

Scalable Application Design: Pitfalls and Possibilities Prof. Douglas Thain, University of Notre Dame

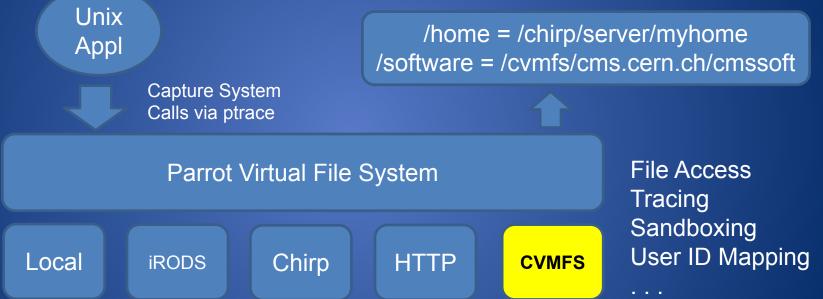
http://www.nd.edu/~dthain dthain@nd.edu @ProfThain

The Cooperative Computing Lab

- We *collaborate with people* who have large scale computing problems in science, engineering, and other fields.
- We *operate computer systems* on the O(10,000) cores: clusters, clouds, grids.
- We *conduct computer science* research in the context of real people and problems.
- We *develop open source software* for large scale distributed computing.

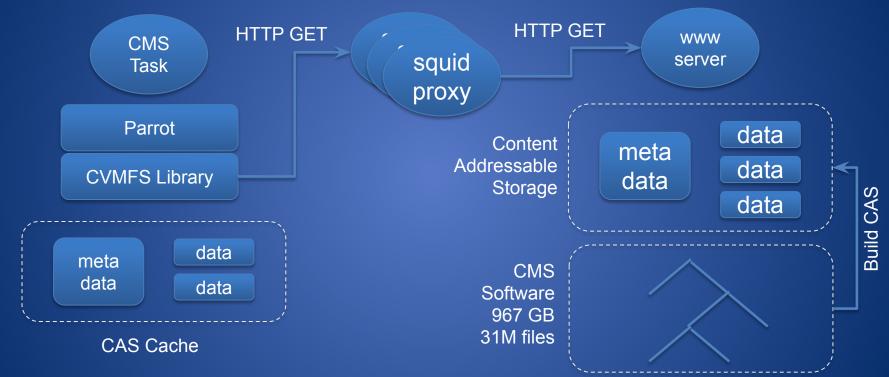
Parrot Virtual File System

Custom Namespace



Douglas Thain, Christopher Moretti, and Igor Sfiligoi, **Transparently Distributing CDF Software with Parrot**, *Computing in High Energy Physics*, pages 1-4, February, 2006.

Parrot + CVMFS



Jakob Blomer, Predrag Buncic, Rene Meusel, Gerardo Ganis, Igor Sfiligoi and Douglas Thain, **The Evolution of Global Scale Filesystems for Scientific Software Distribution**, *IEEE/AIP Computing in Science and Engineering*, **17**(6), pages 61-71, December, 2015. DOI: 10.1109/MCSE.2015.111

From the scientist's perspective...

It took a while (most of a year) but now I have my code written, installed, debugged, calibrated, and verified on my laptop.

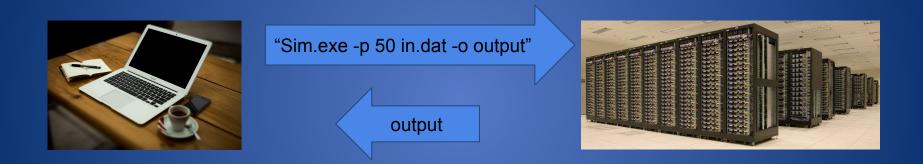
Now I want to run at a scale 1000x larger by using a cluster, cloud, grid, or whatever you computer people are calling it today.

There is **no way** you are going to convince me to re-write this valuable program in order to run on your crazy cluster / OS / framework!

On my laptop...

"sim.exe –p 50 in.dat -o output.dat"

What could go wrong?

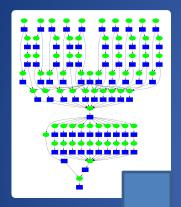


- The Software Dependency Problem
- The Resource Sizing Problem
- The Job Sizing Problem

Outline

- The Laptop Perspective
- Expressing Scalable Applications
- End User Challenges:
 - The Software Dependency Problem
 - The Resource Sizing Problem
 - The Job Sizing Problem
- Lessons Learned

Makeflow = Make + Workflow



- Provides portability across batch systems.
- Enables parallelism (but not too much!)
- Fault tolerance at multiple scales.
- Data and resource management.
- Transactional semantics for job execution.

http://ccl.cse.nd.edu/software/makeflow

Workflow Language Evolution

Classic "Make" Representation

output.5.txt : input.txt mysim.exe mysim.exe –p 10 input.txt > output.5.txt

JSON Representation of One Job

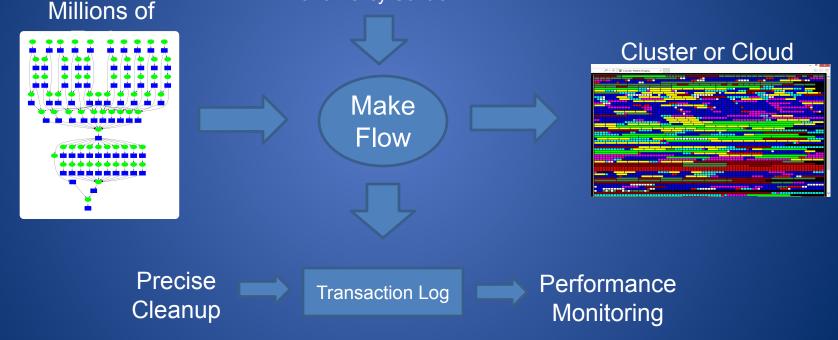
```
{
"command" : "mysim.exe -p 10 input.txt > output.5.txt",
"outputs" : ["output.5.txt"],
"inputs" : ["input.dat", "mysim.exe"]
}
```

JX (JSON + Expressions) for Multiple Jobs

```
1
"command" : "mysim.exe -p " + x*2 + " input.txt > output." + x + " .txt",
"outputs" : [ "output" + x + "txt" ],
"inputs" : [ "input.dat", "mysim.exe" ]
} for x in [ 1, 2, 3, 4, 5 ]
```


Makeflow Shapes a Workflow

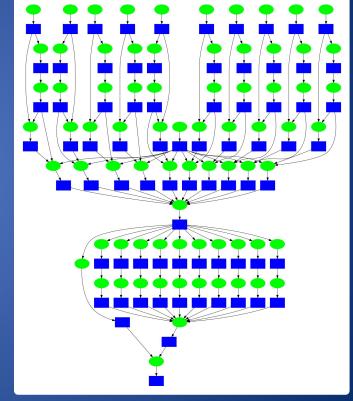
Concurrency and Policy Control



Example: Species Distribution Modeling

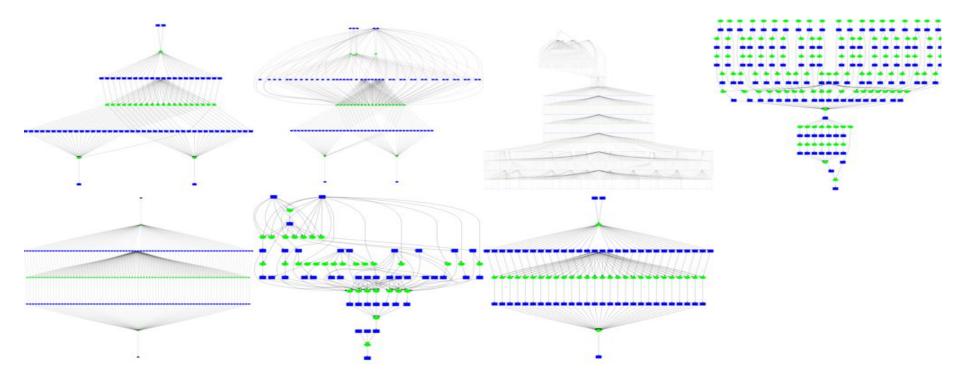
Full Workflow:

- 12,500 species
 - x 15 climate scenarios
 - x 6 experiments
 - x 500 MB per projection
 - = 1.1M jobs, 72TB of output



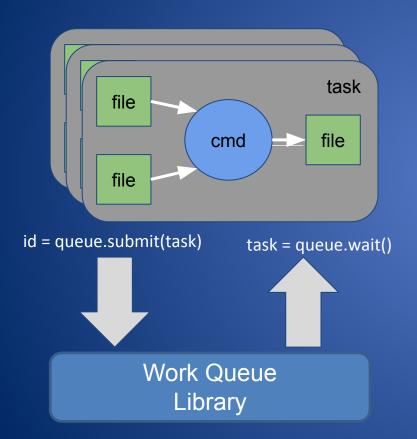
Small Example: 10 species x 10 expts

More Examples



http://github.com/cooperative-computing-lab/makeflow-examples

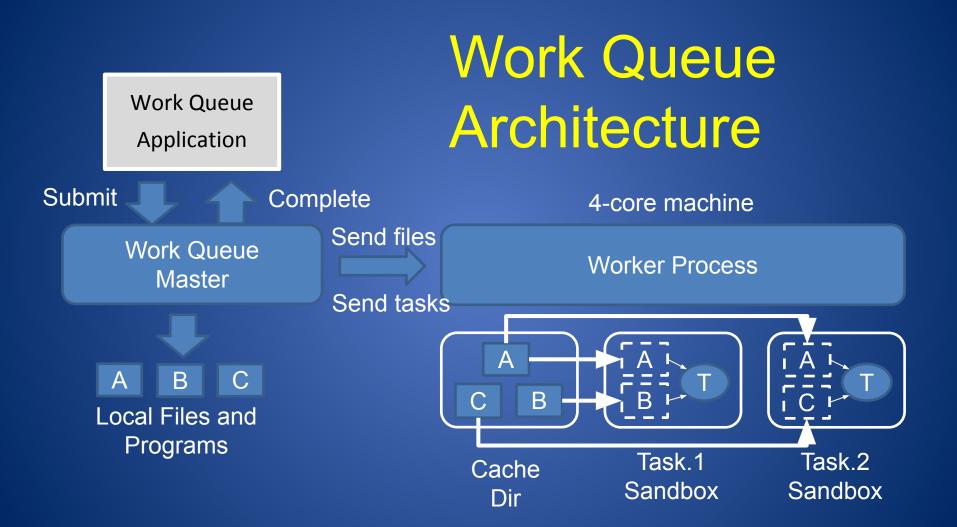
Work Queue API

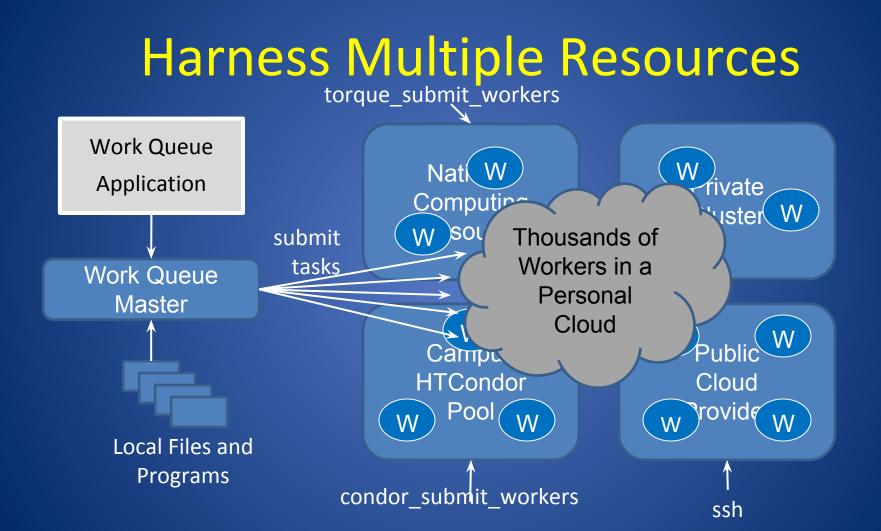


queue = WorkQueue(port)

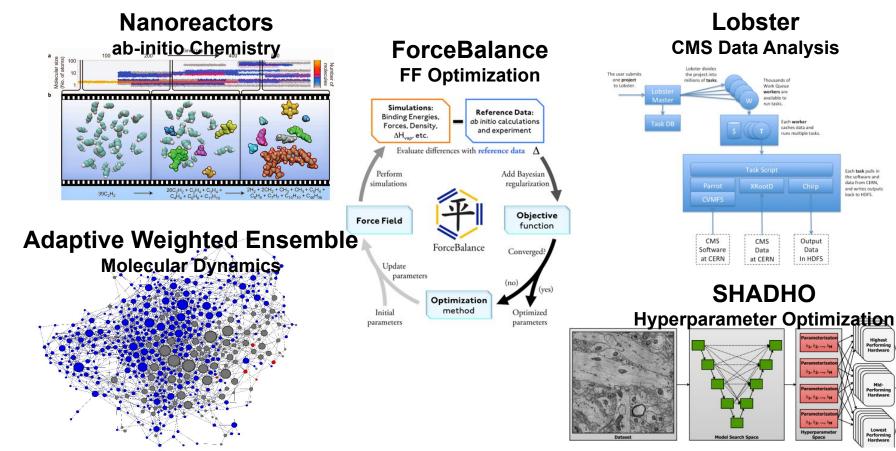
for x in 1..100:
 task = Task(command)
 # add some more details...
 taskid = queue.submit(task)

while not queue.empty():
 task = queue.wait(5)
 if task:
 # deal with output, submit more





Some Work Queue Applications



And now the bad news...

Simple questions that are hard to answer at scale:

- What software must be installed to run my application at multiple sites?
- How much memory do I need to run this task?
- How finely should I divide up my work?

Outline

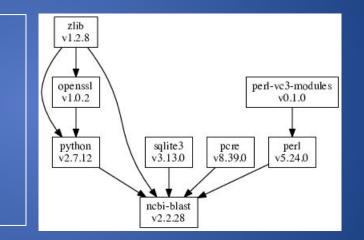
- The Laptop Perspective
- Expressing Scalable Applications
- End User Challenges:
 - The Software Dependency Problem
 - The Job Sizing Problem
 - The Data Splitting Problem
- Lessons Learned

Problem: Software Deployment

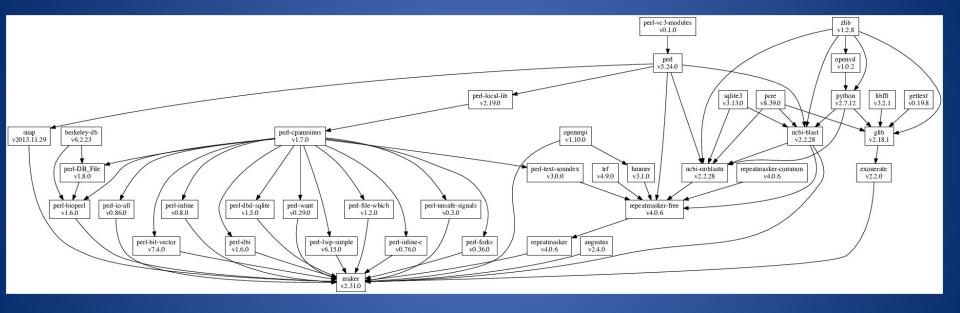
- Getting software installed on a new site is a big pain! The user (probably) knows the top level package, but doesn't know:
 - How they set up the package (sometime last year)
 - Dependencies of the top-level package.
 - Which packages are system default vs optional
 - How to import the package into their environment via PATH, LD_LIBRARY_PATH, etc.

Typical User Dialog Installing BLAST

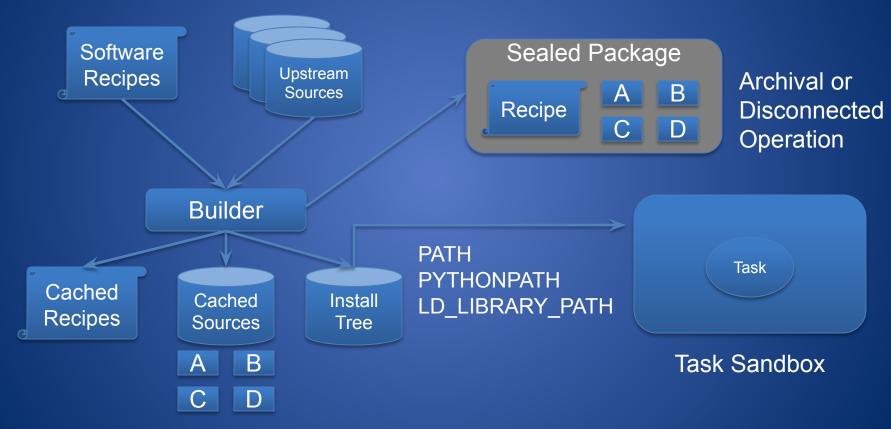
"I just need BLAST." "Oh wait, I need Python!" "Sorry, Python 2.7.12" "Python requires SSL?" "What on earth is pcre?" "I give up!"



MAKER Bioinformatics Pipeline



VC3-Builder Architecture



"vc3-builder -- require ncbi-blast"

```
ncbi-blast => [, ]
..Plan:
...Try:
        ncbi
                               (New Shell with Desired Environment)
....Plan:
         pe
....Try:
         pe
              bash$ which blastx
....could not
              /tmp/test/vc3-root/x86_64/redhat6/ncbi-blast/v2.2.28/bin/blastx
....Try:
         pei
....could not
              bash$ blastx -help
....Try:
         pel
              USAGE
.....Plan:
               blastx [-h] [-help] [-import search strategy filename]
.....Try:
.....Success
....Success:
              bash$ exit
....Plan:
          ру
....Try:
         pyt
....could not add any source for: python v2.006 => [v2.6.0, ]
        python => v2.7.12
....Try:
.....Plan: openssl => [v1.000, ]
```

Downloading 'Python-2.7.12.tgz' from http://download.virtualclusters.org/builder-files details: /tmp/test/vc3-root/x86_64/redhat6/python/v2_7_12/python-build-log

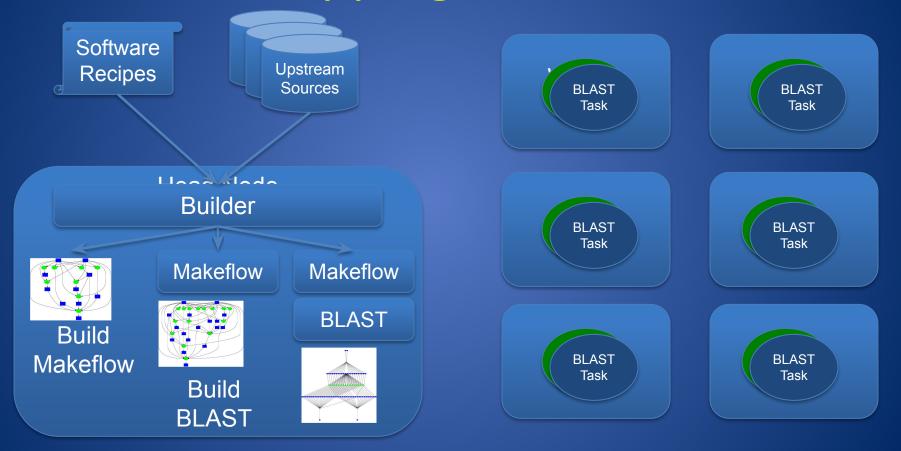
Problem: Long Build on Head Node

- Many computing sites limit the amount of work that can be done on the head node, so as to maintain quality of service for everyone.
- Solution: Move the build jobs out to the cluster nodes. (Which may not have network connections.)
- Idea: Reduce the problem to something we already know how to do: Workflow!

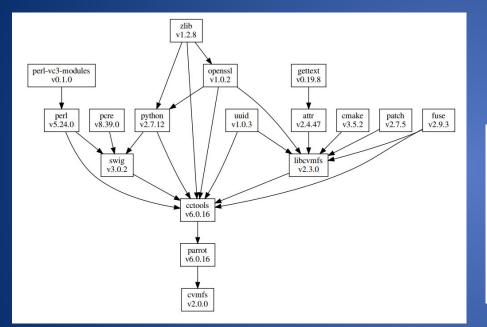
vc3-builder --require makeflow --require ncbi-blast

makeflow –T condor blast.mf

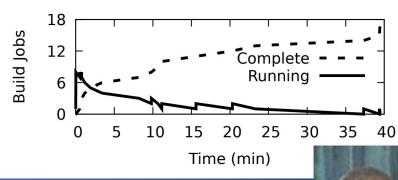
Bootstrapping a Workflow



What About CVMFS?



Use VC3-Builder to bootstrap from perl to Parrot + CVMFS in order to access your global filesystem!



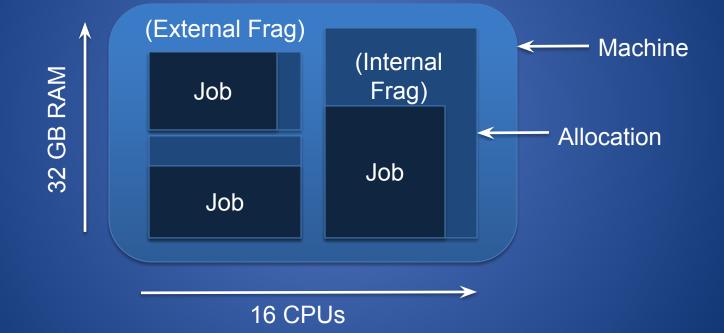
Benjamin Tovar, Nicholas Hazekamp, Nathaniel Kremer-Herman, and Douglas Thain, Automatic Dependency Management for Scientific Applications on Clusters, IEEE International Conference on Cloud Engineering (IC2E), April, 2018. DOI: 10.1109/IC2E.2018.00026

Ben Tovar btovar@nd.edu

Outline

- The Laptop Perspective
- Expressing Scalable Applications
- End User Challenges:
 - The Software Dependency Problem
 - The Resource Sizing Problem
 - The Job Sizing Problem
- Lessons Learned

The Resource Sizing Problem



Client vs. Resource Provider

Client selects allocation: Too big? Wasted resources. Too small? Job fails, retry.

Job

n

(Joh)

Provider places the allocation:Too big? Get paid.Too small? Still get paid!Scheduling is not the client's problem.

Provider

Job

"Slicing the Infinite Cake" Allocations Too Big

Allocations Just Right: 2x Throughput

How do we know how big?



"taskid":	"195",
"user":	"mfrohike",
"category":	"ttZ_mAODv2",
"executable_type":	"dynamic",
"monitor_version":	"6.0.0.0bdd9ca9",
"exit_status":	143,
"exit_type":	"limits",
"limits_exceeded":	{ "memory": [2000, "MB"] },
"start":	[1454163721,"s"],
"end":	[1454165828,"s"],
"wall_time":	[2107,"s"],
"cpu_time":	[2066,"s"],
"cores":	2,
"cores_avg":	0.98,
"concurrent_procs":	8,
"total_procs":	273,
"virtual_memory":	[2255, "MB"],
"memory":	[2142, "MB"],
"swap_memory":	[0, "MB"],
"bytes_read":	[2274265095,"MB"],
"bytes_written":	[104022016, "MB"],
"bytes_sent":	[0, "MB"],
"bytes_received":	[0, "MB"],
"bandwidth":	[0,"Mbps"],
"total_files":	1175,
"disk":	[104, "MB"]

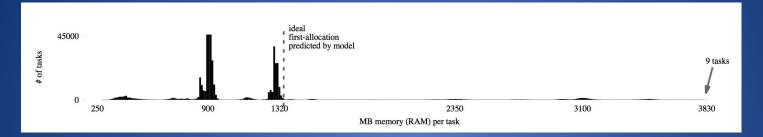
"command": "python task.py parameters.json",

Suppose that you run 1M analysis jobs that are all the same.

What would be the distribution of memory consumption across all jobs?

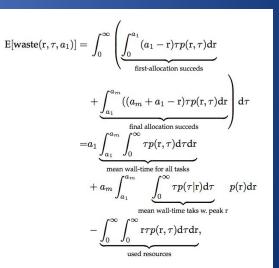
Impulse? Gaussian? Poisson?

Surprise: Complex Distributions!



How to pick the first allocation?

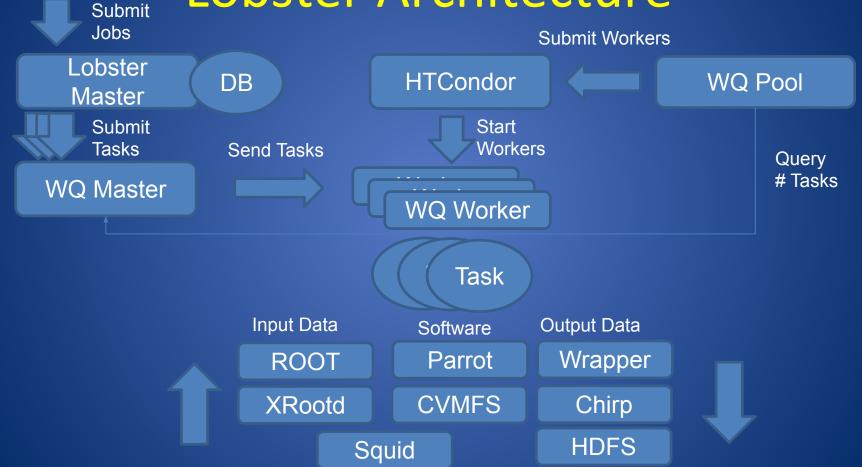
Ben Tovar says: Minimize probability of first attempt succeeding + fallback succeeding, weighted by resources.

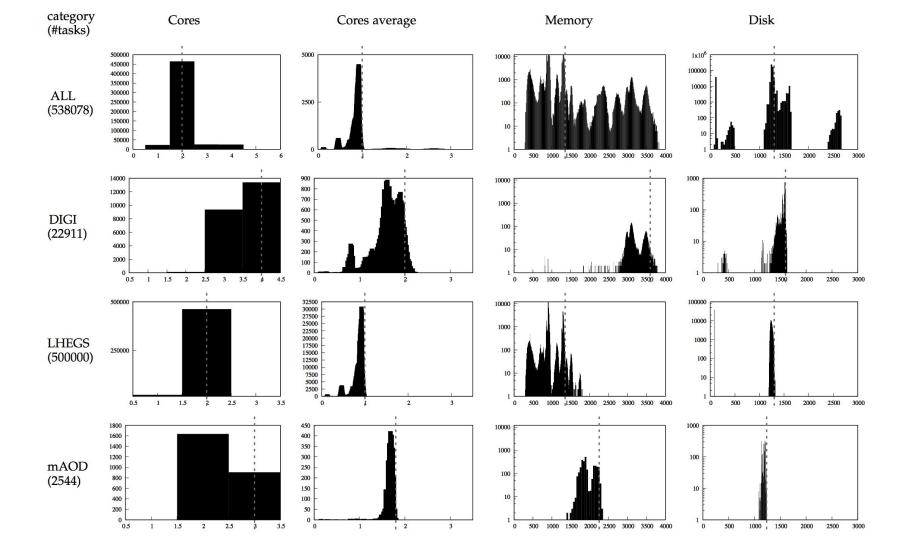


Production Application: Lobster

- Lobster: High energy physics analysis workload harnesses heterogeneous non-dedicated resources at Notre Dame.
- 535,078 tasks run on 25,000 core cluster over several months with the resource monitor.
- Five categories of tasks identified by user: DIGI (22911), LHEGS(500K), mAOD (2544), RECO (11582)

Lobster Architecture





Resource Selection Approaches

	naive		brute-force			min. waste	max. through
resource	max. peak	P(0.95 > r)	min. waste	max. throug.		Equation 2	Equation 3
first allocation							
cores (cores)	5	3	2	2		2	2
cores_avg (cores)	2.9	1.5	1	1		1	1
memory (MB)	3830	2416	1350	1350		1350	1350
disk (MB)	2657	1338	1300	1300		1300	1300
proportion of wasted resources per task							
cores	58%	34%	13%	13%		13%	13%
cores_avg	70%	48%	23%	23%		23%	23%
memory	72%	57%	32%	32%		32%	32%
disk	55%	16%	15%	1	5%	15%	15%
throughput normalized							
cores	1.00	1.58	2.18		.18	2.18	2.18
cores_avg	1.00	1.74	2.69		.69	2.69	2.69
memory	1.00	1.51	2.54			2.54	2.54
disk	1.00	1.88	1.91		.91	1.91	1.91
percentage of tasks retried						•	
cores	0%	5%	9%		9%	9%	9%
cores_avg	0%	5%	7%		7%	7%	7%
memory	0%	5%	8%		8%	8%	8%
disk	0%	5%	6%		6%	6%	6%
overhead							
overhead (s)	—		0.78	(.83	0.07	0.06
538078 tasks read in 27.60 seconds							

Benjamin Tovar, Rafael Ferreira da Silva, Gideon Juve, Ewa Deelman, William Allcock, Douglas Thain, and Miron Livny, A Job Sizing Strategy for High-Throughput Scientific Workflows, IEEE Trans Parallel Dist Sys, 29(2), pages 240-253, February, 2018. DOI: 10.1109/TPDS.2017.2762310

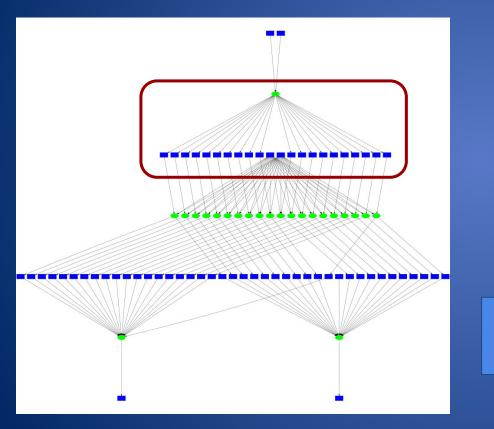
What's the upshot?

- By selecting first allocations appropriately, we double the throughput of the system while accepting a 9 percent task failure rate.
- This approach is applied entirely from the client side, without provider assistance.
- Same approach can be applied to any cluster/cloud/grid with simple techniques.

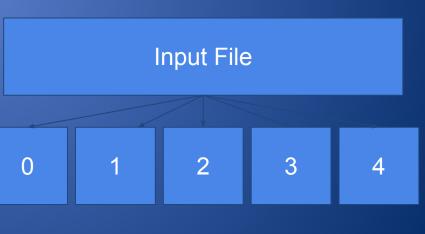
Outline

- The Laptop Perspective
- Expressing Scalable Applications
- End User Challenges:
 - The Software Dependency Problem
 - The Resource Sizing Problem
 - The Job Sizing Problem
- Lessons Learned

What's Going on Here?



The user is starting off by splitting an input file into pieces in order to prepare for parallel tasks:



Static Job Splitting

User often makes a choice based on some rule of thumb without really understanding the tradeoffs:

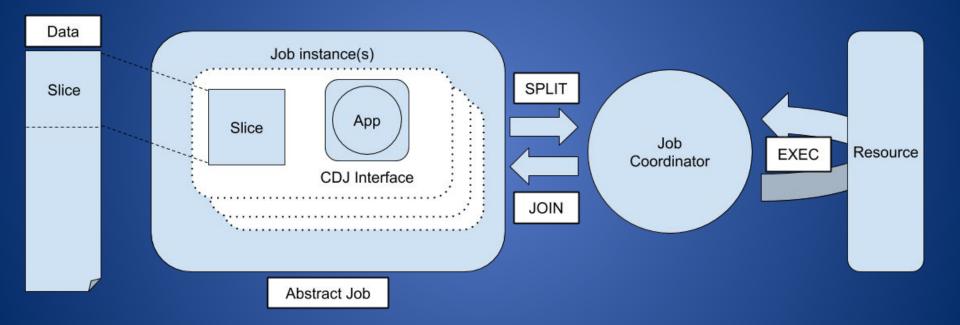
- Jobs too small: Overhead of splitting dominates cost of actually doing work!
- Jobs too large: Insufficient parallelism to get the job done in a timely way.

Difference between an acceptable choice and a bad one can be a factor of 100X in performance!

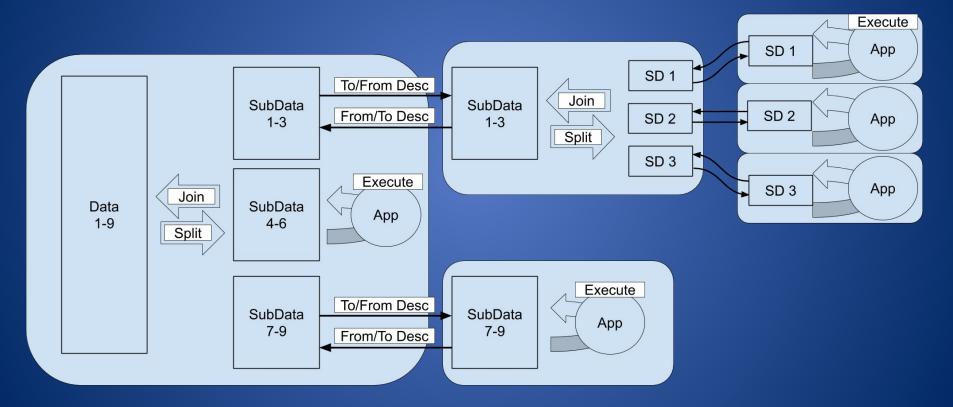
Continuously Divisible Jobs

- Defer work splitting until computational demand requires a new job.
- Instead of materializing physical files, keep track of data indices as "virtual files" to be materialized on demand. (Job still sees files.)
- Compute ideal job sizes based on observed performance properties of the system.

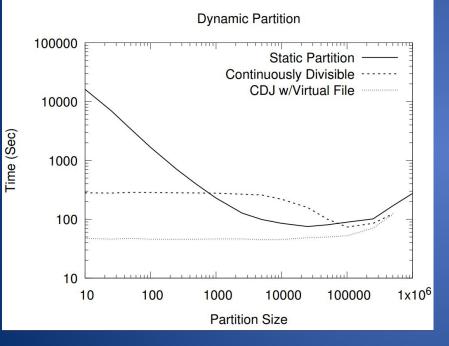
Continuously Divisible Jobs

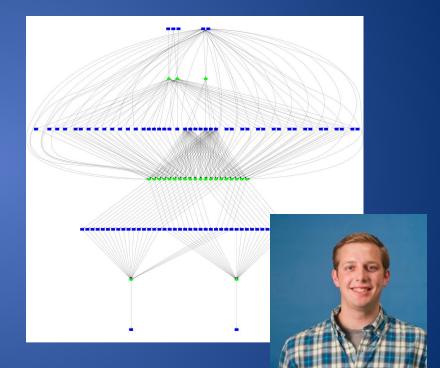


Hierarchical Job Division



Initial Results on BWA Workflow





Nick Hazekamp nhazekam@nd.edu

Outline

- The Laptop Perspective
- Expressing Scalable Applications
- End User Challenges:
 - The Software Dependency Problem
 - The Resource Sizing Problem
 - The Job Sizing Problem
- Lessons Learned

Thoughts and Lessons Learned

• Make software dependencies more explicit!

 Proposed: Nothing should be available by default, all software should require an "import" step.

- Make resource consumption more visible!
 - The laconic nature of the shell hides too much about resource consumption.
- Users are poorly equipped to do performance tuning: don't commit to decisions too early.

Acknowledgements

People in the Cooperative Computing Lab

Director

Benjamin Tovar **Douglas** Thain

Research Soft. Engineer

Nicholas Hazekamp

Charles Zheng

Nate Kremer-Herman

Tim Shaffer

DE-SC0015711 VC3: Virtual Clusters for Community Computation

ACI-1642409 SI2-SSE: Scaling up Science on Cyberinfrastructure with the **Cooperative Computing Tools**

C D D D

The Cooperative Computing Lab

-

Software | Download | Manuals | Papers

Take the ACIC 2015 Tutorial on Makeflow and Work Queue

ccl.cse.nd.edu

About the CCL

We design <u>software</u> that enables our <u>collaborators</u> to easily harness large <u>scale distributed systems</u> such as clusters, clouds, and grids. We perform fundamental <u>computer science</u> research in that enables new discoveries through computing in fields such as physics, chemistry, bioinformatics, biometrics, and data mining.

CCL News and Blog

- Global Filesystems Paper in IEEE CiSE (09 Nov 2015)
- Preservation Talk at iPres 2015 (03 Nov 2015)
- <u>CMS Case Study Paper at CHEP</u> (20 Oct 2015)
- OpenMalaria Preservation with Umbrella (19 Oct 2015)
 DAGVz Paper at Visual Performance Analysis
- Workshop (13 Oct 2015)
- <u>Virtual Wind Tunnel in IEEE CiSE</u> (09 Sep 2015)
- Three Papers at IEEE Cluster in Chicago (07 Sep 2015)
- CCTools 5.2.0 released (19 Aug 2015)
- Recent CCL Grads Take Faculty Positions (18 Aug 2015)
- (more news)

for the Higgs boson have profited from Parrot's new support for the <u>CernVM</u> <u>Filesystem</u> (<u>CVMFS</u>), a network filesystem

Scientists searching

Community Highlight

installations. By using Parrot, CVMFS, and additional components integrated by the Any Data. Anytime. Anywhere project, physicists working in the Compact Muon Solenoid experiment have been able to create a uniform computing environment across the Ogen Science Grid. Instead of maintaining large software installations at each participating institution, Parrot is used to provide access to a single highly-available CVMFS installation of the software from which files are downloaded as needed and aggressively cached for efficiency. A pilot project at the University of Wisconsin has demonstrated the fessibility of this approach by exporting excess compute jobs to run in the Open Science Grid, opportunistically harnessing 370,000 CPU-hours across 15 sites with seamless access to 400 gigabytes of software in the Wisconsin CVMFS repositor.

- Dan Bradley, University of Wisconsin and the Open Science Grid

@ProfThain

http://ccl.cse.nd.edu

