of an inferior ap-
plication, at least six context switches are necessary.
Three occur on system call entry: from application
to the kernel, kernel to supervisor, and supervisor
back to the kernel. Three more are necessary on
system call exit. These extra context switches in-
crease latency and also flush processor caches that
might otherwise be preserved in an optimized sys-
tem call mechanism. A more detailed explanation
of this overhead is given in an earlier paper. [42]

Figure 4 shows the effects of this performance
overhead on individual system calls as well as real
applications. Figure 4(a) shows the latency over-
head of system calls handled within the identity
box. Each entry was measured by a benchmark C
program which timed 1000 cycles of 100,000 itera-
tions of various system calls on a 1545 MHz Athlon
XP1800 running Linux 2.4.20. Each system call was
performed on an existing file in an ext3 filesystem
with the file wholly in the system buffer cache. Each
call is slowed down by an order of magnitude.

We also run a number of real applications in order
to measure the actual overhead of identity boxing
amortized over application activity. Five of these
were scientific applications that are candidates for
execution on grid systems. AMANDA [25] is a
simulation of an antarctic gammay-ray telescopic.
BLAST [3] searches genomic databases for match-
ing proteins and nucleotides. CMS [23] is a simu-
lation of a high-energy physics apparatus. HF [11]
is a simulation of the nucleic and electronic inter-

actions. IBIS [16] is a climate simulation. These
applications are described in some detail in an ear-
lier paper. [40] An additional application, make, is
simply a build of the Parrot software itself.

The overhead of identity boxing on these appli-
cations is shown in Figure 4(b). The five scientific
applications are slowed down by only 0.7 - 6.5 per-
cent. Although they are more data intensive than
other grid applications, they perform primary large-
block I/O. An interactive application such as make
is slowed down by 35 percent because it make exten-
sive use of small metadata operations such as stat.
Thus, identity boxing via an interposition agent has
overhead that is likely to be acceptable for scientific
applications, especially if the technique empowers
the user to harness a larger array of resources.

6 Related Work

Sandboxing. Identity boxing is closely related
to sandboxing. A sandbox runs an untrusted pro-
gram underneath a supervisor process which traps
its operations and checks them with a reference
monitor. The mechanism can be binary rewrit-
ing, as in Shepherd [30], a kernel module, as in
Janus [22], or the debugging interface, as in Sys-
trace [34]. These systems all require the user must
state a list of acceptable operations. Another pos-
sibility is to associate rights with programs rather
than users, as in SubDomain [10] and MAPBox [1].
Ostia [21] delegates all operations to an agent, al-
lowing for arbitrary policies. One might also con-
sider the Unix chroot mechanism to be a simplified
sandbox. chroot creates a fresh, empty file space
in which an application can work but not escape.

7



Traditional sandboxing requires users to provide
some specification or interactive filtering of the sys-
tem calls attempted by an application. This is an
enormous burden because most users have no idea
what happens deep within an application. For ex-
ample, a user running a word processor thinks (quite
logically) that the word processor only needs to read
and write the file that he/she is editing. In fact,
the program actually needs to load an executable,
read a configuration file, load plugin libraries, ac-
cess the dynamic linker, read the host database,
create backup files, and use a whole host of other re-
sources that the user has never heard of and doesn’t
understand. In our field experience with scientific
applications [42, 40, 5], even authors of technical
software are surprised to learn exactly what system
calls their programs attempt. Users are insulated
from the system by so many layers of software that
we cannot expect them to think in terms of low-level
system calls.

Identity boxing builds upon sandboxing by pro-
viding built-in access controls that correspond to
familiar concepts. Rather than requiring the super-
visor to state the access control policy in advance,
identity boxing allows the visiting user to interact
with others as a first class citizen.

Privilege Separation [35] attacks the same
problem in a different way. Many programs, such as
login servers, only need some subset of the super-
user’s capabilities. A common subset is simply the
ability to call setuid(). However, the sheer com-
plexity of a login server makes it difficult to trust
the entire program. Thus, the server itself can be
run in an untrusted mode. When it requires a priv-
ileged operation, it must explicitly request it from a
small kernel of privileged code, which checks the in-
tended operation and then performs it on behalf of
the server. This technique is powerful and effective,
but still requires a small amount of privileged code
and perhaps some code transformation. [8] Identity
boxing provides the same power as privilege sepa-
ration, but requires no privileged code at all.

Virtual Machines. The virtual machine has
been proposed as the solution to a variety of prob-
lems in distributed computing [36, 44], grid com-
puting [15, 9], operating system composition [17,
27, 13], and security[20, 31]. A virtual machine can
completely isolate a service provider from the con-
tained user. This provides both security and an
unrestricted workspace for the contained user, who
can safely be an administrator in the virtual envi-
ronment. This is enormously useful ability, partic-
ularly when developing a new operating system or
performing whole-system simulation.

One could use an entire virtual machine for the
same purpose as an identity box. Although this
is possible, it is quite impractical for two reasons.
First, creating a virtual machine is a non-trivial ad-
ministrative activity: one must generate disk im-
ages, setup user databases, and install software
within the virtual machine itself. Effectively, the
creation and management of virtual machines is an
activity only accessible to those already skilled in
system administration. This also may come at a
significant performance cost to move data in and
out of the virtual machine. Second, the virtual ma-
chine inhibits sharing where it is most needed. Users
that run untrusted programs generally want those
programs to interact with the existing system in a
limited way. They want to retain access to local
files, to interact with existing processes, to commu-
nicate over the existing network. Virtual machines
deliberately isolate visiting users, while the identity
box encourages controlled sharing.

7 Conclusion

Much of the difficulty of grid computing arises
from the problem of mapping our desires onto the
limitations of current systems. We wish to employ
grid credentials as user identities, but we must also
work with existing account names. We wish to em-
ploy new forms of storage, but applications still re-
quire the ordinary filesystem interface. We wish to
execute programs on remote resources, but users de-
sire to work with familiar interfaces.
In this paper, we have shown how the new and

the old can work together relatively transparently.
By interposing software at both the client side (Par-
rot) and the server side (Chirp), we are able to
preserve existing programs, data, and interaction
models while introducing new identities and shar-
ing policies.
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