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Abstract

Accesdo remotedatais oneof the principal challenges
of grid computing While performingl/O, grid applications
mustbe prepared for servercrashes,performancevaria-
tions,andexhaustedesouces.To achieve high throughput
in suc a hostileenvironmentapplicationsneeda resilient
servicethat movesdata while hiding errors and latencies.
We illustrate this ideawith Kangaioo, a simpledatamove-
mentsystemnthat malesopportunisticuseof disksand net-
worksto keepapplicationsrunning We demonstate that
Kangaioo can achieve betterend-to-endperformancethan
traditional datamovementedniquesgventhoughits indi-
vidual componentslo not achieve high performance

1 Introduction

Grid computingintroducesa hostof problemsinto the
matterof attachinganapplicationto its storage Distributed
systemsareproneto performancevariations failedconnec-
tions, andexhaustedesources.Theseproblemscannotbe
solved merely by increasinghardware capacityor reliabil-
ity. They areoftenintegral propertiesof distributed hard-
ware[6], opportunisticresourceg21], andsocialschedul-
ing constraints.

Grid applicationsare not preparedto deal with ary of
theseconditions. Often designedto run in the relatively
predictableernvironmentof a standalonenachine they ex-

pectlow lateng, reliable delivery, and unlimited storage.

They don't schedulel/O operationsor recover gracefully
from unexpectedfailures.

We can solve theseproblemsby re-usingan old idea
[14]. Traditionaloperatingsystemsdealwith the vagaries
of disks by making a backgroundprocessresponsibleor
scheduling,coalescingandretrying operations. Applica-
tionsarenotbotheredvith seekdelays,damagedlocks,or
spin-uptimes. As a pleasanside effect, throughputis in-
creasedy performingl/O andCPUtaskssimultaneously

The sameprinciple canbe appliedto grid computing.
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Figure 1. Hierarchical Data Grid

In this paper we illustrate a data-meement system
called Kangaroo. Kangaroo improves the reliability and
throughputof grid applicationsby hiding network storage
devicesbehindmemoryanddisk buffers. Backgroundpro-
cessesremaderesponsibldor moving dataandhandling
errors. Applicationsperceve Kangarooto be a merefile
systemandneednotbere-writtenor re-compiledo become
grid-awvare. Kangaroois userlevel software that doesnot
requirespecialpermissiongo install or use.

Kangaroo offers a highly-available and highly-reliable
service by sacrificing some consisteng guarantees. Al-
thoughthis would be unacceptabldor a general-purpose
localfile systemit is sensiblefor distributeddataanalysis.
Major grid dataefforts [3, 9, 15] notethat mary scientific
datasetsarecreatedbnceandthenremainreadonly. Orga-
nizationssuchasthe Grid Physics Network [1] emphasize
theuseof hierarchicafacilitiesfor accessindargedatasets,
asshowvn in Figure 1. In sucha system,experimentally-
produceddataflows from a centralrepositorytoward the
leaves, while resultscomputedfrom datamove in the op-
positedirection. In suchsystemsread/writeconsisteng is
not a problem. Availability, reliability, andthroughputare
themainconcerns.
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Kangaroo seeksto improve total application perfor
manceby makinggooduseof limited resourcesHowever,
if viewedthrougha narrav lens,individual componentsf
Kangarooare clearly not high performance.We intendto
make up ary small-scaldossesoy usingmultiple resources
atonce.

An exampleof this principleis shovn in Figure2, which
givesatimeline for anapplicationusingthreedifferentl/O
models— streaming staging,and Kangaroo. A streaming
applicationperformsblockingl/O directly overthenetwork
while it executes.A staging applicationperformsl/O on a
local buffer, andthenperformsa blockingwrite of all dirty
dataafterexecutioncompletesin the Kangarool/O model,
write burstsarewritten to a buffer andthenperformedcon-
currentlywith CPU bursts.As we will shov below, the ex-
actperformancef thel/O burstsdoesnt matter—anoverall
speedups gainedby usingthe CPU andperformingl/O at
thesametime.

2 Design Principles

Kangaroo draws ideasfrom mary previous works, but
differsin its goalsandassumptionsBeforeembarkingupon
on a descriptionof Kangaroo,we would like to lay out the
principlesthathave guidedits design.

1. Keepit simple [20]

2. Use all available resoucesto hide latency Appli-
cationsrarely useall available resourcego capacity
If oneresourceis a bottleneckthen other excessre-
sourceganbe usedto satisfythedemandln practice,
this meansusingmemoryanddisk to handleoverflon
network traffic.

3. Stoperrors fromreading applications. Scientificap-
plicationsrespondto errorssuchas “host not found”
or “connectionlost” by crashingor simply terminat-
ing. Deliveringsucherrorsproduceso usefulresults.
A datamovementsystemshouldsquastsucherrorsby
retrying,delaying,or reportingtheerrorto ascheduler
or ahumanoperator

4. Sacrificeconsistencyor availability. Many Grid ap-
plications are not concernedwith read/write consis-
teng. Thosethat are mustmanagea larger problem
involving multiple storagesitesandadministratve do-
mains.Kangaroois only apartof this picture. We will
provide aninterfacesuficient to manageconsisteny,
but not to enforceit in all cases.We notethat other
popularfile systemssuchasNFS [23] and AFS [16]
have benttherulesof Unix consisteng with consider
ablesuccess.

5. Consideroutputfirst. Managinginputsis harderthan
managingoutputs. Output needscan be delayedar-
bitrarily, but input needscanonly be anticipatedusing
explicit informationor accuratespeculationlIn thispa-
per, we have concentratediponthe problemof output
while maintainingatrivial systenfor input. With these
mechanismén place,we planto addresghe problem
of inputin thefuture.

3 Architecture

The Kangaroo architectureis centeredarounda chain-
able seriesof seners that implementa simple interface,
shavn in Figure3.

The native interfaceto Kangaroois shown in Figure 3.
get andput arestatelesseadandwrite operationgthat
operateon a particularlocationin atargetfile. get causes
the client to block until the necessarydataare retrieved.
put is a non-blockingmessagevith no response.com
m t causedhe callerto block until all outstandingout s
have beenacceptedor delivery. push causeghe callerto
block until all outstandingout s have beentransferredo
their ultimatedestination.

Eachcall includesan explicit referenceto the host at
whichthe primarydatacopy is stored.This (host,file)com-
bination senes as a system-wideunique namefor a data
object. A Kangaroo systemmay servicerequestdor this
objectfrom mary differentreplicas,but the client neednot
know of or referto suchcopies. The client may communi-
catewith ary sener— preferablytheclosest-to accomplish
I/O onary object.

With thesefour calls, we may implementa simplefile
servicewith a single sener process. This is called direct
Kangarooandis shovn in Figure4. A client makesa TCP
connectiorto thesenerto performget s andput s onthe
filesthatit needs Thesenersimply executegheoperations
on the attachedfile system. This configurationis similar
in form, reliability, andperformanceéo RPC-basedystems
suchasNFS[23].

Thenext stepin compleity is one-hogKangaroo,shovn
in Figure5. Here,asecondseneris placedat theexecution
site. It satisfieput requestbyimmediatelyspoolingthem



Figure 3. Client Interface
int kangaroo_get (host, pat h, of fset, | engt h, dat a)
voi d kangar oo_put (host, pat h, of f set, | engt h, dat a)
int kangaroo_commit ()
int kangaroo_push (host, pat h)

Figure 4. Direct Kangar oo
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todisk. A backgroungrocessthemover, is responsibldor
readingtheserequestandforwardingthemto the destina-
tion asthe network permits. get requestsare satisfiedby
first consultingthe local spool. If the dataarenot present,
thenget isinvokedonthedestinatiorsener.

One-hopKangarooinsulateshe client from mary diffi-
culties.If thenetwork shouldfail or thedestinatiormachine
shouldcrash theclientwill still beableto write to thelocal
spooldisk. Likewise,if traffic or schedulingconcernsre-
venttheapplicationfrom gettingthenecessargutputband-
width, it will be ableto run at full speedwhile the mover
doesits job. Readoperationgnay be satisfiedfrom cached
datawithout contactingthe destinatiorsener.

More hopsmay be added,as demonstratedby two-hop
Kangarooin Figure6. A multi-hop Kangaroo systemcan
provide anumberof benefits.

Multiple hopsallow transfersover mary network seg-
mentsto be performedincrementally avoiding the needto
co-allocatenetwork resourceslongall hops. This canbe
particularly usefulfor transfersover links with significant
performancevariationsor outages. Without intermediate
buffering, the performancef end-to-endconnectionss de-
terminedby the slowestlink at ary giventime andend-to-
endreliability is determineddy the productof the up-times
of theindividual links.

Multiple hopscan also increasethe available spooling
space.Kangaroo canonly hide network latenciesf it has
spaceo storeall extantdata.If a spooldiskfills, the appli-
cation’s I/0 will bereducedo end-to-enchetwork speeds,
becausehe applicationwill be ableto insertnen dataonly
asfastasKangaroocanmoveit out. Whenlocal spoolspace
becomedull, a sener canoffload spooledblocksin order
to avoid slowing down the application.

Multiple senerscanbe usedto free certainresourcesa
quickly aspossible,asshavn in Figure7. In mary batch
schedulingscenariostheuseris chagedfor occupying ary
resourceon acomputenode.To avoid holdingonto anode
longer than necessaryKangaroo can be usedto 'escape’
theexecutionsiteshy offloadingall datato anearbystorage
resource.The datacanthenbe transferredover the wide-
areanetwork asconditionspermit.

3.1 Interface

The Kangaroointerfaceis very simple,andapplication
writers might chooseto useit directly. However, given
the wide variety of available storagesystemsandthe num-
ber of extantgrid applicationsijt is unreasonabléo expect
programmergo corvert existing applicationsto work with
Kangarooor ary othernevcomerto distributedsystems.

To easesuch transitions, we have built, using By-
pasq24], anadaptationayerthatcorvertsstandardOSIX
operationsnto Kangaroooperations This adaptatiorayer



read = get
write / > put
fsync 2 push
exit = commit

open without create (If get succeeds

open with create open succeeds)
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TN (Just update table)

POSIX Interface
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Iseek
close

fd | kind | host path offset

0 | Unix /dev/null 0
1 | Kang | coral /tmp/out.2| 1056
2 | Kang | coral tmplerr.2| 3122
3 | Unix letc/hosts 785
4 | Kang | dbhost |/data/db |59687

Figure 8. Adaptation Layer

canbetransparenthappliedto any dynamicallylinked pro-
gram without specialprivileges. The layer doesnot af-
fect the operationof normal filenames,but transparently
'mounts’ Kangaroo into the root filesystem. Operations
onfilenamessuchas/ kangar oo/ host / pat h aretrans-
parently corvertedinto Kangaroo client operations. Be-
causeKangarooget s andput s are statelessthe adap-
tationlayermustremembesuchprocess-specifistatesuch
asfile descriptorandseekpointers.Figure8 illustrateshow
thesetransformationgake place.

In addition, we have provided command-lineutilities
that invoke the client library to get, put, and pushwhole
files betweenKangarooandlocal files or pipes. This pro-
videsa simplemethodof attachingnputandoutputstreams
to Kangaroowhenthe useof Bypassis notdesired.

Because&Kangaroois intendedasa drop-inreplacement
for a file system,it is importantthatit provide sufiicient
operationdor applicationgo work. However, it is not cur-
rently (andperhapawill neverbe)afull-featureddistributed
file system.Like atapeor aterminal,Kangaroopresentsa
file-like interfacewithout all of the trappingsof a realfile
system.

A numberof operationsare missingfrom the Kangaroo
interface.For example thereis no supportfor deletingfiles,
checkingaccesgermissionspr retrieving meta-data.The
adaptatiorayer hasseveral stratgiesfor dealingwith ap-
plicationsthatrequesthesefeatures For mostunsupported
operationsjt canbe plainly honest:an attemptto deletea
file will returnthe error“operationnot supported”. Some
operationscanbe corverted: a smallget senesto satisfy

a checkfor readpermissions.Otheroperationsmustsim-
ply returndummyvalues. Although this practiceprevents
the applicationof somestandardsystemtools suchasls or
male, it is sufficient to admita large numberof grid appli-
cationsthat simply mustreadandwrite data. We may add
furtheroperationgo theinterfaceasapplicationgequire.

3.2 Consistency

Like alocal file system Kangaroomaintainsread/write
consisteng for applicationausingthe samefirst-hopsener.
For every datablock spooledfor writing, a sener maintains
anentryin memory Incomingget s first examinethis data
structureandattemptto satisfythe operationocally before
requestingdatafrom anothersener. If datacanbe sened
entirely from the local copy, no contactis madewith ary
othersener.

Kangaroo doesnot enforceconsisteng betweenappli-
cationsat multiple sites.Applicationsthatneedconsisteng
guaranteemustexplicitly synchronizeusingthe primitives
commi t andpush. Theformeris usedto make datasafe
from crasheswhile thelatteris usedto make changewisi-
ble to others.

conmi t causeghe callerto block until all outstanding
change$ave beenwrittento somestablestorage Thisdoes
not meanthe changesare visible to all other callers! In
practice,commi t causeghe receving sener to flush all
buffered dataandall file systemsto disk. An application
thatcommi t s maysafelyexit knowing thatits resultswill
eventuallyflow backto the destinationgvenif someinter-
veninglinks or senersfail.

push causesthe caller to block until all outstanding
change$ave beendeliveredto theirrespectie destinations.
In practice,push causegsherecever sener to block until
the mover hasdrainedall dirty blocksto the next sener
in line. Then,the push is recursvely called on the next
sener. At the tamget host, push succeedsvhenall out-
standingdataarecommittedinto thelocal file system.The
successnessages then passedack, step-by-stepto the
caller Of courseary of thesdinks mayfail dueto network
or sener problems.In eachcasea pushis freeto retry the
erroror returnit the caller An error returndoesnot mean
thedelivery hasfailed, but ratherthatthe systemcannotde-
termineif the datahave yet arrived. The responsibilityof
retryinguntil successies with thetop-level caller.

TheadaptatiodayercorvertsPOSIXoperationsnto the
appropriateKangarooconsisteng operationsWhena pro-
gramexits, the adaptatiodayerforcesacommi t to thelo-
calKangaroosener. Thispreventsthesysterrfrom entering
a statewherea programreportssuccessfutompletionbut
losesits outputto a subsequergener crash.If the user(or
scheduler}that startedthe job wishesto wait until all data
arrives,thenamanualpush shouldbeissued.During exe-



cution,aPOSIXf sync isalsocorvertedintoapush. This
allows existing applicationsthat synchronizewith f sync
to operatecorrectlywith Kangaroo.

Becauseoutputdatamay be arbitrarily delayed- even
beyondthe endof the program- put s arenot allowed to
fail andthusreturnno value. If atemporaryresourcdimit,
suchasafull disk, preventsa senerfrom acceptingaput ,
it is free to block the caller simply by not consumingary
moredatafrom theconnectionIf someothererrorprevents
committingdatato thetargetfile systemfor example,insuf-
ficient privilege, thendatamay be storedin alocal buffer.
In this casethe sener shouldcontactthe userto rectify the
problem. A comni t will succeedn databufferedfor an
‘unsolvable’ problem,but a push will not.

As the mover processflows datain the background,t
usesthe sameprimitivesasary otherclient of the system.
As it readsdirty blocksout of the local spool,it performs
put s onthetargetsener. Blocksarenotdeletedout of the
local spooluntil the mover successfullyperformsa com
m t onthetarget.

Any catastrophierrorsmustbe communicatedackto
the schedulingsystem.For example,if a sener crashesr
suffersanunrecwerableerror, the processat the otherend
of the connectionwill be abrubtlydisconnectedlf it can,
the processshouldroll backto thelastcomni t . For the
mover, this is easy— it simply throws out its list of sent
blocksandstartsover. For anapplication,thingsaremore
complicated An applicationwritten to the native Kangaroo
interfaceshouldbe desinedto eitherroll backor abort. If
usingthe adapatiorlayer, a processs forcibly killed when
the connectionis lost. This actionmustbe understoocby
the CPU schedulingsystemto indicatea rollback. In the
caseof Condor[21], akilled procesds restartedrom the
beginningor from thelastcheckpointjf available.

3.3 Scheduling

Althoughthis architecturéhasbeenprimarily castasan
on-demandlatamovementsystem,t hasa naturalmethod
of integrating with a network scheduler The mover pro-
cesdgs implementedvith Cedarageneral-purposeetwork
socletlibrary thatsupportdandwidthallocation.Whenes-
tablishinga new connectionthelibrary first requests net-
work allocationfrom a site network managerThe network
managerallocatesbandwidthfairly amongactive Kanga-
roo connectionsvithout exceedingmaximumratesconfig-
uredby anadministratorPeriodically thenetwork manager
requestgeportsfrom all clientsandre-allocateghe band-
width basedon recentusage. At our site, this is usedto
enforcean upperlimit on network resourcesonsumedy
opportunisticallyscheduledobs.

4 Implementation
41 Status

We have built a Kangarooprototypethatimplementshe
architecturadescribechborve. The basicarchitecturdeaves
anumberof thingsunspecifiedo theimplementationCur-
rently, theseare:

1. Cading discipline Becausedfiles are assumedo be
write-once, a sener is free to cacheary datathat
passeshroughit. Currently no cachingis done. All
get operationgeadthroughto the destinatiorsener.
We will addresghisin afuturework.

2. Serverdiscovery. A clientis freeto useary sener it
canlocate.Naturally, it hasavestednterestin finding
theclosesbne.Currently theclientlibrary consultsan
ervironmentvariablefor thenameof theclosestener
andfalls backonthelocal host.

3. Routingmedanism. A wide variety of route-finding
protcols and mechanismsare available for computer
networks. Currently eachsener is equippedwith a
staticrouting table. This hasnot provento be a bur-
den, asthe default behaior is to route all operations
directly to the sener namedin the request. All one-
hop configurationswork without any manualrouting
configuration.

4. Authentication. Two authenticatiormechanismsare
currentlyimplementedaddress-baseahdGlobusGSil
[12]. Eachsenerrunsasanon-prvilegeduserandde-
cideswhena connectionis madewhetherto trust all
incomingoperations.

5. ManagementTools. To allow the userto locatedata
in transitand diagnoseproblemsin the system,addi-
tionaltoolsallow theuserto querythecontentof each
spooldirectoryandretrieve messagedetailingfailure
(or successpf delivery. We ervision that the sener
will eventuallyreportproblemsto the user insteadof
makingthe usermanuallyquery

4.2 Performance

We evaluatedour prototypein three aspects:reliabil-
ity, burst performanceand overlap performance.Briefly,
we confirmedthat the prototypeprovidesimproved appli-
cationthroughput,even thoughindividual componentsre
not high performance. All experimentswere performed
on commodityworkstationgunningLinux 2.2.17with 512
MB of memory a 25 MB/s disk/adaptecombinationanda
100Mb/s switchedethernet.
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To demonstrateeliability, we useda one-hopKangaroo
systemto deliver anoutputfile generatedby Gaussiar13],
a popularchemistryapplication.Gaussiarhasvery modest
I/O needs.A typical run readsa small input file and pro-
ducesa log of megabytesto gigabytesover the courseof
hoursor days.A largeamountof temporarystoragds used
duringtherun, butis notrelevantto thefinal result.

Figure9 shavsthe outputbehaior of atypical Gaussian
run with its log file deliveredthrougha one-hopKangaroo
system. The thin line shawvs the total amountof datapro-
ducedby the application. The thick line shaws the total
amountof dataactually deliveredto the storagesite. Ser
vice interruptionswere createdat 1000 and 5750 seconds
by forcibly killing the destinationsener. As shown, anin-
terruptionsimply causesiatato queueup at the execution
siteuntil conditionspermitoutputto continue.Theprogram
successfullyterminatedat about6000secondsbut service
wasnotrestoreduntil about11000secondswhereuporthe
outputwasdelivered.

Of course,the improved reliability given by Kangaroo
mustcomeataprice. To quantifythecostof usingtheinter
mediatespooldisk, we comparedhe performancef aone-
hop Kangaroo systemagainsttwo traditional grid transfer
techniquesstreamingandstaging.A streamingapplication
applicationwritesits outputdirectly to the network without
ary intervening storage. A staging applicationwrites its
whole outputto the local disk andthentransferghe whole
file atthe endof execution.

To comparethe three,we createda programwhich gen-
erateda single burst of dataasfastas possible. We mea-
suredthe responseandturnaroundtime for the generation
of 10-2000MB of data. The formerwasdefinedsimply as
theinterval of execution,while the latterincludedthe exe-
cutiontime plus arny additionaltime to move the outputto
its destination.

The resultsof this comparisorareshavn in Figures10
and 11. By definition, streaminghasthe sameresponse
andturnaroundime. Staginggivesbetterresponseime by
usingthe fasterdisk during execution, but takeslongerto
eventuallydeliverthe output. One-hopKangaroofits some-
wherein between. For all files, it providesresponsdime
betweerstagingandstreamingFor files thatfit in memory
it givesbetterturnaroundime thanstaging.For files larger
thanmemory it is slightly slower.

Therealbenefitfrom Kangaroocomesrom its ability to
overlapCPU andl/O intervals. To demonstratéhe poten-
tial benefitsof overlap, we constructeda syntheticimage-
processingapplicationwith moderateoutput needs. This
applicationapproximatesa numberof scientific applica-
tionsthatproducemultiple derivative datasetsfrom anorig-
inal. The applicationreadsa singleimageof 5.5 MB and
then producesen outputimagesof the samesize, eacha
slightly differentenhancementf the original. Eachoutput

required6.1 second®f cputime to generate.

Thisapplicationwasrunin threedifferentconfigurations
asin thepreviousexperiment.Thesecorrespondo thethree
modelsshavn in figure 2. The benefitto be gainedfrom
overlappingdependéieaily ontheactualratioof CPUtime
to I/O time. To vary this ratio, we artificially restrictedthe
I/0 bandwidthacceptedy thedestinatiorsener.

Figure 12 shows the responsaime for this application.
As expected,the streamingvariantis controlledsolely by
theavailablenetwork bandwidth.Theresponséime for the
stagingand Kangaroo variantsis constantKangarooonly
slightly slower.

Figure 13 shavs that Kangaroo provides a better
turnaroundtime in all casesto its ability to overlap CPU
with 1/0. The turnaroundtime with Kangarooremainsal-
most constantuntil the available bandwidthbegins to fall
belov the applications true I/O needs:aboutl MB/s. The
otherl/O disciplinesaresensitie to availablebandwidthin
every region, even when CPU requirementsre the major
bottleneck.

5 Redated Work

Ourwork is indebtedto a large body of researclon file
systemsput we mustemphasizeéhatthe usualformulation
of afile systemasa kernel-pravided resources not suit-
ablefor grid computing. No single file systemmeetsthe
needsof usersandadministratoreverywhere andvisiting
applicationgdonothavethepermissionsiecessario install
privilegedsoftware.

To combatthis, a grid applicationmustbring alongits
own /O systemand a methodfor attachingto it. Sev-
eral mechanismsave beenproposed. Kangaroo usesli-
brary preloading,facilitated by Bypass[24]. Many other
mechanismsaare possible,including systemcall intercep-
tion [2, 18], staticrelinking [22], binary rewriting [27, 17]
andemulationthroughanexisting interface[26].

Using thesemechanismsa variety of data-meement
systemsnay be attached Representate examplesinclude
Condor[22], GASS|[7], andLegion [26]. The Condorre-
mote systemcall facility performsall applicationl/O as
fine-grainedreadandwrite operationover a TCP connec-
tion to the submissionsite. GASS allows an application
to pull and pushwhole files synchronouslywhenthey are
openedand closed,respectiely. GASS also allows files
openedfor appendingo streamdatadirectly over a TCP
connection.Legion providesa'legagy’ interfacesimilar to
GASSanda’native’ interfacesimilarto Condor

None of thesesystemsaddresshe issuesof reliability
or lateng hiding. A Condorjob thatis disconnecteavill
be immediatelykilled and rolled back to the last check-
point. Failed operationsn GASS and Legion resultin a
error propagtedto the application. All of thesesystems



causethe callerto be blocked while 1/0 operationsareper
formedsynchronously

Reliability hasbeenexploredby severalkernel-level file
systemssuchasCoda[19] andEcho[8]. Thesesystems
arevery concernedvith maintainingwide-areaconsisteny,
but make ‘optimistic’ assumptionsvhenthe network is not
available. Lateng hiding hasbeenexploredwith the con-
ceptof buffer seners[5], particularlyin the useof micro-
proxies[4] to interceptandbuffer NFS operations.

It hasbeensuggestethatKangaroobearsa certainsim-
ilarity to peerto-peeffile-sharingsystemssuchasGnutella
or Freene{10]. Althoughtheinterfaceis similar— a client
may perform /O from ary nodein a cloud of Kangaroo
seners—the namingis not. Kangaroorelieson the author
ity of acentralsenerto provide afile's canonicahameand
data. Although a lack of interestmay causedatato even-
tually be flushedfrom Kangaroos distributed caches the
decisionto keepor a deletea primary copy restswith the
centralrepository

6 Conclusion

Thereremaina numberof avenuedo explorewith Kan-
garoo.

Foremostwe have notyet addresghe matterof making
inputdataarrive exactly whenit is neededOtherwork [11]
hassuggestethatbandwidth-limitedorefetchings auseful
model. In alarge datagrid, theremay be multiple seners
from which a readcachemissmay be satisfied. Kangaroo
couldbecoupledwith areplicamanagemergystem3, 25]
in orderto find the'best’ replicato bring into the cache.

Currently theapplication,sener, andmover rely onthe
local operatingsystemto mediatetheir demandgor mem-
ory, disk, and network resources. This may not always
provide for optimal end-to-endhroughput. Allocating re-
sourcedo the senerimprovesthe applications short-term
latengy, but allocatingresource$o themoverreducesheto-
tal storageconsumed.A moreinformedallocationsystem
is needed.

Finally, our currentimplementatiorauthenticateslient-
sener and senersener connectionsusing the Globus
tools[12]. Thisis only suitablewhenonepersorownsall of
the participatingseners. We wish to investigatetechniques
thatsignindividual dataitems,thusallowing the participat-
ing senersto be sharecamongmultiple users.

In this paper we have shovn that a simple, unopti-
mized systemcan improve the reliability and throughput
of grid applications. We have emphasizedhat Kangaroo
offers higher throughputthroughflexible use of available
resourceseventhoughindividual componentsrenot high
performance.
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