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Abstract

A scientific model need not be a passive and static descriptor of its subject. If the subject is affected by the model, the
model must be updated to explain its affected subject. In this study, two models regarding the dynamics of model aware
systems are presented. The first explores the behavior of ‘‘prediction seeking’’ (PSP) and ‘‘prediction avoiding’’ (PSP)
populations under the influence of a model that describes them. The second explores the publishing behavior of a group of
experimentalists coupled to a model by means of confirmation bias. It is found that model aware systems can exhibit
convergent random or oscillatory behavior and display universal 1/f noise. A numerical simulation of the physical
experimentalists is compared with actual publications of neutron life time and L mass measurements and is in good
quantitative agreement.
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Introduction

The notion that the act of observation can alter the observed

system is familiar to any contemporary scientist. Less familiar is the

notion that a model can alter the system it aims to describe. Such

model-system couplings may be substantial for cognitive [1,2], social

[3–7], or economic [8–10] systems in which the constituent agents

have full or partial access to the model that represents them. It is

conceivable for example, that an analysis of word frequencies in

spoken or written language [11] can alter the behavior of those who

produce these words; an analysis of stock market [12] can alter the

behavior of stock traders; and an analysis of fashion [13] can alter

the behavior of those who influence fashion. The ‘‘physical sciences’’

do not seem to be free of model-subject interaction either, since

experimenters are influenced by theory through confirmation bias

[15] and theorists build new models based on these experiments.

The interaction between subjects and their models has long been

recognized in separate disciplines, and referred as ‘‘the looping

effect’’ [7] in philosophy, ‘‘the enlightenment effect’’ [3] in psycho-

logy, and ‘‘performativity’’ [8] or ‘‘virtualism’’ [9] in economics.

The model aware behavior in the physical sciences has been recog-

nized too, and rightfully renounced as ‘‘confirmation bias’’ [14,15].

Unfortunately, the cited considerations are very qualitative, and

discipline-specific. Presently there exists no quantitative and gener-

ally applicable theory of model awareness. Without such a theory, it

is not possible to ask whether the description of a model aware

system will converge to a fixed point, or perpetually change while

manipulating its subject. Neither is it possible to ask how the be-

havior of a system changes with increasing model awareness, or

what universal properties, if any, do model aware systems have.

The present study aims to answer these questions, at least par-

tially, by introducing two quantitative models of model awareness,

cast as much as possible in a discipline-independent language. The

first describes a population of prediction seeking or prediction

avoiding agents who update their behavior at every time step

depending on the current model that describes them. The second

describes the behavior of a population of experimental physical

scientists, who decide whether to publish or not depending on the

proximity of their data to the current ‘‘model’’. In both the phy-

sical and social case, populations provide feedback to the models

too, since models must be updated to explain the current state of

the population. The outcomes are then compared against two

behavioral experiments [1,2] qualitatively, and particle physics

data [16] quantitatively.

Even though real-life models usually involve elaborate verbal

descriptions, and/or sophisticated mathematical machinery, in this

study we will consider much simpler ones such as propositions

regarding majority behavior, or averages of multiple publications

regarding a physical quantity. As simple as they may be, it seems

appropriate to refer to them as ‘‘models’’ since they are falsifiable

descriptions with predictive power.

Analysis

Model Aware Social Populations
There has been a number of agent-based herding/anti-herding

approaches in the literature used to explain a wide variety of social

and economical phenomena (the interested reader is referred to

[17]). The present approach is reminiscent of a Polya urn process

[18], in the sense that we will be modifying an ensemble according

to its sampled outcomes.

We consider a population of N&1, in which an individual can

be in either one of the states A or B. These states can represent

any opinion, property and behavior. At any given time t the
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state of the population can be characterized by the fraction of

0vw(t)~At=Nv1 of individuals in state A. After each time step,

a scientist performs a measurement by choosing n random

individuals (1%n%N ) out of N and publishes whether the ma-

jority of n is A or B. In connection with our introductory remarks

we take any statement regarding majority behavior as a model;

one example may be ‘‘investors avoid risk’’.

When the model is published, each individual among N may

become ‘‘aware’’ of the model with probability q%1, and sub-

sequently update his or her state. The state of those unaware of the

model is assumed to remain unchanged.

Two types of populations will be considered separately, defined

in terms of how the aware individuals update their state: A

prediction seeking population (PSP) is one in which the aware indi-

viduals align their state with the prediction of the published model.

For example, if the publication reports that ‘‘most people are A’’,

then the aware B0s become A in the next step (the aware A’s

remain unchanged). A prediction avoiding population (PAP) is one in

which individuals anti-align their state. For example, if the

publication reports that ‘‘most people are A’’, then the aware A’s

flip their state to B (the aware B’s remain unchanged).

Once the aware subpopulation updates its state, a subsequent

scientist will be sampling, measuring and modeling a population of

different nature. We will consider the Markovian dynamics of w(t)
over many such iterations. Unlike a Polya process, our ensemble is

fixed in size, the number of modified agents is nondeterministic,

and the modification is done according to a majority rule.

Let us first focus on a PSP. Given the state w(t)~At=N, the

probability of having k people who are A’s in a sample of n is given

by the hypergeometric distribution,

PA(k)~

At

k

� �
N{At

n{k

� �

N

n

� � ð1Þ

Without loss of generality, suppose n is odd. The probability that

the majority of the scientist’s measurement sample is A is

P(MAjAt)~1{P(MBjAt)~
Xn

kwn=2

PA(k) ð2Þ

After the publication, the probability P(r) that r people will

become aware of the result is

P(r)~
N

r

� �
qr(1{q)N{r ð3Þ

Given that there exists r aware individuals, and given the majority

of the sample is A, the probability that uw0 of them (uvr) to

change into B is

P(ujr,MA)~

At

r{u

� �
N{At

u

� �

N

r

� � ð4Þ

Thus, the probability that the population changes from At to

Atz1~Atzu is given by the transition matrix

CA,Azu~
XN

rwu

P(ujr,MA)P(MAjAt)P(r)

&P(ujqN,MA)P(MAjAt)

ð5Þ

Similarly, the probability that uw0 individuals change in the other

direction is

CA,A{u~
XN

rwu

P(ujr,MB)P(MBjAt)P(r)

&P(ujqN,MB)P(MBjAt)

ð6Þ

where this time,

P(ujr,MB)~

At

u

� �
N{At

r{u

� �

N

r

� � : ð7Þ

We immediately see that if At~N, P(MAjAt)~1, P(ujr,MA)~1
and CN,N~1. The same holds true if At~0, and C0,0~1. Thus,

A~1 and A~N are the absorbing states of the corresponding

Markov Chain.

In the case of PAP, regardless of what the majority in the

selected sample is, there always is a nonzero probability that the

aware population will include some of individuals from the

majority state, who in the next time step will flip. Any accidental

trend due to finite sampling n is counter balanced in the next time

step by the prediction avoiders, who consequently cause an anti-

trend. Thus, a PAP state will fluctuate on average by qw (though

S limt?? w(t)T exists; cf. below). The maximum expected change

SumaxT~Nq will occur when At~N or At~0.

Let us now consider the expectation value SwT. For a PSP the

expectation value of the change SDwT is q(1{w(t)) if MA, and

{qw(t) if MB. Therefore,

SDwT~q(1{w)P(MAjAt){qw(t)P(MBjAt)

~q½P(MAjAt){w�:
ð8Þ

Similarly, for a PAP SDwT is {qw(t) if MA and q(1{w(t)) if MB.

Therefore,

SDwT~q½1{P(MAjAt){w�: ð9Þ

The function P(MAjw)vw for wv1=2, P(MAjw)~w for w~1=2
and P(MAjw)ww for ww1=2. Thus, the wc~1=2 is a first order

equilibrium state for both PSP and PAP. For a PSP, SDwT is

positive for ww1=2 and S limt?? w(t)T~1 if w(0)w1=2. SDwT is

negative for wv1=2, and S limt?? w(t)T~0 if w(0)v1=2. In

contrast, for a PAP, SDwT is negative for ww1=2 and positive for

wv1=2; hence S limt?? w(t)T~1=2 regardless of the initial state.

Note that on average, the variance Dt within the population is

monotonically decreasing for a PSP, and monotonically increasing

for a PAP (Fig (1)).

It is also interesting to study the effects of incorrect models. This

could happen for example due to an asymmetry in identifying one
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of the states, or misinterpreting correctly measured data during

‘‘modeling’’. Suppose that the scientist publishes (1{e)w instead

of w, the effect of which can be taken into account by modifying

P(MAjAt);

P(MAjAt)
0~1{P(MBjAt)

0

~
Xn

kwn=½2(1{e)�
PA(k)

ð10Þ

By observing Dw vs w (cf. eqn(8),(9) and Fig (2)), we see that e
shifts the equilibrium point wc for both PAP and PSP. As a result,

the PSP may now cross w~0:5, and unlike the e~0 case the varia-

tion within a PSP population need not monotonically decrease.

The absorbing states of a PSP does not change, whereas for a PAP

e simply shifts the value of S limt?? wT.

Numerical simulations are carried out for N~104, n~500,

q~0:05, and reveal interesting features regarding fluctuations

(Fig (1), Fig (3)): In a PAP, as the error e is gradually increased within

0vev0:5, the period of the small fluctuations in equilibrium

dramatically increase and regularize (Fig (1)). The reason is evident

in Fig (2); for e~0, we have jDw(wc{D)j~jDw(wczD)j, and

therefore the period of trend/anti-trend fluctuations is equal to one

time step. On the other hand for 0vev0:5, the difference in

Dw(wc{D) and Dw(wczD) leads to slower rises following rapid

drops. As we continue to increase 0:5vev1, eqn(9) now has a

stable point, and the PAP starts to display convergent behavior

much like the PSP. Thus, one could say that an unchanging model

of a PAP is only possible if the model is practically wrong.

A more interesting feature is that despite their opposite nature,

PSP’s and PAP’s both appear to exhibit a 1=f noise in their power

spectrum P(f ) if q%1 (Fig (3)). The 1=f noise is the signature of

self-organized critical systems [19] and is ubiquitous in nature (see

for eg. [20–22]). We predict that the same should appear in

measurements of social model aware populations.

The Model Aware Behavior of Physical Scientists
Ideally, separate measurements of a physical quantity typically

fluctuates around a fixed value according to a normal distribution

due to random measurement errors. However, since experiment-

ers tend to be influenced by past measurements and established

theoretical models, data points are highly correlated [15] and have

visible systematic trends over time [16]. This may be because, if

the outcome of an experiment is significantly different from an

accepted model or past outcomes, the experimenters may be ‘‘im-

proving’’ their setup by eliminating some of the systematic errors

Figure 1. Fraction of individuals w(t) having a certain quality A as a function of time t. Prediction seeking (blue) and prediction avoiding
populations (red) evolve under the influence of an non-biased model (left) and a biassed e = 0.45 model (right). Here, N~1|104, n~5|102, q~0:05.
doi:10.1371/journal.pone.0020721.g001

Figure 2. ÆDw(t)æ as a function of w. Prediction seeking (left) and prediction avoiding populations (right) in the presence of error e~0 (solid) and
e~0:45 (dashed). e shifts the equilibrium point for both PSP and PAP, and causes regular oscillations in PAP. Plot parameters are N~1|104,
n~5|102 , q~0:05.
doi:10.1371/journal.pone.0020721.g002
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which otherwise average out to zero, or even by simply repeating

the experiment. In turn, future models are built on experimental

data that have already been influenced by past models. Thus, it

seems that the presence of model aware behavior extends beyond

social sciences.

We describe the behavior of a population of model aware

physical scientists with the following simplified characteristics: An

experimenter measures a physical quantity m at time t and obtains

w(t) in order to publish the nth paper Pn on the subject. Because of

the precision limitations of the apparatus, w(t) is assumed to be

normally distributed around m with standard deviation e0. After

taking the measurement, the experimenter compares the outcome

with the average Rq(n)~q{1
Xn

k~n{qz1
Pk of q preceeding

published measurements, with standard deviation sq(n).
In this case we define the ‘‘model’’ to be Rq(n) (or any set of

verbal or mathematical axioms that reproduce it). If w(t)+e0 does

not overlap with Rq(n)+sq(n), the experimentalist suspects there

might be a mistake in the setup and decides to repeat the

experiment at tz1. If on the other hand, if SPTq+sq overlaps

with the ‘‘model’’, he publishes Pnz1~w(t). It is assumed that m is

independent of time, and that non-random errors are negligible.

Since, the random variable Pnz1 depends on the past q
publications fPn,Pn{1, . . . ,Pn{qz1g and is distributed according

to a ‘‘partial Gaussian’’ function, we can write

SPnz1T~A(e,m,s,R)

ðRq(n)zsqze0

Rq(n){sq{e0

pfm,e0
(p)dp ð11Þ

where fm,e0
(p) is the usual Gaussian distribution with mean m and

standard deviation e0. Since the possible publications are limited

by the scientist’s confirmation bias, the normalization constant

A(e,m,s,R) is determined by A

ðRzsze0

R{s{e0

f (p)dp~1.

We can immediately see that when sq&e0, the lhs of (11) is

precisely m and SPnz1T~m regardless of Pn; in other words, a lack

of scientific consensus speeds up model convergence! The integral

and A can be calculated exactly,

SPnz1T~mze0
e
{(e0zm{Rzs)2=(2e2

0
)
{e

{(e0{mzRzs)2=(2e2
0

)

ffiffiffiffiffiffiffiffi
p=2

p
Erf

e0zm{Rzsffiffiffi
2
p

e0

� �
zErf

e0{mzRzsffiffiffi
2
p

e0

� �� �

Note that if R(n)~m we get SPnz1T~m, and then R(nz1)~
R(n). Also, note that if R(n)vm we have SPnz1TwR(n), and as a

result R(nz1)wR(n). On the other hand if R(n)wm we have

SPnz1TvR(n) and as a result R(nz1)vR(n). Thus R~m is a

stable equilibrium point. Furthermore, the quantity SPnz1T{Rn

is linear in {(R(n){m) up to third order in R(n){m, hence for

values R(n)&Pn&m we have exponential convergence (cf. Fig (4)).

Fig (4) shows the outcomes of exact numerical simulations and

compares them with historical publications. The first two data

points are taken from actual particle physics experiments [16] as

an input, and the rest of the data points are iterated. The short

time behavior is characterized by tight clusters separated by

abrupt jumps. The long time behavior approximately fits an

exponential relaxation Pn(t)~mz½m{e0(0)�e{n=t curve. The

convergence time t(q) determined from a least square fit, is a

random variable with mean and standard deviation plotted as a

function of q (Fig (5)). The convergence times increase and diver-

sify with increasing model awareness of the experimenters. We

conclude that model aware experimenters considerably slow down

scientific progress.

Discussion

To further connect model awareness to the experimental

literature, two recent behavioral studies [1,2] will be discussed

within the PSP/PAP framework and will be compared with the

simulation results. Due to lack of time dependent behavioral data,

this comparison will have to be qualitative. Fortunately it will be

possible to compare the outcomes of the simulations of the physical

scientists quantitatively, since there exists records of historical

particle physics publications [16].

The first behavioral study is one on the behavioral effects of

belief of testosterone administration and actual testosterone

Figure 3. The power spectrum P(v) of prediction avoiding (red) and prediction seeking (blue) populations. It can be seen that both
populations obey 1=v statistics (green). Here N~104 , n~500 and q~10{3.
doi:10.1371/journal.pone.0020721.g003
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administration [2]. It was found that women who believed that they

were given the hormone behaved significantly more ‘‘unfair’’ than

those who believed they were not given the hormone (regardless of

whether or not they actually were). Curiously, the effect of actual

testosterone was to increase fairness.

To measure the effect of belief of testosterone administration, is

essentially to measure the effect of the model of testosterone on its

model aware subject. The model of testosterone is the (as it turns

out, incorrect) statement that ‘‘testosterone causes people to be

unfair’’. The subjects of this study were familiar with this model,

and behaved in accordance with its prediction. However, the study

not only measures the effect of the testosterone model, it also alters

it (i.e. by publicizing that testosterone actually increases fairness).

Therefore if one repeats the same experiment in a few years, one

may find that the effect of the model is exactly opposite, since if q is

large enough some participants may be familiar to the altered

model of testosterone.

The second behavioral study is one on the effect of ‘‘sophistica-

tion’’ (defined as having knowledge on psychology and elementary

statistics) on the ability of generating random numbers [1]. Here it

was found that sophistication can dramatically reduce -if not

entirely eliminate- the many nonrandom trends non-sophisticated

people tend to display. Some such trends include avoiding

repetitive triplets (such as 8,8,8) or favoring descending sequences

(such as 5,4,3) over ascending ones (such as 3,4,5). Here too, what

is measured is the influence of a model, which in this case,

describes how people generate random numbers. The people

labeled ‘‘sophisticated’’ are aware of this model, and actively avoid

its predictions. Furthermore, if q is large enough, upon repeating

the experiment at a later time one might observe ‘‘super-sophis-

ticated’’ subjects: Those who are aware of and avoid the model

predicting a population of a mixture of non-sophisticated and

sophisticated individuals.

Both experiments have two data points that are useful for us.

The belief of testosterone administration activates the present stage

of a long model aware evolution in a PSP. Similarly the

‘‘sophistication’’ variable in the random number study is a marker

of a similar final state of a PAP. Thus one may qualitatively

compare w0 to wt and D0 to Dt, where t is the present time. The

short term behavior of the simulations qualitatively agree with

both experiments [1,2], the common features of which are (i) the

model aware subjects are significantly different than the non

model aware subjects and (ii) the non model aware subjects are

more similar among themselves than model aware subjects.

It is appropriate to represent the model aware subjects of the

testosterone study (i.e. those who believe they received testoster-

one) by a PSP evolving under a strongly biased model. The

simulation agrees with feature (i) and for short times, feature (ii).

For long times, the simulated PSP eventually becomes less diverse

than its starting state. Perhaps continued publications of studies

similar to [2] over the years, will reveal this time dependence. It is

appropriate to represent the model aware subjects of the random

number study [1] with a PAP evolving under an unbiased model.

Here too, the simulation agrees with feature (i) and feature (ii) (re-

member that w~0:5 represents a maximally diverse population).

The actual neutron half-life and L-mass measurements from

1960 to 2010 as reported in [16] are compared with the outcomes

of the simulations, and is good agreement (Fig (4)). It is very

interesting that other historical particle physics data reported in

[16] fits reasonably well to the same exponential form. The

average convergence time t depends on q. For example, since t is

larger for L mass measurements compared to neutron life-time

Figure 4. Published values of a physical quantity Pn at publication number n. Here, the Average values of publications of a simulated
population of physical scientists (circles) is compared with actual [16] particle physics measurements (boxes) of neutron life-time (left) and L mass
(right) normalized by their last value. q~4 is chosen for the neutron measurements and q~8 for the L measurements. The two initial points are
taken from data and used as initial conditions in the simulation.
doi:10.1371/journal.pone.0020721.g004

Figure 5. Average convergence time t as a function of model
awareness q. Here two identical measurements with 15% error is
taken as initial conditions. The error bars indicate the standard
deviation in t.
doi:10.1371/journal.pone.0020721.g005
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measurements, one can conclude that the scientists measuring L
mass were more model aware.

Conclusion
It was shown that for physical scientists and prediction seeking

populations, models and their subjects can co-evolve to a con-

sistent state. Loosely speaking, for these systems model awareness

sets a lower time limit to reach ‘‘truth’’. For prediction avoiding

populations, such a consistent state is possible only if the systematic

error in the model is large enough (ew0:5) to make the model

practically incorrect. Thus, a PAP, despite evolving according to

deterministic laws, is either unpredictable, or falsely predictable

due to the subject-model interaction.

The 1/f spectrum observed in populations of opposite nature

suggest that there may be other universalities common to all model

aware systems.

While this is just a preliminary study, the simulations presented

here demonstrate that the models and their subjects can be highly

coupled and can radically alter each other. Since the interaction of

subjects with models seem to be present in a very diverse range of

fields, the framework proposed was intentionally kept simple. This

way, the theorists of different fields can add relevant system-

specific details, and study the variants of the proposed model. Such

variants could include interaction between individuals, noise, or

variable model errors.

Our study motivates a wide range of additional questions that

can be explored theoretically and experimentally: What is the

influence of a time dependent model? Is it possible to construct a

model that takes into account its own influence? Can the above

considerations be generalized to more realistic models involving

not mere numbers, but simulations or equations? How about

model aware systems such as the stock market, where the subject is

under the influence of multiple models? Hopefully the present

work will inspire the scientific community for a deeper exploration

of model aware systems.
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