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ABSTRACT: Following a brief review of the “two-level (tunneling) systems” model of the
low-temperature properties of amorphous solids (“glasses”), we ask whether it is in fact the
unique explanation of these properties as is usually assumed, concluding that this is not
necessarily the case. We point out that (a) one specific form of the model is already
experimentally refuted and (b) that a definitive test of the model in its most general form,
while not yet carried out, would appear to be now experimentally feasible.

1. INTRODUCTION

Structurally amorphous materials (“glasses”) constitute a
substantial fraction of all terrestrial matter, yet our overall
understanding of their behavior is not at all comparable to that
which we have for crystalline matter. While both the transition
to the glassy state and the thermodynamic and response
behavior at ambient temperatures have some universal features
that have been the subject of a huge amount of literature (see,
e.g., refs 1 and 2 respectively), a particularly intriguing problem
is posed by the behavior of glasses below about 1 K. Ever since
the pioneering experiments of Pohl and co-workers in the early
1970s,3 it has been recognized that in this regime, the
properties of glasses not only are qualitatively different from
those of crystalline solids but show a remarkable degree of
universality. For example, almost without exception, the specific
heat of an arbitrary (insulating) amorphous solid well below 1
K is approximately linear in T, the thermal conductivity is
approximately quadratic in T, and the ultrasonic behavior is
consistent with a Q factor that at zero temperature is
independent of frequency and surprisingly large (more on
this below).
Very soon after the original experiments,3 a plausible model

to explain them was published independently by Phillips4 and
by Anderson, Halperin, and Varma.5 This model, which has
become known as the “tunneling two-level system” (TTLS)
model, postulates that because of the structurally amorphous
nature of the system, there exist some entities (single atoms,
groups of atoms, or in some cases even single electrons) that
have available two nearly degenerate configurations and can
tunnel between them (a more quantitative description is given
in the next section). With a plausible choice of the distribution
of the relevant parameters, the TTLS model can account for the
qualitatively universal features noted above; furthermore, by
analogy with other well-known examples of “two-state” systems
in, for example, atomic physics and NMR, it naturally predicts
various nonlinear phenomena such as acoustic saturation and
echoes, all of which have been at least qualitatively verified by
experiment.6 The original model has undergone considerable
elaboration over the last 40 years; in particular, an interesting

series of papers7 by Peter Wolynes and his collaborators has
attempted to explain the generic existence of the postulated
two-level systems (TLSs) as a natural consequence of processes
occurring in the glass transition. These successes have
persuaded the overwhelming majority of the relevant
community that the TTLS model is the unique explanation
of the low-temperature properties of glasses.
Viewed from the above perspective, the aim of the present

article may seem rather quixotic: to ask whether the TTLS
explanation is indeed as unique as it is usually taken to be and
to try to suggest definitive ways of testing the model against a
particular (loosely defined) class of alternative hypotheses.
Obviously, to do this, it is necessary to define exactly what we
mean by the “TTLS model” (and, in particular, what it
excludes), and this will be done in section 2. In section 3, we
sketch some reasons for skepticism about the model and
introduce a (very generic) class of alternative hypotheses, and
in section 4, we propose an experiment that we believe should
discriminate unambiguously between this class and the TTLS
model. Throughout, we confine ourselves to insulating glasses
and concentrate on the linear ultrasonic properties, which we
believe are among the most unambiguously predicted
consequences of the model.

2. DEFINITION OF THE TTLS MODEL; SOME SIMPLE
CONSEQUENCES

There exist in the literature a number of good accounts of the
TTLS model and its most important experimental predic-
tions.6,8 For present purposes, a sufficient definition runs
roughly as follows: For the purpose of calculating the low-
energy states of glasses (those relevant to the equilibrium and
near-equilibrium properties well below 1 K), an adequate
effective Hamiltonian is of the form
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̂ = ̂ + ̂ + ̂H H H Hph TLS int (1)

Here, Ĥph is the phonon Hamiltonian, given in terms of
phonon annihilation and creation operators ai

+ and ai by

∑ ω ω̂ = ℏ = | |
α

α α α α α
+H a a c k

k
k k k kph

(2)

where the sum over k has an upper cutoff kmax such that
ℏcikmax ≫ kB × 1 K and where the sum over α runs over one
longitudinal (l) and two transverse (t) branches; the sound
velocities cl and ct are constant, reflecting the average isotropy
of the glass at sufficiently large length scales. ĤTLS is the part of
the Hamiltonian attributable to the postulated TLSs and has
the form

∑̂ = +H E b b
i

i i iTLS
(3)

where the operators bi
+, and bi are Pauli operators, that is, they

satisfy the (anti)commutation relations

= = ≠+ +b b b b i j{ , } 1 [ , ] 0 fori i i j (4)

Thus the eigenvalues of the “occupation numbers” ni = bi
+bi are

1 and 0 and can be specified independently. Finally, the part of
the Hamiltonian expressing the interaction between the
phonons and the TLS is of the form

∫∑̂ = ̂ ̂
αβ

αβ αβH e Tr r r( ) ( ) dint
(5)

where eα̂β = (1/2)[(∂μα/∂xβ) + (∂μβ/∂xα)] is the phonon strain
operator (uα = mean “background material” displacement) and
the stress operator Tαβ is linear in the “spin” operators σ̂(i) of
the TLS

∑ σ δ= ̂ −αβ αβγ γT gr r r( ) ( )
i

i i
i

( )

(6)

where ri is the position of the TLS i
Several points should be noted about the model described by

eqs 1−6. First, it excludes what one might think are some
obvious possibilities, most obviously, that the nonphonon part
of the Hamiltonian cannot be written in the simple additive
form (eq 3), but also (e.g.) that the stress tensor involves
combinations of the σ̂(i)’s higher than linear, such as, Kijσ̂

(i)σ̂(j).
Second, at the present stage, it is really only a generic two-level
model; the “tunneling” aspect enters only through the choice of
the parameters Ei and gαβγ

(i) (see below). Third, -and this is
crucial to the subsequent discussion-it is implicit that the
coupling term (eq 5) is small enough that in the calculation of
any given physical property, it is adequate to confine oneself to
the lowest order in Ĥint that gives “physically sensible” results
(e.g., for the specific heat, zeroth order, and for the ultrasonic
attenuation, first order). Finally, it should be noted that it is not
necessarily assumed that the Hamiltonian (eq 1) is the one that
would be appropriate at a fully microscopic level; bearing in
mind that we are interested only in “low-energy” phenomena
and hence by implication only in the behavior of phonons with
wavelength λ > hc/kBT (which for T ∼ 1 K is ∼1000 Å), we
may include the possibility that eq 1 is itself the output of some
nontrivial renormalization procedure.
Equations 1−6 may be regarded as the most general

definition of the TLS model of glasses. However, to extract
quantitative physical predictions from it, one of course needs to
specify the distribution of the parameters Ei and gαβγ

(i) (including

any correlations between these two quantities). This is where
the tunneling aspect comes in; in the original and simplest
version of the model, the two states in question are conceived
as corresponding to two spatially separated positions of the
center of mass of a group of particles, so that for a given TLS i,
in a basis in which these two positions are taken as the
eigenstates of σ̂z

(i), the Hamiltonian is

̂ =
ϵ Δ

Δ −ϵ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H

1
2i

i i

i i (7)

with ϵi as the offset between the potential energy in the two
configurations and Δi as the matrix element for tunneling
between them. Then, we evidently have

= ϵ + ΔE ( )i i i
2 2 1/2

(8)

What is the distribution of the offsets ϵi and the tunneling
matrix elements Δi? As regards the former, it seems very
reasonable to take it to be simply constant (uniform
distribution; from a microscopic point of view, there is nothing
special about zero bias). As for the Δi, the default assumption
would seem to be that the principal dependence comes from
the WKB exponent in the expression for the tunneling
amplitude; then, rather general arguments indicate that
provided we are interested mainly in low-energy states, this
exponent can again be considered to be uniformly distributed.
With these rather weak assumptions, the distribution of
parameters in the two-dimensional (ϵ, Δ) space is

ρ ϵ Δ =
Δ

( , )
const

(9)

with the constant of course material-dependent. This gives a
constant density of states as a function of the total energy
splitting E

ρ = ̅E P( ) 0 (10)

We also need to consider the distribution of the TLS−phonon
coupling constants gαβγ

(i) . The usual assumption in the literature
is that (a) any difference between the l and t components of g
lies only in the overall magnitude not the form, and (b) strain
of either kind mainly affects the offset ϵ, so that any effect on
the tunneling matrix element Δ may be neglected. If this is so,
then in the energy representation for the Pauli matrices σ(i)

(which we will use from now on unless explicitly otherwise
stated), the matrix form of gαβγ

(i) is identical to that of ĤTLS in the
original (position) representation, that is

δ δ= ϵ + Δαβγ
αβ

γ γg
g

E
( )i

i

i
i z i x

( )
( )

(11)

with the parameters gαβ
(i) having some random distribution

uncorrelated with Δi,ϵi, for example, a Gaussian with zero
mean. When combined with 9, eq 11 says that the distribution
of the off-diagonal (in the energy representation) terms in the
g(i) is strongly peaked toward small values (an important
qualitative feature of the model, which was already recognized
in the earliest papers). We will refer to the distribution of
parameters given by eqs 9 and 11 as the “canonical”
distribution, and distinguish between the generic TLS model
defined by eqs 1−6 and the TTLS model defined by eqs 1−6
plus this distribution.
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3. WHAT COULD BE WRONG WITH IT? AN
ALTERNATIVE SCENARIO

Let us start with a semiphilosophical point, which will probably
be dismissed out of hand by most right-thinking physicists: the
fact that the TTLS model appears to explain so adequately
most of the properties of amorphous solids does not prove that
it is correct! Technically, to argue that “Theory T predicts
experimental result(s) E: we see E; therefore, theory T is
correct” would of course be to commit the logical fallacy known
as “affirming the consequent”. Of course, this fallacy is formally
committed every day in the pages of physics journals, and
generally, people do not worry too much about it. Why not?
We suspect because typically in these cases, there is an
unspoken extra premise: “it is extremely unlikely that any
theory other than T would predict experimental results E”,
which when combined with “we see E” indeed permits us to
draw with high confidence the conclusion that T is correct. The
question then arises; in the case of the use of the TTLS model
to explain the behavior of glasses, is the unspoken extra premise
correct? We believe that this is less obvious than it may seem.
First, let us consider the various kinds of nonlinear behavior

in the ultrasonics (saturation, echoes, hole-burning, ...), which
we suspect are in most people’s minds the most convincing
evidence in favor of the model. Setting aside the rather
complicated question of the degree of quantitative agreement
of the data with the TTLS model, one may ask whether the
prediction of the qualitative features, that is, the mere existence
of these phenomena, is unique to the model? We believe that
the answer is no and indeed that it is probable that almost any
model of the system energy levels and stress matrix elements
other than the familiar harmonic oscillator one will suffice to
reproduce them; calculations on simple one-particle systems
tend to confirm this prejudice. A simple “hand-waving”
argument goes as follows: in quantum mechanics, to obtain a
response to a near-monochromatic field that fails to saturate, we
need not just an infinite sequence of equidistantly spaced
energy levels but also that the relevant matrix elements (in the
case of ultrasound absorption, those of the stress tensor
operator) between these levels increase sufficiently fast with
energy. While we are accustomed to the fact that these
conditions are both adequately satisfied for the simple
harmonic oscillator, they are really more like the exception
than the rule. In other words, it may be that what is “special”
about the nonphonon modes in glasses is not that they are well-
described as TTLS but that they are not well-described as
simple harmonic oscillators!
Of course, there are other features of the experimental data

whose prediction might at first sight seem unique to the TTLS
model, such as time-dependent specific heats9 and the equality,
up to a numerical factor, of ultrasonic absorption in the low-
temperature resonant and high-temperature (low-frequency)
relaxation regimes (see section 4); while our prejudice is that a
more general scenario should be able to reproduce at least the
qualitative aspects of these phenomena, it must be said at once
that a quantitative calculation is at present lacking.
However, it is not always appreciated that to a large extent

the same situation exists for the established model. Indeed,
while it is probably true that just about all of the existing
experimental data are consistent with the generic TLS model, it
can often be made so only by a choice of parameter
distributions that violate the more restrictive assumptions in
eqs 9 and 11, which were taken above to define the TTLS

version. A typical example is the specific heat; the experimental
dependence on temperature is actually not linear but rather
resembles a power law with exponent 1.2−1.3, and this
behavior is clearly inconsistent with eq 10 and hence with the
TTLS ansatz in eq 9. More generally, once one abandons the
defining ansatz in eqs 9 and 11 of the TTLS version, the TLS
model becomes so “squishy” that a cynic might be forgiven for
anticipating that it can be made consistent with just about any
experimental data.
A rather different kind of motivation for challenging the

uniqueness of the TTLS model as an explanation of the low-
temperature properties of glasses lies in the striking quantitative
universality of some of these properties, in particular, the
dimensionless (and surprisingly large, ∼104) Q factor that
describes the transverse ultrasonic absorption and frequency
shift in the MHz−GHz range.10,11 In the TTLS model, where
the relevant expression is a product of four independent factors,
this universality can be attributed only to a mind-boggling
degree of coincidence; more generally, what it seems to suggest
is that the low-temperature, long-wavelength properties of
glasses emerge as a result of some rather nontrivial
renormalization process that iterates to a fixed point. An initial
attempt to implement such a renormalization scheme has been
made in ref 12, where it has been shown that with two
unproved but plausible generic ansatzes, it is possible to
reproduce something like the observed value of Q (cf. also ref
13). Of course, this consideration does not in itself imply that
the final Hamiltonian that emerges from the renormalization
process does not itself possess the TLS structure described by
eqs 1−6, but from an intuitive point of view, this seems rather
unlikely.
With this motivation, let us consider, as a counterpoint to the

TTLS model a scenario12 that is about as far from it as possible
without describing simply a collection of harmonic oscillators,
namely, one in which while the phonon contribution to the
total Hamiltonian is still given by eq 2, the “nonphonon” term
ĤTLS (eq 3) and the coupling term (eq 4) are replaced by
random matrices in the many-body Hilbert space with some
appropriately specified statistical properties. Needless to say, we
do not necessarily expect that this model will be the correct
one; the truth may well lie somewhere between it and the TLS
version, but it serves as a convenient point of comparison.
We would like to emphasize strongly that the conjecture

made in this paper is not that TLSs in amorphous solids never
exist. Indeed, there are a few systems in which their existence
may be established rather directly by experiment. A particularly
striking example comes from the beautiful experiments of the
Bordeaux group14 on the spectroscopy of single terrylene
molecules in polyethylene (PET), in particular, from the
“spectral trail” experiments, which give rather direct evidence
that in a substantial fraction of the molecules studied (∼40%),
the part of the environment that gives rise to the shifts in the
resonance frequency jumps between two (and only two)
discrete configurations. However, what is interesting is that to
the extent that one takes these experiments as definitive
evidence for the presence of TLS in bulk amorphous PET, by
the same token, one will have to take the similar experiment of
ref 15 as equally definitive evidence for their absence in
amorphous solid toluene, and that consideration would suggest
that it would be extremely interesting to investigate whether the
subdegree thermal and acoustic behavior of toluene is that of a
typical amorphous solid; while a negative answer would
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strengthen the case for the TLS model, a positive one would
definitively refute it.
Let us mention a few more systems in which either theory or

experiment or both provides (or has been thought to provide)
strong arguments for the presence of TLS. (1) It has long been
believed that the behavior of KBr−KCN mixtures can be
satisfactorily explained16 in terms of TLS associated with the
two possible orientations of the KCN complex. (2) In the
disordered oxide barriers that are nowadays often used in
Josephson junctions, there is rather direct evidence that there
exist TLS carrying electric dipole moments, which moreover
can be tuned by the application of external strain.17 What is
interesting is that rather frequently, these systems turn out to
have a value of Q−1 considerably smaller than the “universal”
figure of ∼3 × 10−4. Our conjecture, therefore, would be that
for these comparatively rare cases, the renormalization process
discussed in ref 12 is ineffective, while for the majority of cases,
it takes place and leads not only to the universal (maximum
allowed) value of Q−1 but also to a structure of the output
many-body levels, which is in general of non-TLS form. (3)
Finally, it may be claimed that the isotope effects observed18 in
(natural or deuterated) glycerol are definitive proof of the TLS
model. This brings us back to the point raised at the beginning
of this section: While we of course agree that the TLS model
gives a natural and elegant explanation19 of the data, the
interesting question is whether it is unique in doing so, and this
may be regarded as a special case of the issue raised above
concerning nonlinear effects more generally.
To repeat, in this paper, we are not disputing that there are

some amorphous solids in which TLSs exist; we are not even
necessarily disputing that TLSs may exist, at some level, in all
amorphous solids. What we are disputing is the claim that the
TLS model, in the precise sense in which we have defined it in
the last section, is the unique and universal explanation of the
behavior, in particular, the thermal and ultrasonic behavior, of
amorphous solids below 1 K.

4. ULTRASONIC ABSORPTION: A SMOKING GUN?
The classic work on ultrasound propagation within the TTLS
model, with the distribution of parameters given by the
“canonical” form (eqs 9 and 11), is the paper of Jac̈kle.20 Here,
we briefly review the main conclusions, confining ourselves to
the small-amplitude (linear) regime. To facilitate the discussion,
it is convenient to define the quantity τc(T), the characteristic
relaxation time of a symmetric (Ej = Δj) TLS with splitting E
equal to kBT; this is given by the appropriate special case of eq
7 of ref 20 and may be verified to be proportional to T3. A
closely similar discussion may be given of dielectric-loss
experiments (see ref 8).
Within the model, there are two mechanisms for ultrasound

absorption that operate in parallel. The first is resonant
absorption; the relevant expression follows directly from
standard “golden-rule” perturbation theory in Ĥint and is
given by8

ω π ω γ
ρ

= ℏ ≡ ̅−
⎛
⎝⎜

⎞
⎠⎟Q C

k T
C

P
c

( ) tanh
2res

1

B

0
2

2
(12)

where P̅0 is the (constant) TTLS density of states (eq 10) and γ
is the rms value of the coupling constant gαβ. (Actually, the
quantities Q, C, c and γ should each have a suffix α = l or t
denoting the polarization of the sound mode in question; we
omit this to avoid cluttering up the formulas).

The second process, “relaxation” absorption, is a little more
subtle. The phonon modulates the energy splitting of the TLSs
and thereby throws their occupations out of thermal
equilibrium; the ensuing relaxation to equilibrium extracts
energy from the sound wave and thus leads to damping. The
relevant formula (equivalent to eqs 21 and 22 of ref 20) is

∑ω
ωτ

ω τ
γ=

−∂ ∂

+
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Q

n E e

E
( ) const

( / )

1j

j j

j
j

j

j
rel

1 0
2 2

2

2

(13)

In the present context, we will be interested primarily in the
limit ω ≪ τc

−1(T) (but need to note that in the opposite limit,
the absorption is smaller by a factor of (1/ωτc)). In that limit,
using the perturbation theory formula for τj

−1 (∝(Δj/Ej)
2) and

the canonical distribution (eq 9), we find, remarkably, that the
distribution of τ−1 is, apart from a numerical constant, simply
proportional to τ, and this then implies the simple result

π=−Q C
2rel

1
(14)

Comparing eq 14 with eq 11, we see that the relaxation
contribution to the absorption (inverse Q factor) in the low-
frequency, high-temperature regime is predicted to be exactly
half of its value in the high-frequency, low-temperature (ℏω ≫
kBT) regime!
Let us now turn from the absorption to the shift of the

ultrasound frequency due to interaction with the TLS. While
the absolute value of this shift is of course not experimentally
accessible, its temperature dependence is, and as shown in ref 8,
a Kramers−Kronig analysis applied to the above results
unambiguously predicts that for fixed ω, one should find
both for ωτc ≫ 1 (T ≪ T0 where T0 is the temperature at
which ωτc ∼ 1), and for ωτc ≪ 1(T ≫ T0) the relative velocity
shift should be given by

δ =
⎛
⎝⎜

⎞
⎠⎟

c
c

A
T
T

ln
0 (15)

with A equal to C (eq 12) on the low-temperature side and to
−2C on the high-temperature side. This is not the behavior
seen experimentally; while δc/c indeed passes through a
maximum for T ∼ T0, the (negative) slope for T > T0 has a
magnitude approximately equal to its (positive) value for T <
T0.

21 Reference 21 notes that this and some other discrepancies
with the TLS predictions cannot be fixed by “minor
modifications” of the TTLS model.
While the above discrepancy may be a definitive refutation

(at least for the relevant experimental systems, vitreous silica
and BK7) of the TLS model when supplemented with the
canonical parameter distribution (eq 9), (i.e., of the TTLS
model), is it a refutation of the TLS model as such? Because
one needs to fit the experimentally observed frequency as well
as temperature dependence, this is not immediately clear.
Therefore, we may need to look elsewhere for our “smoking
gun”.
Consider then the absorption in the high-frequency, low-

temperature regime (ℏω ≫ kBT,ℏτc
−1). In this regime, the only

non-negligible contribution to absorption should be from the
resonance mechanism, and a little thought shows that for quite
general forms of the distribution of TLS splittings ρ(E), it
should have the general form
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ω ρ ω ω= ℏ ℏ−
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟Q

k T
( ) const ( ) tanh

2
1

B (16)

(where the constant involves the γ’s etc.). Thus, if we fix ω and
vary T, we should predict quite independently all of the
unknown parameters

ω= ≡ ℏ− ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟Q T

x
x

k T
( ) const tanh

2
1

B (17)

This really is a smoking gun; violations of this prediction
cannot be fixed by making ad hoc adjustments to the TLS
model. Conversely, if the behavior in eq 16 is indeed found, this
would (pace the “affirmation of the consequent” objection!) be
convincing evidence in favor of the model.
What is the current experimental situation? Many reviews

give the impression that the TTLS prediction (eq 17) is well-
verified. However, to the best of our knowledge, until very
recently, there was only one experiment22 that evaded the low-
frequency limit x  (ℏω/kBT) ≪ 1, and even that went up
only to x ∼ 1.2, a point at which the correction to the high-
temperature limit formula is only about 20% (cf. Figure 2 of ref
22). Therefore, one may reasonably ask whether the data is
equally consistent with an alternative formula, e.g. one that
would follow from the alternative scenario sketched at the end
of section 3. Actually, without further specification of this
scenario, the question is ill-defined because unlike in the TLS
scenario, the stress matrix element Tmn may depend on Em as
well as the difference Em − En. If for simplicity we postulate that
Tmn (or rather its statistical distribution) depends only on the
difference Em − En, then for fixed ω, we recover a formula
similar to eq 17, namely

ω= − − ≡ ℏ−
⎛
⎝⎜

⎞
⎠⎟Q T x x

k T
( ) const(1 exp )1

B (18)

In Figure 2 of ref 12 is plotted a comparison of both eqs 17 and
18 with the data of ref 22; while the former may seem to
represent it slightly better, the difference would seem to lie
within the presumed error bars. (In passing, we note that
appreciably better agreement for both the velocity shift and the
thermal conductivity is obtained for the “alternative” scenario
than that for the TTLS model.12)
In the past few years, a number of experiments, primarily

motivated by interest in designing high-Q superconducting
circuits, have been performed on the dielectric loss of various
amorphous materials; some of these have operated in the
regime ℏω/kBT > 1 (see, e.g., ref 23). Unfortunately, while
many of these papers claim evidence for (tunneling) TLSs,
none has, to our knowledge, tested explicitly for the
characteristic TLS temperature dependence (eq 17) over a
range where the discrepancy with eq 18 would become visible.
We believe that such a test, preferably on a material with the
universal value of ∼3 × 10−4 of Q−1 (cf. end of section 3) is
now feasible and would be a definitive test of the TLS model
for such a system.
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