
Scalable Application Design:
Pitfalls and Possibilities

Prof. Douglas Thain, University of Notre Dame

http://www.nd.edu/~dthain
dthain@nd.edu
@ProfThain

The Cooperative Computing Lab
• We collaborate with people who have large scale

computing problems in science, engineering, and
other fields.

• We operate computer systems on the O(10,000)
cores: clusters, clouds, grids.

• We conduct computer science research in the
context of real people and problems.

• We develop open source software for large scale
distributed computing.

2

Parrot Virtual File System
Unix
Appl

Parrot Virtual File System

Local iRODS Chirp HTTP CVMFS

Capture System
Calls via ptrace

/home = /chirp/server/myhome
/software = /cvmfs/cms.cern.ch/cmssoft

Custom Namespace

File Access
Tracing
Sandboxing
User ID Mapping
. . .

Douglas Thain, Christopher Moretti, and Igor Sfiligoi, Transparently Distributing CDF
Software with Parrot, Computing in High Energy Physics, pages 1-4, February, 2006.

Parrot + CVMFS
www

server
CMS
Task

Parrot

squid
proxy

squid
proxy

squid
proxy

CVMFS Library
meta
data

data
data
data

meta
data

data

data

CAS Cache

CMS
Software

967 GB
31M files

Content
Addressable

Storage

B
ui

ld
 C

A
S

HTTP GET HTTP GET

Jakob Blomer, Predrag Buncic, Rene Meusel, Gerardo Ganis, Igor Sfiligoi and Douglas Thain, The Evolution of
Global Scale Filesystems for Scientific Software Distribution, IEEE/AIP Computing in Science and Engineering,
17(6), pages 61-71, December, 2015. DOI: 10.1109/MCSE.2015.111

From the scientist's perspective…
It took a while (most of a year) but now I
have my code written, installed, debugged,
calibrated, and verified on my laptop.

Now I want to run at a scale
1000x larger by using a

cluster, cloud, grid, or
whatever you computer

people are calling it today.

There is no way you are going to convince me
to re-write this valuable program in order to run
on your crazy cluster / OS / framework!

(Important science codes outlive OS/HW.)

On my laptop…
"sim.exe –p 50 in.dat -o output.dat"

Output!

What could go wrong?

“Sim.exe -p 50 in.dat -o output”

output

– The Software Dependency Problem
– The Resource Sizing Problem
– The Job Sizing Problem

Outline
• The Laptop Perspective

• Expressing Scalable Applications

• End User Challenges:

– The Software Dependency Problem

– The Resource Sizing Problem

– The Job Sizing Problem

• Lessons Learned

9

Makeflow = Make + Workflow

Makeflow

Local HTCondor Torque Work
Queue

• Provides portability across batch systems.

• Enables parallelism (but not too much!)

• Fault tolerance at multiple scales.

• Data and resource management.

• Transactional semantics for job execution.

http://ccl.cse.nd.edu/software/makeflow

Amazon

Workflow Language Evolution

output.5.txt : input.txt mysim.exe
 mysim.exe –p 10 input.txt > output.5.txt

 {
"command" : "mysim.exe –p 10 input.txt > output.5.txt",
"outputs" : ["output.5.txt"],
"inputs" : ["input.dat", "mysim.exe"]
}

 {
"command" : "mysim.exe –p " + x*2 + " input.txt > output." + x + " .txt",
"outputs" : ["output" + x + "txt"],
"inputs" : ["input.dat", "mysim.exe"]
} for x in [1, 2, 3, 4, 5]

Classic "Make" Representation

JSON Representation of One Job

JX (JSON + Expressions) for Multiple Jobs

Tim Shaffer
(tshaffe1@nd.edu)

Makeflow Shapes a Workflow

Make
Flow

Transaction Log

Concurrency
and Policy Control

Millions of
Tasks Cluster or Cloud

Precise
Cleanup

Performance
Monitoring

Example: Species Distribution Modeling

Full Workflow:

12,500 species

 x 15 climate scenarios

 x 6 experiments

 x 500 MB per projection

 = 1.1M jobs, 72TB of output Small Example: 10 species x 10 expts

More Examples

http://github.com/cooperative-computing-lab/makeflow-examples

http://github.com/cooerative-computing-lab/makeflow-examples

Work Queue API
queue = WorkQueue(port)

for x in 1..100:

 task = Task(command)

 # add some more details...

 taskid = queue.submit(task)

while not queue.empty():

 task = queue.wait(5)

 if task:

 # deal with output, submit more

task

cmd

file

file

file

task

cmd

file

file

file

task

cmd

file

file

file

Work Queue
Library

id = queue.submit(task) task = queue.wait()

Local Files and
Programs

Work Queue
Architecture

Worker Process

Cache
Dir

A

C B

Work Queue
Master

4-core machine

Task.1
Sandbox

A

B
T

Task.2
Sandbox

C

A
T

Send files

A B C

Submit Complete

Send tasks

Work Queue

Application

National
Computing
Resource

Campus
HTCondor

Pool

Public
Cloud

Provider

Private
Cluster

Work Queue
Master

Local Files and
Programs

Harness Multiple Resources

W

W
W

ssh

WW

WW

torque_submit_workers

W

W

W

condor_submit_workers

W

W

W

Thousands of
Workers in a

Personal
Cloud

submit
tasks

Work Queue

Application

Some Work Queue Applications
Nanoreactors

ab-initio Chemistry ForceBalance
FF Optimization

Adaptive Weighted Ensemble
Molecular Dynamics

Lobster
CMS Data Analysis

SHADHO
Hyperparameter Optimization

And now the bad news...
Simple questions that are hard to answer at scale:

• What software must be installed to run my
application at multiple sites?

• How much memory do I need to run this task?
• How finely should I divide up my work?

Outline
• The Laptop Perspective

• Expressing Scalable Applications

• End User Challenges:

– The Software Dependency Problem

– The Job Sizing Problem

– The Data Splitting Problem

• Lessons Learned

Problem: Software Deployment
• Getting software installed on a new site is a

big pain! The user (probably) knows the top
level package, but doesn't know:
– How they set up the package (sometime last year)

– Dependencies of the top-level package.

– Which packages are system default vs optional

– How to import the package into their
environment via PATH, LD_LIBRARY_PATH, etc.

• Many scientific codes are not distributed via
rpm, yum, pkg, etc. (and user isn't root)

Typical User Dialog Installing BLAST

"I just need BLAST."
"Oh wait, I need Python!"
"Sorry, Python 2.7.12"
"Python requires SSL?"
"What on earth is pcre?"
"I give up!"

MAKER Bioinformatics Pipeline

Sealed Package

VC3-Builder Architecture

Upstream
Sources

Builder

Cached
Sources

Install
Tree

Task

Task SandboxA B
C D

Software
Recipes

Cached
Recipes

A B
C D

Recipe
Archival or
Disconnected
Operation

PATH
PYTHONPATH
LD_LIBRARY_PATH

..Plan: ncbi-blast => [,]

..Try: ncbi-blast => v2.2.28

....Plan: perl => [v5.008,]

....Try: perl => v5.10.0

....could not add any source for: perl v5.010 => [v5.8.0,]

....Try: perl => v5.16.0

....could not add any source for: perl v5.016 => [v5.8.0,]

....Try: perl => v5.24.0

......Plan: perl-vc3-modules => [v0.001.000,]

......Try: perl-vc3-modules => v0.1.0

......Success: perl-vc3-modules v0.1.0 => [v0.1.0,]

....Success: perl v5.24.0 => [v5.8.0,]

....Plan: python => [v2.006,]

....Try: python => v2.6.0

....could not add any source for: python v2.006 => [v2.6.0,]

....Try: python => v2.7.12

......Plan: openssl => [v1.000,]
 ………………..
Downloading 'Python-2.7.12.tgz' from http://download.virtualclusters.org/builder-files
details: /tmp/test/vc3-root/x86_64/redhat6/python/v2.7.12/python-build-log
processing for ncbi-blast-v2.2.28
preparing 'ncbi-blast' for x86_64/redhat6
Downloading 'ncbi-blast-2.2.28+-x64-linux.tar.gz' from http://download.virtualclusters.org…
details: /tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/ncbi-blast-build-log

"vc3-builder –require ncbi-blast"
(New Shell with Desired Environment)

bash$ which blastx
/tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/bin/blastx

bash$ blastx –help
USAGE
 blastx [-h] [-help] [-import_search_strategy filename]
 . . .

bash$ exit

Problem: Long Build on Head Node
• Many computing sites limit the amount of

work that can be done on the head node, so
as to maintain quality of service for everyone.

• Solution: Move the build jobs out to the
cluster nodes. (Which may not have network
connections.)

• Idea: Reduce the problem to something we
already know how to do: Workflow!

• But how do we bootstrap the workflow
software? With the builder!

vc3-builder
 --require makeflow
 --require ncbi-blast
 --
 makeflow –T condor blast.mf

Head Node

Bootstrapping a Workflow

Upstream
Sources

Builder

Software
Recipes Worker

Nodes

Makeflow Makeflow

Build
Task

Build
Task

Build
Task

Build
Task

Build
Task

Build
Task

Build
Makeflow

Build
BLAST

BLAST

BLAST
Task

BLAST
Task

BLAST
Task

BLAST
Task

BLAST
Task

BLAST
Task

What About CVMFS?
Use VC3-Builder to bootstrap from
perl to Parrot + CVMFS in order to
access your global filesystem!

Benjamin Tovar, Nicholas Hazekamp, Nathaniel Kremer-Herman, and Douglas Thain,
Automatic Dependency Management for Scientific Applications on Clusters,
IEEE International Conference on Cloud Engineering (IC2E) , April, 2018.
DOI: 10.1109/IC2E.2018.00026

Ben Tovar
btovar@nd.edu

http://ccl.cse.nd.edu/research/papers/tovar-vc3builder-ic2e2018.pdf
http://dx.doi.org/10.1109/IC2E.2018.00026

Outline
• The Laptop Perspective

• Expressing Scalable Applications

• End User Challenges:

– The Software Dependency Problem

– The Resource Sizing Problem

– The Job Sizing Problem

• Lessons Learned

The Resource Sizing Problem

16 CPUs

32
 G

B
 R

A
M

Machine

Allocation
Job

Job

Job
(Internal

Frag)

(External Frag)

Client selects allocation:
 Too big? Wasted resources.
 Too small? Job fails, retry.

Client vs. Resource Provider

Job
Job

Job

Job
Job

Job

Job
Job

Job

Job
Job

Job

AllocationJob

Provider places the allocation:
 Too big? Get paid.
 Too small? Still get paid!
 Scheduling is not the client's problem.

Allocatio
nJob

Client
Provider

"Slicing the Infinite Cake"
Allocations Too Big

Job Job Job Job Job Job Job Job

Job Job Job Job Job Job Job Job

Allocations Just Right: 2x Throughput
Job Job Job Job Job Job Job Job

How do we know how big?

Resource
Monitor

Soft Alloc.

Job

Suppose that you run 1M
analysis jobs that are all the same.

What would be the distribution of memory
consumption across all jobs?

Impulse? Gaussian? Poisson?

Surprise: Complex Distributions!

How to pick the first allocation?

Ben Tovar says:
Minimize probability of first
attempt succeeding +
fallback succeeding,
weighted by resources.

Production Application: Lobster

• Lobster: High energy physics analysis workload
harnesses heterogeneous non-dedicated
resources at Notre Dame.

• 535,078 tasks run on 25,000 core cluster over
several months with the resource monitor.

• Five categories of tasks identified by user:
DIGI (22911), LHEGS(500K),
mAOD (2544), RECO (11582)

Task

Lobster Architecture
Lobster
Master

WQ Master WorkerWorkerWQ Worker

Task

XRootd CVMFS

ParrotROOT

Chirp

Wrapper

DB HTCondor

Input Data Software Output Data

WQ Pool

Submit Workers

Send Tasks
Submit
Tasks

Submit
Jobs

Start
Workers

HDFSSquid

Task

Query
Tasks

Resource Selection Approaches

Benjamin Tovar, Rafael Ferreira da Silva, Gideon Juve, Ewa Deelman, William Allcock, Douglas Thain, and
Miron Livny, A Job Sizing Strategy for High-Throughput Scientific Workflows,
IEEE Trans Parallel Dist Sys, 29(2), pages 240-253, February, 2018. DOI: 10.1109/TPDS.2017.2762310

http://ccl.cse.nd.edu/research/papers/Tovar-job-sizing-TPDS2017.pdf
http://dx.doi.org/10.1109/TPDS.2017.2762310

What's the upshot?

• By selecting first allocations appropriately, we
double the throughput of the system while
accepting a 9 percent task failure rate.

• This approach is applied entirely from the
client side, without provider assistance.

• Same approach can be applied to any
cluster/cloud/grid with simple techniques.

Outline
• The Laptop Perspective

• Expressing Scalable Applications

• End User Challenges:

– The Software Dependency Problem

– The Resource Sizing Problem

– The Job Sizing Problem

• Lessons Learned

What’s Going on Here?
The user is starting off by
splitting an input file into
pieces in order to prepare
for parallel tasks:

Input File

0 1 2 3 4

Static Job Splitting
User often makes a choice based on some rule of
thumb without really understanding the tradeoffs:

• Jobs too small: Overhead of splitting dominates
cost of actually doing work!

• Jobs too large: Insufficient parallelism to get the
job done in a timely way.

Difference between an acceptable choice and a bad
one can be a factor of 100X in performance!

Continuously Divisible Jobs
• Defer work splitting until computational demand

requires a new job.

• Instead of materializing physical files, keep track
of data indices as “virtual files” to be
materialized on demand. (Job still sees files.)

• Compute ideal job sizes based on observed
performance properties of the system.

Continuously Divisible Jobs

Hierarchical Job Division

Initial Results on BWA Workflow

Nick Hazekamp
nhazekam@nd.edu

Outline
• The Laptop Perspective

• Expressing Scalable Applications

• End User Challenges:

– The Software Dependency Problem

– The Resource Sizing Problem

– The Job Sizing Problem

• Lessons Learned

Thoughts and Lessons Learned
• Make software dependencies more explicit!

– Proposed: Nothing should be available by default, all
software should require an "import" step.

• Make resource consumption more visible!
– The laconic nature of the shell hides too much about

resource consumption.

• Users are poorly equipped to do performance
tuning: don’t commit to decisions too early.

Acknowledgements

DE-SC0015711
VC3: Virtual Clusters for
Community Computation

ACI-1642409
SI2-SSE: Scaling up Science
on Cyberinfrastructure with the
Cooperative Computing Tools

http://ccl.cse.nd.edu

@ProfThain

