
Combining	Containers	
and	Workflow	Systems	

for	Reproducible	Execu=on	

Douglas	Thain,	Alexander	Vyushkov,	
Haiyan	Meng,	Peter	Ivie,	and	Charles	Zheng	

	
University	of	Notre	Dame	



hLp://ccl.cse.nd.edu	

The	Coopera=ve	Compu=ng	Lab	
	



The	Coopera=ve	Compu=ng	Lab	
•  We	collaborate	with	people	who	have	large	
scale	compu=ng	problems	in	science,	
engineering,	and	other	fields.	

•  We	operate	computer	systems	on	the	
O(10,000)	cores:	clusters,	clouds,	grids.	

•  We	conduct	computer	science	research	in	the	
context	of	real	people	and	problems.	

•  We	release	open	source	so4ware	for	large	
scale	distributed	compu=ng.	

3	

hLp://ccl.cse.nd.edu	





DASPOS	Project	
www.daspos.org	



Reproducibility	is	the	cornerstone	
of	the	scien=fic	method.	

	
Can	we	really	claim	to	be	
conduc=ng	science?	



Reproducibility	in	e-Science	
is	absolutely	terrible	today!	

•  Can	I	re-run	a	result	from	a	colleague	from	five	
years	ago	successful,	and	obtain	the	same	result?		
How	about	a	student	in	my	lab?	

•  Today,	are	we	preparing	for	our	current	results	to	
be	re-used	by	others	five	years	from	now?	

•  Mul=ple	reasons	why	not:	
–  Rapid	technological	change.	
– No	archival	of	ar=facts.	
– Many	implicit	dependencies.	
–  Lack	of	backwards	compa=bility.	
–  Lack	of	social	incen=ves.	



Many	different	Rs…	

•  Repeat	precisely	what	someone	else	did	on	the	same	
resources,	with	the	same	techniques.	

•  Reproduce	an	equivalent	computa=on	on	different	
resources,	with	similar	techniques.	

•  Repurpose	an	experiment	by	running	it	again	with	a	
slight	change	to	the		data,	so_ware,	or	environment.	

•  Reuse	the	same	ar=fact	across	many	different	
experiments,	for	a	longitudinal	comparison.	

•  Rely	on	one	party	to	set	up	an	environment	and	make	
it	usable	for	mul=ple	par=es.		(Think	sysadmins.)	

•  Other	Rs?	



Typical	Compu=ng	Experiment	
•  PI	gives	student	some	general	direc=ons.	Student	
writes	some	code,	does	some	experiments,	saves	
the	outputs,	writes	the	paper.	

•  Source	code	is	o_en	carefully	curated.		But	what	
about	the	opera=ng	system,	the	so_ware	
dependencies,	the	experimental	configura=on,	
the	input	data,	etc…	

•  Preserva1on	is	necessary	but	insufficient.		We	
must	also	be	able	to	recons1tute	the	result	from	
the	preserved	components.	

•  If	we	did	manage	to	re-run	everything,	can	we	
verify	equivalence?	



Preserve	the	Mess	
or	Encourage	Cleanliness?	

•  Preserve	the	Mess:	
– Let	the	end	user	do	whatever	they	want,	and	
then	preserve	the	ar=facts	actually	used.	

– Least	user	burden,	but	ingredients,	once	mixed,	
are	hard	to	separate.	

•  Encourage	Cleanliness:	
– Require	the	user	to	preserve	items	in	advance,	
and	then	combine	them	in	precise	ways.	

– Higher	user	burden,	but	beLer	captures	intent	
and	dis=nguishes	between	components.	



Two	Examples	of	
Encouraging	Cleanliness:	

	
Umbrella	and	Prune	

	
	

(research	prototypes)	



Umbrella	hardware	=	{	
	arch	=	“i386”	
	memory	=	16GB;	}	

kernel	=	{	
	name	=	“Linux”;	
	version	=	“83.21.blue.42”	}	

opsys	=	{	
	name	=	“RedHat”;	
	version	=	“6.1”	}	

so_ware	=	{	
	simulator	=	{	
	 	mount	=	“/so_/sim”;	
	 	name	=	“mysim-3.1”;	}	

data	=	{	
	input	=	{	
	 	mount	=	“/data/input”;		
	 	url	=	“hLp://some.url”;	}	
	calib	=		{	
	 	mount	=	“/data/calib”;	
	 	url	=	“hLp://other.url”;	
	 	checksum	=	“xyz”;		}		

}	

umbrella	run	myenv1.json	

myenv1.json	

RedHat	6.1	

RedHat	6.2	

Mysim	3.1	

Mysim	3.2	

RedHat	6.1	

Linux	83.21.blue.42	

Mysim	3.1	

input	 calib	

Online	Data	Archives	



RedHat	6.1	

RedHat	6.2	

Mysim	3.1	

Mysim	3.2	

Online	Data	Archive	

input1	

calib1	

input2	

calib2	

Linux	83	

Linux	84	

RedHat	6.1	

Linux	83	

Mysim	3.1	

input1	

Umbrella	specifies	a	reproducible	environment	while	
avoiding	duplica=on	and	enabling	precise	adjustments.	

Run	the	experiment	
Same	thing,	but	use	
different	input	data.	

Same	thing,	but	
update	the	OS	

RedHat	6.1	

Linux	83	

Mysim	3.1	

input2	

RedHat	6.2	

Linux	83	

Mysim	3.1	

input2	



Specifica=on	is	More	Important	
Than	Mechanism	

•  Current	version	of	Umbrella	can	work	with:	
–  Docker	–	create	container,	mount	volumes.	
–  Parrot	–	Download	tarballs,	mount	at	run=me.	
–  Amazon	–	allocate	VM,	copy	and	unpack	tarballs.	
–  Condor	–	Request	compa=ble	machine.	

•  More	ways	will	be	possible	in	the	future	as	
technologies	come	and	go.	

•  Key	requirement:	Efficient	run1me	composi1on,	
rather	than	procedural	construc=on.	



Example	Umbrella	Apps	
•  Povray	ray-tracing	applica=on	
h@p://dx.doi.org/doi:10.7274/R0BZ63ZT	

•  OpenMalaria	simula=on	
h@p://dx.doi.org/doi:10.7274/R03F4MH3	

•  CMS	high	energy	physics	simula=on	
h@p://dx.doi.org/doi:10.7274/R0765C7T	
	
P.S.		DOIs	are	almost	(but	not	quite)	the	right	solu=on	for	
ci=ng	an	executable	object.	



But	how	do	we	apply	this	to	
complex	scien=fic	workflows?	

Is	every	single	task	a	container?			No!	
Each	task	must	be	placed	into	a	container	so	that	we	can	
use	a	common	image	for	1000s	of	tasks.	



PRUNE	–	Preserva=on	Run	
Environment	

•  Observa=on:		The	shell	user	interface	does	not	
accurately	describe	the	environment	or	
dependencies	needed	by	a	given	task:	
				mysim.exe	-i	input.txt	–o	output.dat	

•  Idea:	Replace	the	tradi=onal	command	line	with	
an	interface	more	like	func=on	invoca=on:	
				output	=	mysim(	input,	calib	)	ENV	myenv.json	

•  Build	on	ideas	from	GridDB,	VDL,	Swi_,	Taverna,	
Galaxy,	but	here	focus	is	on	precise	reproduc=on	
and	sharing	with	others.	



PRUNE	–	Preserva=on	Run	
Environment	

PUT	“/tmp/input1.dat”	AS	“input1” 	[gets	id	3ba8c2]	
PUT	“/tmp/input2.dat”	AS	“input2” 	[gets	id	dab209]	
PUT	“/tmp/calib.dat”	AS	“calib” 	 	[gets	id	64c2fa]	
PUT	“sim.func=on”	AS	“sim” 	 	[gets	id	fffda7]	
	
out1	=	sim(	input1,	calib	)	IN	ENV	myenv1.json	

	[out1	is	bab598]	
out2	=	sim(	input1,	calib	)	IN	ENV	myenv2.json	

	[out2	is	392caf]	
out3	=	sim(	input2,	calib	)	IN	ENV	myenv2.json	

	[out3	is	232768]	



RedHat	6.1	

RedHat	6.2	

Mysim	3.1	

Mysim	3.2	

Online	Data	Archive	

input1	

calib1	

outpu11	

myenv1	

Linux	83	

Linux	84	

PRUNE	connects	together	precisely	reproducible	
execu=ons	and	gives	each	item	a	unique	iden=fier	

myenv1	

input1	

calib1	

output	1	sim	

output1	=	sim(	input1,	calib1	)	IN	ENV	myenv1.json	

Bab598	=	fffda7	(	3ba8c2,	64c2fa	)	IN	ENV	c8c832	

myenv1	

sim2	



All	Sorts	of	Open	Problems	
•  Naming:	Tension	between	usability	and	
durability.		At	least	two	levels	of	naming.	

•  What	is	the	intersec=on	of	version	control	(store	
deltas)	and	provenance	(store	ops)	?	

•  Usability:	Can	we	accommodate	exis=ng	work	
paLerns,	or	do	we	force	new	habits?	

•  Repositories:	Who	will	run	them,	how	many	
should	we	have,	what	will	they	cost…?	

•  Compa=bility:	Can	we	work	in	exis=ng	workflow	
technologies	without	star=ng	over?	

•  Composi=on:	MPI,	BoT,	Workflows,	Map-Reduce,	
…	



Rumina=ons	

•  Important	to	dis=nguish	between	the	environment	
that	is	expected	and	the	technology	used	to	deliver	it.	

•  Scien=fic	users	are	accustomed	to	an	implicit	
environment	(laptop,	hpc	center)	and	we	need	to	train	
them	to	be	explicit	about	needs.	

•  Best	prac=ce:	Start	with	empty	environment	and	only	
include	what	is	explicitly	imported.		(Golang	corollary:	
Do	not	import	what	is	not	used.)	

•  Portability	and	preserva=on	are	two	sides	of	the	same	
coin:	specifica=on	needed	to	run	at	scale	is	also	the	
spec	needed	to	preserve	for	the	long	term!			



Acknowledgements	

22	

Haiyan	Meng	
hmeng@nd.edu	

(Umbrella)	
	

Peter	Ivie	
pivie@nd.edu	

(PRUNE)	
	Umbrella	Technology	Preview:	

hLp://ccl.cse.nd.edu/so_ware/umbrella	
	

This	work	was	supported	by	NSF	grant	PHY-1247316:	
Data	and	So_ware	Preserva=on	for	Open	Science.	

Alex	Vyushkov	
avyushko@nd.edu	

	
	


