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Abstract

Accessto remotedata is oneof theprincipal challenges
of grid computing. WhileperformingI/O, grid applications
mustbe prepared for servercrashes,performancevaria-
tions,andexhaustedresources.To achievehigh throughput
in such a hostileenvironment,applicationsneeda resilient
servicethat movesdata while hiding errors and latencies.
We illustratethis ideawith Kangaroo,a simpledatamove-
mentsystemthat makesopportunisticuseof disksandnet-
works to keepapplicationsrunning. We demonstrate that
Kangaroo canachievebetterend-to-endperformancethan
traditionaldatamovementtechniques,eventhoughits indi-
vidual componentsdonot achievehigh performance.

1 Introduction

Grid computingintroducesa hostof problemsinto the
matterof attachinganapplicationto its storage.Distributed
systemsareproneto performancevariations,failedconnec-
tions,andexhaustedresources.Theseproblemscannotbe
solved merelyby increasinghardwarecapacityor reliabil-
ity. They areoften integral propertiesof distributedhard-
ware[6], opportunisticresources[21], andsocialschedul-
ing constraints.

Grid applicationsare not preparedto deal with any of
theseconditions. Often designedto run in the relatively
predictableenvironmentof a standalonemachine,they ex-
pect low latency, reliable delivery, and unlimited storage.
They don’t scheduleI/O operationsor recover gracefully
from unexpectedfailures.

We can solve theseproblemsby re-usingan old idea
[14]. Traditionaloperatingsystemsdealwith the vagaries
of disks by making a backgroundprocessresponsiblefor
scheduling,coalescing,and retrying operations.Applica-
tionsarenotbotheredwith seekdelays,damagedblocks,or
spin-uptimes. As a pleasantsideeffect, throughputis in-
creasedby performingI/O andCPUtaskssimultaneously.

Thesameprinciplecanbeappliedto grid computing.
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Figure 1. Hierar chical Data Grid

In this paper, we illustrate a data-movement system
called Kangaroo. Kangaroo improves the reliability and
throughputof grid applicationsby hiding network storage
devicesbehindmemoryanddisk buffers. Backgroundpro-
cessesaremaderesponsiblefor moving dataandhandling
errors. Applicationsperceive Kangaroo to be a merefile
systemandneednotbere-writtenor re-compiledto become
grid-aware. Kangaroois user-level softwarethat doesnot
requirespecialpermissionsto install or use.

Kangaroo offers a highly-available and highly-reliable
serviceby sacrificing someconsistency guarantees.Al-
thoughthis would be unacceptablefor a general-purpose
local file system,it is sensiblefor distributeddataanalysis.
Major grid dataefforts [3, 9, 15] notethat many scientific
datasetsarecreatedonceandthenremainreadonly. Orga-
nizationssuchasthe Grid PhysicsNetwork [1] emphasize
theuseof hierarchicalfacilitiesfor accessinglargedatasets,
as shown in Figure 1. In sucha system,experimentally-
produceddataflows from a centralrepositorytoward the
leaves,while resultscomputedfrom datamove in the op-
positedirection. In suchsystems,read/writeconsistency is
not a problem. Availability, reliability, andthroughputare
themainconcerns.
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Figure 2. I/O Models

Kangaroo seeksto improve total application perfor-
manceby makinggooduseof limited resources.However,
if viewedthrougha narrow lens,individual componentsof
Kangarooareclearly not high performance.We intendto
makeupany small-scalelossesby usingmultiple resources
at once.

An exampleof thisprincipleis shown in Figure2, which
givesa time line for anapplicationusingthreedifferentI/O
models– streaming,staging,andKangaroo. A streaming
applicationperformsblockingI/O directlyoverthenetwork
while it executes.A staging applicationperformsI/O on a
local buffer, andthenperformsa blockingwrite of all dirty
dataafterexecutioncompletes.In theKangarooI/O model,
write burstsarewritten to a buffer andthenperformedcon-
currentlywith CPUbursts.As we will show below, theex-
actperformanceof theI/O burstsdoesn’t matter– anoverall
speedupis gainedby usingtheCPUandperformingI/O at
thesametime.

2 Design Principles

Kangaroo draws ideasfrom many previous works, but
differsin its goalsandassumptions.Beforeembarkingupon
on a descriptionof Kangaroo,we would like to lay out the
principlesthathaveguidedits design.

1. Keepit simple. [20]

2. Use all available resources to hide latency. Appli-
cationsrarely useall available resourcesto capacity.
If one resourceis a bottleneckthen other excessre-
sourcescanbeusedto satisfythedemand.In practice,
this meansusingmemoryanddisk to handleoverflow
network traffic.

3. Stoperrors fromreaching applications.Scientificap-
plicationsrespondto errorssuchas“host not found”
or “connectionlost” by crashingor simply terminat-
ing. Deliveringsucherrorsproducesno usefulresults.
A datamovementsystemshouldsquashsucherrorsby
retrying,delaying,or reportingtheerrorto ascheduler
or ahumanoperator.

4. Sacrificeconsistencyfor availability. Many Grid ap-
plications are not concernedwith read/writeconsis-
tency. Thosethat aremustmanagea larger problem
involving multiplestoragesitesandadministrativedo-
mains.Kangaroois only apartof thispicture.Wewill
provide an interfacesufficient to manageconsistency,
but not to enforceit in all cases.We note that other
popularfile systems,suchasNFS [23] andAFS [16]
havebenttherulesof Unix consistency with consider-
ablesuccess.

5. Consideroutputfirst. Managinginputsis harderthan
managingoutputs. Output needscan be delayedar-
bitrarily, but input needscanonly beanticipatedusing
explicit informationor accuratespeculation.In thispa-
per, we have concentratedupontheproblemof output
whilemaintainingatrivial systemfor input. With these
mechanismsin place,we plan to addresstheproblem
of input in thefuture.

3 Architecture

The Kangarooarchitectureis centeredarounda chain-
able seriesof servers that implementa simple interface,
shown in Figure3.

The native interfaceto Kangaroois shown in Figure3.
get andput arestatelessreadandwrite operationsthat
operateon a particularlocationin a targetfile. get causes
the client to block until the necessarydataare retrieved.
put is a non-blockingmessagewith no response.com-
mit causesthe caller to block until all outstandingputs
have beenacceptedfor delivery. push causesthecaller to
block until all outstandingputs have beentransferredto
their ultimatedestination.

Eachcall includesan explicit referenceto the host at
which theprimarydatacopy is stored.This (host,file)com-
bination serves as a system-wideuniquenamefor a data
object. A Kangaroosystemmay servicerequestsfor this
objectfrom many differentreplicas,but theclient neednot
know of or refer to suchcopies.Theclient maycommuni-
catewith any server– preferablytheclosest– to accomplish
I/O onany object.

With thesefour calls, we may implementa simplefile
servicewith a singleserver process.This is calleddirect
Kangarooandis shown in Figure4. A client makesa TCP
connectionto theserver to performgets andputs on the
filesthatit needs.Theserversimplyexecutestheoperations
on the attachedfile system. This configurationis similar
in form, reliability, andperformanceto RPC-basedsystems
suchasNFS[23].

Thenext stepin complexity is one-hopKangaroo,shown
in Figure5. Here,asecondserver is placedat theexecution
site. It satisfiesput requestsby immediatelyspoolingthem
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Figure 3. Client Interface
int kangaroo_get (host,path,offset,length,data)
void kangaroo_put (host,path,offset,length,data)
int kangaroo_commit ()
int kangaroo_push (host,path)

Figure 4. Direct Kangar oo
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to disk. A backgroundprocess,themover, is responsiblefor
readingtheserequestsandforwardingthemto thedestina-
tion asthe network permits. get requestsaresatisfiedby
first consultingthe local spool. If the dataarenot present,
thenget is invokedon thedestinationserver.

One-hopKangarooinsulatestheclient from many diffi-
culties.If thenetwork shouldfail or thedestinationmachine
shouldcrash,theclientwill still beableto write to thelocal
spooldisk. Likewise, if traffic or schedulingconcernspre-
venttheapplicationfrom gettingthenecessaryoutputband-
width, it will be ableto run at full speedwhile the mover
doesits job. Readoperationsmaybesatisfiedfrom cached
datawithout contactingthedestinationserver.

More hopsmay be added,asdemonstratedby two-hop
Kangarooin Figure6. A multi-hop Kangaroosystemcan
provideanumberof benefits.

Multiple hopsallow transfersover many network seg-
mentsto beperformedincrementally, avoiding theneedto
co-allocatenetwork resourcesalongall hops. This canbe
particularlyuseful for transfersover links with significant
performancevariationsor outages. Without intermediate
buffering,theperformanceof end-to-endconnectionsis de-
terminedby theslowestlink at any given time andend-to-
endreliability is determinedby theproductof theup-times
of theindividual links.

Multiple hopscan also increasethe available spooling
space.Kangaroocanonly hide network latenciesif it has
spaceto storeall extantdata.If a spooldisk fills, theappli-
cation’s I/O will bereducedto end-to-endnetwork speeds,
becausetheapplicationwill beableto insertnew dataonly
asfastasKangaroocanmoveit out. Whenlocalspoolspace
becomesfull, a server canoffload spooledblocksin order
to avoid slowing down theapplication.

Multiple serverscanbe usedto free certainresourcesa
quickly aspossible,asshown in Figure7. In many batch
schedulingscenarios,theuseris chargedfor occupying any
resourceonacomputenode.To avoid holdingon to anode
longer than necessary, Kangaroo can be usedto ’escape’
theexecutionsitesby offloadingall datato anearbystorage
resource.The datacanthenbe transferredover the wide-
areanetwork asconditionspermit.

3.1 Interface

The Kangaroointerfaceis very simple,andapplication
writers might chooseto use it directly. However, given
thewide varietyof availablestoragesystemsandthenum-
berof extantgrid applications,it is unreasonableto expect
programmersto convert existing applicationsto work with
Kangarooor any othernewcomerto distributedsystems.

To easesuch transitions, we have built, using By-
pass[24], anadaptationlayerthatconvertsstandardPOSIX
operationsinto Kangaroooperations.This adaptationlayer
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Figure 8. Adaptation Layer

canbetransparentlyappliedto any dynamicallylinkedpro-
gram without specialprivileges. The layer doesnot af-
fect the operationof normal filenames,but transparently
’mounts’ Kangaroo into the root filesystem. Operations
onfilenamessuchas/kangaroo/host/path aretrans-
parently converted into Kangaroo client operations. Be-
causeKangaroogets andputs are stateless,the adap-
tationlayermustremembersuchprocess-specificstatesuch
asfile descriptorsandseekpointers.Figure8 illustrateshow
thesetransformationstakeplace.

In addition, we have provided command-lineutilities
that invoke the client library to get, put, and pushwhole
files betweenKangarooandlocal files or pipes. This pro-
videsasimplemethodof attachinginputandoutputstreams
to Kangaroowhentheuseof Bypassis not desired.

BecauseKangaroois intendedasa drop-in replacement
for a file system,it is important that it provide sufficient
operationsfor applicationsto work. However, it is not cur-
rently (andperhapswill neverbe)afull-featureddistributed
file system.Like a tapeor a terminal,Kangaroopresentsa
file-like interfacewithout all of the trappingsof a real file
system.

A numberof operationsaremissingfrom theKangaroo
interface.For example,thereis nosupportfor deletingfiles,
checkingaccesspermissions,or retrieving meta-data.The
adaptationlayer hasseveral strategiesfor dealingwith ap-
plicationsthatrequestthesefeatures.For mostunsupported
operations,it canbeplainly honest:an attemptto deletea
file will returnthe error “operationnot supported”. Some
operationscanbeconverted:a smallget servesto satisfy

a checkfor readpermissions.Otheroperationsmustsim-
ply returndummyvalues. Although this practiceprevents
theapplicationof somestandardsystemtoolssuchasls or
make, it is sufficient to admita largenumberof grid appli-
cationsthatsimply mustreadandwrite data.We mayadd
furtheroperationsto theinterfaceasapplicationsrequire.

3.2 Consistency

Like a local file system,Kangaroomaintainsread/write
consistency for applicationsusingthesamefirst-hopserver.
For everydatablockspooledfor writing, aservermaintains
anentryin memory. Incominggets first examinethisdata
structureandattemptto satisfytheoperationlocally before
requestingdatafrom anotherserver. If datacanbe served
entirely from the local copy, no contactis madewith any
otherserver.

Kangaroodoesnot enforceconsistency betweenappli-
cationsatmultiplesites.Applicationsthatneedconsistency
guaranteesmustexplicitly synchronizeusingtheprimitives
commit andpush. Theformer is usedto make datasafe
from crashes,while thelatter is usedto make changesvisi-
ble to others.
commit causesthecaller to block until all outstanding

changeshavebeenwrittento somestablestorage.Thisdoes
not meanthe changesare visible to all other callers! In
practice,commit causesthe receiving server to flush all
buffereddataandall file systemsto disk. An application
thatcommits maysafelyexit knowing thatits resultswill
eventuallyflow backto thedestination,even if someinter-
veninglinks or serversfail.
push causesthe caller to block until all outstanding

changeshavebeendeliveredto theirrespectivedestinations.
In practice,push causesthe receiver server to block until
the mover hasdrainedall dirty blocks to the next server
in line. Then, the push is recursively calledon the next
server. At the target host, push succeedswhen all out-
standingdataarecommittedinto thelocal file system.The
successmessageis then passedback, step-by-step,to the
caller. Of course,any of theselinks mayfail dueto network
or server problems.In eachcase,a pushis freeto retry the
erroror returnit the caller. An error returndoesnot mean
thedeliveryhasfailed,but ratherthatthesystemcannotde-
termineif the datahave yet arrived. The responsibilityof
retryinguntil successlies with thetop-level caller.

TheadaptationlayerconvertsPOSIXoperationsinto the
appropriateKangarooconsistency operations.Whena pro-
gramexits, theadaptationlayerforcesacommit to thelo-
calKangarooserver. Thispreventsthesystemfromentering
a statewherea programreportssuccessfulcompletionbut
losesits outputto a subsequentserver crash.If theuser(or
scheduler)that startedthe job wishesto wait until all data
arrives,thena manualpush shouldbeissued.During exe-
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cution,aPOSIXfsync is alsoconvertedintoapush. This
allows existing applicationsthat synchronizewith fsync
to operatecorrectlywith Kangaroo.

Becauseoutputdatamay be arbitrarily delayed– even
beyond the endof the program– puts arenot allowed to
fail andthusreturnno value. If a temporaryresourcelimit,
suchasa full disk,preventsa server from acceptingaput,
it is free to block the caller simply by not consumingany
moredatafrom theconnection.If someothererrorprevents
committingdatato thetargetfile system,for example,insuf-
ficient privilege, thendatamay be storedin a local buffer.
In this case,theservershouldcontacttheuserto rectify the
problem. A commit will succeedon databufferedfor an
’unsolvable’ problem,but apush will not.

As the mover processflows datain the background,it
usesthe sameprimitivesasany otherclient of the system.
As it readsdirty blocksout of the local spool, it performs
puts on thetargetserver. Blocksarenotdeletedoutof the
local spooluntil the mover successfullyperformsa com-
mit on thetarget.

Any catastrophicerrorsmustbe communicatedbackto
theschedulingsystem.For example,if a server crashesor
suffersanunrecoverableerror, theprocessat theotherend
of the connectionwill be abrubtlydisconnected.If it can,
the processshouldroll back to the last commit. For the
mover, this is easy– it simply throws out its list of sent
blocksandstartsover. For anapplication,thingsaremore
complicated.An applicationwritten to thenativeKangaroo
interfaceshouldbe desinedto eitherroll backor abort. If
usingtheadapationlayer, a processis forcibly killed when
the connectionis lost. This actionmustbe understoodby
the CPU schedulingsystemto indicatea rollback. In the
caseof Condor[21], a killed processis restartedfrom the
beginningor from thelastcheckpoint,if available.

3.3 Scheduling

Althoughthis architecturehasbeenprimarily castasan
on-demanddatamovementsystem,it hasa naturalmethod
of integrating with a network scheduler. The mover pro-
cessis implementedwith Cedar, ageneral-purposenetwork
socket library thatsupportsbandwidthallocation.Whenes-
tablishinga new connection,thelibrary first requestsa net-
work allocationfrom a sitenetwork manager. Thenetwork
managerallocatesbandwidthfairly amongactive Kanga-
roo connectionswithout exceedingmaximumratesconfig-
uredby anadministrator. Periodically, thenetwork manager
requestsreportsfrom all clientsandre-allocatesthe band-
width basedon recentusage. At our site, this is usedto
enforcean upperlimit on network resourcesconsumedby
opportunisticallyscheduledjobs.

4 Implementation

4.1 Status

Wehavebuilt aKangarooprototypethatimplementsthe
architecturedescribedabove. Thebasicarchitectureleaves
anumberof thingsunspecifiedto theimplementation.Cur-
rently, theseare:

1. Caching discipline. Becausefiles areassumedto be
write-once, a server is free to cacheany data that
passesthroughit. Currently, no cachingis done. All
get operationsreadthroughto thedestinationserver.
Wewill addressthis in a futurework.

2. Serverdiscovery. A client is free to useany server it
canlocate.Naturally, it hasavestedinterestin finding
theclosestone.Currently, theclient library consultsan
environmentvariablefor thenameof theclosestserver
andfalls backon thelocalhost.

3. Routingmechanism. A wide variety of route-finding
protcolsand mechanismsare available for computer
networks. Currently, eachserver is equippedwith a
static routing table. This hasnot proven to be a bur-
den,asthe default behavior is to routeall operations
directly to the server namedin the request.All one-
hop configurationswork without any manualrouting
configuration.

4. Authentication. Two authenticationmechanismsare
currentlyimplemented:address-basedandGlobusGSI
[12]. Eachserverrunsasanon-privilegeduserandde-
cideswhena connectionis madewhetherto trust all
incomingoperations.

5. ManagementTools. To allow the userto locatedata
in transitanddiagnoseproblemsin the system,addi-
tionaltoolsallow theuserto querythecontentsof each
spooldirectoryandretrieve messagesdetailingfailure
(or success)of delivery. We envision that the server
will eventuallyreportproblemsto theuser, insteadof
makingtheusermanuallyquery.

4.2 Performance

We evaluatedour prototypein threeaspects:reliabil-
ity, burst performance,andoverlapperformance.Briefly,
we confirmedthat the prototypeprovides improved appli-
cationthroughput,even thoughindividual componentsare
not high performance. All experimentswere performed
on commodityworkstationsrunningLinux 2.2.17with 512
MB of memory, a25MB/s disk/adaptercombination,anda
100Mb/s switchedethernet.
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To demonstratereliability, we useda one-hopKangaroo
systemto deliveranoutputfile generatedby Gaussian[13],
a popularchemistryapplication.Gaussianhasvery modest
I/O needs.A typical run readsa small input file andpro-
ducesa log of megabytesto gigabytesover the courseof
hoursor days.A largeamountof temporarystorageis used
duringtherun,but is not relevantto thefinal result.

Figure9 showstheoutputbehavior of a typicalGaussian
run with its log file deliveredthrougha one-hopKangaroo
system.The thin line shows the total amountof datapro-
ducedby the application. The thick line shows the total
amountof dataactuallydeliveredto the storagesite. Ser-
vice interruptionswerecreatedat 1000and5750seconds
by forcibly killing thedestinationserver. As shown, an in-
terruptionsimply causesdatato queueup at the execution
siteuntil conditionspermitoutputto continue.Theprogram
successfullyterminatedat about6000seconds,but service
wasnot restoreduntil about11000seconds,whereuponthe
outputwasdelivered.

Of course,the improved reliability given by Kangaroo
mustcomeataprice.To quantifythecostof usingtheinter-
mediatespooldisk,wecomparedtheperformanceof aone-
hop Kangaroosystemagainst two traditionalgrid transfer
techniques:streamingandstaging.A streamingapplication
applicationwritesits outputdirectly to thenetwork without
any intervening storage. A staging applicationwrites its
wholeoutputto the local disk andthentransfersthewhole
file at theendof execution.

To comparethethree,we createda programwhich gen-
erateda singleburst of dataas fastaspossible. We mea-
suredthe responseandturnaroundtime for the generation
of 10-2000MB of data.Theformerwasdefinedsimply as
the interval of execution,while the latter includedtheexe-
cution time plus any additionaltime to move the outputto
its destination.

The resultsof this comparisonareshown in Figures10
and 11. By definition, streaminghas the sameresponse
andturnaroundtime. Staginggivesbetterresponsetime by
using the fasterdisk during execution,but takes longer to
eventuallydeliver theoutput.One-hopKangaroofits some-
wherein between.For all files, it providesresponsetime
betweenstagingandstreaming.For files thatfit in memory,
it givesbetterturnaroundtime thanstaging.For files larger
thanmemory, it is slightly slower.

Therealbenefitfrom Kangaroocomesfrom its ability to
overlapCPU andI/O intervals. To demonstratethe poten-
tial benefitsof overlap,we constructeda syntheticimage-
processingapplicationwith moderateoutput needs. This
applicationapproximatesa numberof scientific applica-
tionsthatproducemultiplederivativedatasetsfrom anorig-
inal. The applicationreadsa single imageof 5.5 MB and
thenproducesten output imagesof the samesize,eacha
slightly differentenhancementof theoriginal. Eachoutput

required6.1secondsof cputime to generate.
Thisapplicationwasrunin threedifferentconfigurations

asin thepreviousexperiment.Thesecorrespondto thethree
modelsshown in figure 2. The benefitto be gainedfrom
overlappingdependsheavily ontheactualratioof CPUtime
to I/O time. To vary this ratio, we artificially restrictedthe
I/O bandwidthacceptedby thedestinationserver.

Figure12 shows the responsetime for this application.
As expected,the streamingvariant is controlledsolely by
theavailablenetwork bandwidth.Theresponsetimefor the
stagingandKangaroovariantsis constant,Kangarooonly
slightly slower.

Figure 13 shows that Kangaroo provides a better
turnaroundtime in all casesto its ability to overlapCPU
with I/O. The turnaroundtime with Kangarooremainsal-
most constantuntil the availablebandwidthbegins to fall
below theapplication’s trueI/O needs:about1 MB/s. The
otherI/O disciplinesaresensitive to availablebandwidthin
every region, even whenCPU requirementsare the major
bottleneck.

5 Related Work

Our work is indebtedto a largebodyof researchon file
systems,but we mustemphasizethat theusualformulation
of a file systemas a kernel-provided resourceis not suit-
able for grid computing. No singlefile systemmeetsthe
needsof usersandadministratorseverywhere,andvisiting
applicationsdonothavethepermissionsnecessaryto install
privilegedsoftware.

To combatthis, a grid applicationmustbring along its
own I/O systemand a methodfor attachingto it. Sev-
eral mechanismshave beenproposed. Kangaroo usesli-
brary preloading,facilitatedby Bypass[24]. Many other
mechanismsare possible,including systemcall intercep-
tion [2, 18], staticrelinking [22], binary rewriting [27, 17]
andemulationthroughanexisting interface[26].

Using thesemechanisms,a variety of data-movement
systemsmaybeattached.Representative examplesinclude
Condor[22], GASS[7], andLegion [26]. The Condorre-
mote systemcall facility performsall applicationI/O as
fine-grainedreadandwrite operationsover a TCPconnec-
tion to the submissionsite. GASS allows an application
to pull andpushwhole files synchronouslywhenthey are
openedand closed,respectively. GASS also allows files
openedfor appendingto streamdatadirectly over a TCP
connection.Legion providesa ’ legacy’ interfacesimilar to
GASSanda ’native’ interfacesimilar to Condor.

None of thesesystemsaddressthe issuesof reliability
or latency hiding. A Condorjob that is disconnectedwill
be immediatelykilled and rolled back to the last check-
point. Failed operationsin GASS and Legion result in a
error propagatedto the application. All of thesesystems
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causethecallerto beblockedwhile I/O operationsareper-
formedsynchronously.

Reliability hasbeenexploredby severalkernel-level file
systems,suchasCoda[19] andEcho[8]. Thesesystems
areveryconcernedwith maintainingwide-areaconsistency,
but make ‘optimistic’ assumptionswhenthenetwork is not
available. Latency hiding hasbeenexploredwith the con-
ceptof buffer servers[5], particularlyin the useof micro-
proxies[4] to interceptandbuffer NFSoperations.

It hasbeensuggestedthatKangaroobearsacertainsim-
ilarity to peer-to-peerfile-sharingsystems,suchasGnutella
or Freenet[10]. Althoughtheinterfaceis similar – a client
may perform I/O from any nodein a cloud of Kangaroo
servers– thenamingis not. Kangaroorelieson theauthor-
ity of acentralserver to provideafile’scanonicalnameand
data. Although a lack of interestmay causedatato even-
tually be flushedfrom Kangaroo’s distributed caches,the
decisionto keepor a deletea primary copy restswith the
centralrepository.

6 Conclusion

Thereremaina numberof avenuesto explorewith Kan-
garoo.

Foremost,we have not yet addressthematterof making
inputdataarriveexactlywhenit is needed.Otherwork [11]
hassuggestedthatbandwidth-limitedprefetchingis auseful
model. In a large datagrid, theremay be multiple servers
from which a readcachemissmay besatisfied.Kangaroo
couldbecoupledwith areplicamanagementsystem[3, 25]
in orderto find the’best’ replicato bring into thecache.

Currently, theapplication,server, andmover rely on the
local operatingsystemto mediatetheir demandsfor mem-
ory, disk, and network resources. This may not always
provide for optimal end-to-endthroughput.Allocating re-
sourcesto theserver improvestheapplication’s short-term
latency, butallocatingresourcesto themoverreducestheto-
tal storageconsumed.A moreinformedallocationsystem
is needed.

Finally, our currentimplementationauthenticatesclient-
server and server-server connectionsusing the Globus
tools[12]. Thisis only suitablewhenonepersonownsall of
theparticipatingservers.We wish to investigatetechniques
thatsignindividualdataitems,thusallowing theparticipat-
ing serversto besharedamongmultiple users.

In this paper, we have shown that a simple, unopti-
mized systemcan improve the reliability and throughput
of grid applications. We have emphasizedthat Kangaroo
offers higher throughputthroughflexible useof available
resources,eventhoughindividual componentsarenot high
performance.
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