
ACE: Exploiting Correlation for Energy-Efficient and
Continuous Context Sensing

Suman Nath
Microsoft Research

sumann@microsoft.com

ABSTRACT
We propose ACE (Acquisitional Context Engine), a middle-
ware that supports continuous context-aware applications
while mitigating sensing costs for inferring contexts. ACE
provides user’s current context to applications running on it.
In addition, it dynamically learns relationships among var-
ious context attributes (e.g., whenever the user is Driving,
he is not AtHome). ACE exploits these automatically learned
relationships for two powerful optimizations. The first is in-
ference caching that allows ACE to opportunistically infer
one context attribute (AtHome) from another already-known
attribute (Driving), without acquiring any sensor data. The
second optimization is speculative sensing that enables ACE
to occasionally infer the value of an expensive attribute (e.g.,
AtHome) by sensing cheaper attributes (e.g., Driving). Our
experiments with two real context traces of 105 people and a
Windows Phone prototype show that ACE can reduce sens-
ing costs of three context-aware applications by about 4.2×,
compared to a raw sensor data cache shared across applica-
tions, with a very small memory and processing overhead.

Categories and Subject Descriptors
C.5.3 [Microcomputers]: Portable devices; K.8 [Personal
Computing]: General

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Continuous context-aware applications, Sensor-rich mobile
environment, Rule-based optimizations

1. INTRODUCTION
The increasing availability of sensors integrated in smart-

phones provides new opportunities for continuous context-
aware applications that react based on the operating condi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’12, June 25–29, 2012, Low Wood Bay, Lake District, UK.
Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00.

tions of users and the surrounding environment [12, 14, 17,
18, 19, 22]. Examples of such applications include a location-
based reminder that reminds a user of something when he is
at a predefined location (e.g., GeoNote for Android phones),
a jogging tracker that keeps track of how much exercise the
user does in a day (e.g., JogALot for iPhones), and a phone
buddy that mutes the phone when the user is in a meeting
(e.g., RingWise for Android phones) or plays a customized
greeting message when he is driving. These applications use
context information inferred from various sensors such as
GPS, accelerometer, and microphone of the mobile phone.

A big overhead of running context-aware applications is
their high energy consumption [15, 17]. Many of these appli-
cations require monitoring user’s context continuously. Even
some applications that require context information occasion-
ally may need continuous or frequent context monitoring due
to relatively high context detection latency. For example,
the phone buddy application may need to know if a user is in
a meeting to mute an incoming call. However, without con-
tinuously (or frequently) monitoring user’s context, it may
not be able to quickly infer whether the user is in a meeting
when a call arrives. If not designed carefully, the cost of
continuous context sensing can be prohibitively high, espe-
cially when applications require expensive attributes such as
location and multiple such applications run concurrently.

Prior work has proposed various optimizations for energy-
efficient continuous context sensing [12, 13, 15, 17, 18]. These
are orthogonal to, and can be used with, our work. Prior
work also proposed exploiting redundancy across applications—
by sharing sensor data and inferred context attributes among
applications through a shared cache [10]. However, as we
will show, this alone can still be costly if applications in-
volve expensive sensors such as GPS and microphone.

Our Contributions. We propose ACE (Acquisitional
Context Engine), a middleware that supports continuous
context-aware applications while mitigating sensing cost for
acquisition of necessary context attributes. ACE exposes
an extensible collection of context attributes such as AtHome
and IsDriving (more examples later). Applications inter-
act with ACE by requesting the current values of these at-
tributes. In providing context information to applications,
ACE can achieve significant energy savings—in our exper-
iments with three applications and 105 real users’ context
traces, ACE reduces sensing costs by about 4.2× compared
to a shared cache.

How does ACE get such a high energy savings? The key
observation we exploit is that human contexts are limited
by physical constraints and hence values of various context

attributes can be highly correlated. If we can find perfect
relationships among various context attributes (e.g., there
exists a one-to-one mapping from one set of attribute values
to another), we can infer an unknown context attribute from
a known context attribute or from an unknown but cheaper
context attribute, reducing the total energy consumption of
context acquisition. We illustrate this with an example.

Suppose Bob is running multiple applications on ACE in-
cluding the following two: App1 that uses accelerometer to
monitor Bob’s transportation mode (Walking vs. Running

vs. Driving) and App2 that uses location sensors (GPS,
WiFi, and Bluetooth) to monitor whether he is AtHome or
InOffice. Suppose ACE, by analyzing Bob’s context his-
tory, discovers various context rules such as “When Driving

is True, AtHome is False.”1 We will give more examples of
context rules later; for now we assume rules that naturally
make sense. ACE exploits these context rules in two ways.

Inference-based Intelligent Context Caching. Sup-
pose at 10am, App1 asks ACE for the value of Driving.
ACE determines the value of the attribute and puts it in
cache. If, within a short time window, another application
asks for the value of Driving, ACE can return the value like
a traditional cache. In addition, if App2 asks for the value of
AtHome within a short time window, and if the cached value
of Driving is True, ACE can also return the value AtHome =
False. ACE can do this by exploiting the negative correla-
tion between the attributes Driving and AtHome and without
acquiring any sensor data. Thus, ACE can reuse the cached
value of Driving not just for an exact lookup, but also as a
proxy for a semantically related lookup.

Speculation-based Cheaper Sensing Plan. Context
rules allow finding the value of an attribute in many different
ways. For example, the value of InOffice can be determined
by acquiring necessary sensor data (e.g., GPS, WiFi signa-
tures). Moreover, by exploiting context rules, it can also
be answered False if Driving = True or Running = True or
AtHome = True; and can be answered True if InMeeting =
True. Each of these proxy attributes can further be de-
termined through additional proxy attributes. This gives
ACE the flexibility to choose, and speculatively sense val-
ues of, proxies that yield the value of the target attribute
with the lowest cost. For example, if Running is the cheap-
est attribute and if there is a high probability that the
user is jogging now, ACE will use Running as a proxy, and
speculatively determine its value, to determine the value of
InOffice (by using the rule that whenever Running is True,
InOffice is False). If the value of Running is indeed True,
ACE can infer the value of InOffice to be False, without
using expensive location sensors. If Running is found to be
False, however, ACE cannot make such a conclusion and
needs to proceed with the next best proxy attribute.

The benefit of the above speculative sensing idea may
seem counter-intuitive— evaluating an attribute can become
cheaper by evaluating additional attributes. However, as we
will show later, if such additional attributes are low-cost and
are most likely to uniquely determine the value of the tar-
get attribute, such additional attribute can reduce the total
expected cost of the system.

The above ideas are powerful in practice and can be gen-

1Currently ACE uses simple association rules. However, the
core ideas of ACE can be used with more general rules such
as temporal or probabilistic rules.

erally applicable to a broader class of applications. How-
ever, realizing them requires addressing several challenges.
First, how can the system automatically and efficiently learn
context rules that can help finding cheap proxy attributes?
Second, how can the system find suitable proxy attributes
in the cache that can determine a value of the target at-
tribute? Third, how can it determine the best sequence of
proxy attributes to speculatively sense in order to determine
the value of a target attribute? All these challenges need to
be addressed without much overhead on the phone and with
the goal of reducing the overall energy consumption. In the
rest of the paper, we describe how ACE achieves this goal.

Intuitively, the energy savings in ACE comes from sens-
ing redundancy across applications and context attributes,
well-defined relationship among attributes, and the possi-
bility of inferring expensive attributes through cheaper at-
tributes. The savings depend on application mix and user
habits. How common is such redundancy in practice? To
understand this, we have evaluated ACE with three appli-
cations and two real datasets containing context traces of to-
tal 105 users. Our results show that ACE consumes around
4.2× less energy than consumed by a raw sensor data cache
shared across applications. Our ACE prototype on a Sam-
sung Focus phone running Windows Phone 7.5 OS shows
that ACE imposes little overhead (< 0.1 ms latency and
< 15 MB RAM footprint).

Note that inference caching and speculative sensing based
on rules can sometimes produce results that are (a) incor-
rect, if user’s behavior deviates from context rules, or (b)
stale, if results are inferred from stale values in cache, and
hence incorrect if cached values no longer hold. ACE em-
ploys several mechanisms to reduce such inaccuracy. Exper-
iments show that such inaccuracy is < 4% for our datasets
and is small compared to classification errors in typical con-
text inference algorithms [13, 15, 16]. If an application can-
not tolerate such small additional inaccuracy, it can request
ACE to get true context values by collecting sensor data
(and paying high energy cost).

In summary, we make the following contributions.

• We describe design and implementation of ACE, a mid-
dleware for efficient and continuous sensing of user’s con-
text in a mobile phone (§ 2).

• We describe how ACE efficiently learns rules from user’s
context history (§ 3), and use the rules for intelligent
context caching (§ 4) and speculative sensing (§ 5).

• By using a prototype on a real phone and two datasets
containing continuous context traces of 105 users, we
show that ACE can significantly reduce sensing cost with
a minimal runtime overhead (§ 7).

2. ACE OVERVIEW
2.1 ACE Architecture

Figure 1 shows a high level architecture of ACE. It works
as a middleware library between context-aware applications
and sensors. An application interacts with ACE with a sin-
gle API Get(X), asking for the current value of a context
attribute X. ACE consists of the following components.

(1) Contexters. This is a collection of modules, each of
which determines the current value of a context attribute
(e.g., IsWalking) by acquiring data from necessary sensors
and by using the necessary inference algorithm. An appli-

Application 1

Raw sensor data cache

Inference
Cache

Planner

Result

miss plan

sense Context history + Rule Miner

hit

Contexters

Get(Context)

Application 2 Application 3

Figure 1: ACE Architecture

cation can extend it by implementing additional contexters.
The set of attributes sensed by various contexters is exposed
to applications for using with the Get() call.2

(2) Raw sensor data cache. This is a standard cache.

(3) Rule Miner. This module maintains user’s context
history and automatically learns context rules—relationships
among various context attributes—from the history.

(4) Inference Cache. This implements the intelligent
caching behavior mentioned before. It provides the same
Get/Put interface as a traditional cache. However, on Get(X),
it returns the value of X not only if the value of X is in the
cache, but also if it can be inferred by using context rules
and cached values of other attributes.

(5) Sensing Planner. On a cache miss, this finds the
sequence of proxy attributes to speculatively sense to deter-
mine the value of the target attribute in the cheapest way.

The last three components form the core of ACE. We will
describe them in more detail later in the paper.

Importance of Rule Miner. One might argue that
relationships among various context attributes can be hard
coded within applications. Rule Miner automates this pro-
cess. Moreover, it can learn additional rules that are not-
so-obvious to developers, can change over time, are specific
to individual users, and involve attributes from different ap-
plications (and hence developer of one application may not
find them). Our experiments show that the energy savings
of ACE would have reduced by more than half had it used a
set of static rules for all users, instead of dynamically learn-
ing personalized rules for each user.

For simplicity, we assume Boolean context attributes. Even
though our techniques can be generalized to real-valued at-
tributes, we believe that Boolean attributes are sufficient for
a large collection of context-aware applications as they re-
act based on Boolean states of arbitrarily complex context
attributes (e.g., mute the phone when in a meeting or in a
movie theater).

2.2 Contexters
We have implemented a number of contexters for con-

text attributes shown in Table 1. The table shows attribute
names and the shorthand we use for them for brevity. We
denote an attribute and its value such as IsDriving = True

as a tuple, and often write it in shorthand as D = T.
Table 1 also shows the sensors various contexters use. The

contexters for attributes W, D, J, and S collect accelerome-

2ACE also exposes raw sensor data for applications that
need additional context attributes and more accuracy than
is provided by ACE.

Table 1: Context attributes implemented in ACE
Attribute Short Sensors used (sample length) Energy (mJ)
IsWalking W Accelerometer (10 sec) 259
IsDriving D Accelerometer (10 sec) 259
IsJogging J Accelerometer (10 sec) 259
IsSitting S Accelerometer (10 sec) 259
AtHome H WiFi 605

InOffice O WiFi 605
IsIndoor I GPS + WiFi 1985
IsAlone A Microphone (10 sec) 2895

InMeeting M WiFi + Microphone (10 sec) 3505
IsWorking R WiFi + Microphone (10 sec) 3505

ter data over a 10-second window and derive values of the
attributes based on a decision tree learned from training
data [13]. The values of AtHome and InOffice are deter-
mined by matching the current WiFi signature with a pre-
learned dictionary. The contexter for IsIndoor uses GPS
location and WiFi signature; i.e., the user is assumed to be
indoor if GPS signal is not available or current WiFi ac-
cess points are in a pre-learned dictionary. The value of
IsAlone is determined by collecting an audio sample of 10
seconds and comparing the average signal strength with a
pre-learned threshold [16]. Finally, the values of InMeeting
and IsWorking are determined by using signal strength of
surrounding sound and fine-grained location based on WiFi
signature and acoustic background signature [25].

We have measured energy consumed by various contexters
on an Android HTC desire phone (shown in Table 1). The
key observation, which we expect to hold on other platforms
and contexter implementations as well, is that energy con-
sumptions of various contexters vary by an order of magni-
tude. This alludes to the potential savings in ACE when an
expensive attribute can be inferred from a cheap attribute.

Extensibility. Note that implementation of various con-
texters is not at the core of this work, and one can think
of better implementations. ACE treats contexters as black
boxes; the only two pieces of information a contexter needs
to expose to ACE are (1) the name of the attribute that it
determines, and (2) its energy cost. Therefore, implementa-
tion details of contexters do not affect the rest of ACE. One
can implement a new contexter or replace an existing contex-
ter with a more accurate and energy-efficient one, and can
expose the attribute name and energy cost to ACE through
a configuration file; ACE will seamlessly incorporate the
new contexter.

This highlights another useful feature of ACE: it does not
require applications to agree on semantic meaning of con-
text labels. Applications can simply register new contexters
that other applications are unaware of, but they still benefit
indirectly through correlations that ACE might detect and
exploit.

2.3 Work flow of ACE

Figure 2 shows the next level of details of ACE’s archi-
tecture to show how ACE works end-to-end. Applications
interact with ACE by requesting the current value of a con-
text attribute X, by calling the API Get(X). If an unexpired
value of X (computed previously for the same or a different
application) is found in Inference Cache, ACE returns the
value. Otherwise, ACE uses the current set of context rules
(learned by Rule Miner) and currently unexpired tuples in
the cache to see if a value of X can be inferred. If so, ACE
returns the inferred value of X. Otherwise, ACE needs to

In Cache?

Inferred?

Infer from cache
and rules

Context
history

R
ul

es

Mine
rules

Cache

Choose best proxy
sensor and sense

Value
determined?

No

Result

Result

No

No

Result

Get(x)

YesSensors,
classifiers,costs

Rule Miner Inference Cache

Sensing Planner

Contexters

Yes

Yes

Figure 2: Workflow in ACE

invoke necessary contexters to determine the value of X. To
explore the possibility of determining the value of X through
cheaper proxy attributes, ACE invokes the Sensing Planner
module. It repeatedly chooses the next best proxy attribute
and speculatively runs its contexter until the value of X is
determined. The value of X is finally put in the cache (with
an expiration time), added to context history (for being an-
alyzed by Rule Miner), and returned to application.

Reducing Inaccuracies. ACE uses several mechanisms
to reduce possible inaccuracies in results, as mentioned in
Section 1. First, ACE conservatively uses rules that almost
always hold for a user. Second, the rules are dynamically up-
dated, to capture any change in user’s habit. Third, it uses
a small (5 minutes) expiration time of tuples in the Inference
Cache so that inference is done only based on fresh tuples.
Fourth, it occasionally cross-validates results returned by In-
ference Cache and Sensing Planner with true contexts deter-
mined by running contexters. The default cross-validation
probability is 0.05—our experiments show that this gives a
good balance between energy and accuracy. Finally, an ap-
plication can optionally provide feedback (e.g., got from the
user) to ACE about inaccuracies in ACE results. ACE con-
servatively removes any rule inconstant with ground truths.

2.4 Applications
We target context-aware applications that need to moni-

tor user’s context continuously or frequently. Different ap-
plications may require different context attributes exposed
by ACE such as user’s location (home/office), transporta-
tion mode (walking/driving), work state (working/meeting),
and group state (alone/in group). For concreteness, we con-
sider the following three applications we have built in ACE.

GeoReminder. Like GeoNote for Android, it continu-
ously monitors a user’s current location and displays custom
messages when he is at a pre-defined location. The location
is computed based on GPS data and WiFi access point sig-
nature (using similar techniques as [15]).

JogTracker. Like JogALot for iPhone, it monitors a user’s
transportation mode (e.g., IsWalking, IsRunning, IsDriving)
and keeps track of how much calories he burns in a day from
walking and running.

PhoneBuddy. Like RingWise on Android, it monitors
whether a user is in a meeting (InMeeting) or is driving
(IsDriving); it mutes the phone if he is in a meeting and
plays a custom greeting message if he is driving.

2.5 Datasets
Apart from a real prototype, we use two real datasets

to evaluate various techniques in ACE. Using real traces
is important because effectiveness of ACE depends on its
ability to infer context rules from a user’s context history.
Each dataset contains continuous context trace of a number
of users, where each trace contains a sequence of lines of the
following format:timestamp, attrib1 = value1, attrib2 =
value2, · · · . There is a line in the trace every time any
attribute changes its value. Thus, a user is assumed to be in
the same state between two consecutive timestamps in the
trace.

IReality Mining Dataset. This dataset,3 collected part
of the Reality Mining project at MIT [7], contains contin-
uous data on daily activities of 100 students and staff at
MIT, recorded by Nokia 6600 smartphones over the 2004-
2005 academic year. The trace contains various continuous
information such as a user’s location (at a granularity of
cell towers), proximity to others (through Bluetooth), ac-
tivities (e.g., making calls, using phone apps), transporta-
tion mode (driving, walking, stationary),4etc. over differ-
ent times of the day. The cell-tower id is mapped back to
latitude-longitude, based on the dataset in [8]. We consider
95 users who have at least 2 weeks of data. The total length
of all users’ traces combined is 266,200 hours. The average,
minimum, and maximum trace length of a user is 122 days,
14 days, and 269 days, respectively.

The dataset allows us to infer the following context at-
tributes about a user at any given time: IsDriving5 (D in
short), IsBiking (B), IsWalking (W), IsAlone (A), AtHome

(H), InOffice (O), IsUsingApp (P), and IsCalling (C).

IACE Dataset. This dataset, similar to the Reality Min-
ing dataset, is collected with our continuous data collection
software running on Android phones. The subjects in the
dataset, 9 male and 1 female, worked at Microsoft Research
Redmond. They all drove to work and had usual 9am-5pm
work schedule. The dataset has all the context attributes in
Table 1. The maximum, minimum, and average trace length
of a user is 30 days, 5 days, and 14 days respectively.

Even though the dataset is smaller than the Reality Min-
ing dataset, its ground truths for context attributes are more
accurate. They come from a combination of three sources:
(1) labels manually entered by a user during data collection
time (e.g., when the user starts driving, he manually inputs
Driving = True through a GUI), (2) labels manually pro-
vided by the user during post processing, and (3) outputs of
various contexters.

3. RULE MINER
The Rule Miner component of ACE maintains a history

of timestamped tuples (e.g., AtHome = True), sensed for var-
ious applications. It then incrementally derives rules regard-
ing relationships among various context attributes.

3http://reality.media.mit.edu/download.php
4This is inferred from a user’s speed and survey data.
5Denotes if the user is driving is own car or is taking a bus.

Table 2: A few example rules learned for one user
{IsDriving = True} ⇒ {Indoor = False}
{Indoor = T, AtHome = F, IsAlone = T} ⇒ {InOffice = T}
{IsWalking = T} ⇒ {InMeeting = F}
{IsDriving = F, IsWalking = F} ⇒ {Indoor = T}
{AtHome = F, IsDriving = F, IsUsingApp = T} ⇒ {InOffice = T}
{IsJogging = T} ⇒ {AtHome = T}

Discovering interesting relationships among variables in
large databases has been studied extensively in the data
mining research, with many efficient algorithms developed
(see [26] for a survey). In ACE, we would like to generate
rules that are easy to compute and use, and are compact
to represent. We choose the well-known Apriori algorithm
for association rule mining [1]. The algorithm can efficiently
discover association rules from databases containing trans-
actions (for example, collections of items bought together by
customers). In ACE, we are interested in association rules
that have the following general form:{l1, l2, · · · , ln} ⇒ r,
which implies that whenever all the tuples l1, · · · , ln hold,
r holds as well. Thus, the left side of a rule is basically a
conjunction of tuples l1, l2, · · · , ln. For example, the rule
{O = T, W = F, A = F} ⇒ M = T implies that if a user is in
the office (O = T) and not walking (W = F) and is not alone
(A = F), then he is in a meeting (M = T).

Apart from simplicity, association rules naturally support
ACE’s desired inference process: if for any rule A ⇒ b, all
the tuples in A exist (and not expired) in ACE’s cache, then
we can immediately infer the tuples b, without additional
sensor data acquisition.

The Apriori algorithm takes as input a collection of trans-
actions, where each transaction is a collection of co-occurring
tuples. Each association rule has a support and a confidence.
For example, if a context history has 1000 transactions, out
of which 200 include both items A and B and 80 of these
include item C, the association rule {A,B} ⇒ C (read as
“If A and B are true then C is true”) has a support of 8%(=
80/1000) and a confidence of 40%(= 80/200). The algo-
rithm takes two input parameters: minSup and minConf .
It then produces all the rules with support ≥ minSup and
confidence ≥ minConf .

The original Apriori algorithm works in two steps. The
first step is to discover frequent itemsets. In this step, the
algorithm counts the number of occurrences (called support)
of each distinct tuple (e.g., W = T) in the dataset and discards
infrequent tuples with support < minSup. The remaining
tuples are frequent patterns of length 1, called frequent 1-
itemset S1. The algorithm then iteratively takes the combi-
nations of Sk−1 to generate frequent k-itemset candidates.
This is efficiently done by exploiting the anti-monotonicity
property: any subset of a frequent k-itemset must be fre-
quent, which can be used to effectively prune a candidate
k-itemset if any of its (k − 1)-itemset is infrequent [1].

The second step of the Apriori algorithm is to derive as-
sociation rules. In this step, based on the frequent itemsets
discovered in the first step, the association rules with confi-
dence ≥ minConf are derived.

Parameters. The Apriori algorithm takes two param-
eters: minSup and minConf . Many real-world applica-
tions care only about frequent rules, and hence use a large
minSup (e.g., > 75%). We, however, are also interested in
rules that hold relatively infrequently. For example, if a user
drives < 1 hour in a day, Apriori will require a very small

support of < 4% to find rules involving the context attribute
IsDriving. We are interested in such rare rules because
they can sometimes result in big energy savings (e.g., when
InMeeting is inferred from IsDriving). Setting the minSup
close to zero, however, can produce many infrequent and
useless rules. We found that the value minSup = 4% works
well in practice.

Ideally, we would like to use minConf = 100%, so that
ACE uses rules that always hold and hence ACE does not
introduce any inference errors. However, real contexters
use imperfect classification algorithms on noisy data, and
hence they can occasionally produce inconsistent context at-
tributes. E.g., two contexters can mistakenly conclude that
the user is atHome and isDriving at the same time. Our ex-
periments show that a minSup value of 99% strikes a good
balance between tolerating such occasional inconsistencies
and capturing good rules.

Example Rules. Table 2 shows a few example rules
automatically learned by ACE for a single user in the ACE
Dataset. Some rules are not so obvious; e.g., consider the
fifth rule in Table 2: if the user is not at home and not riding
a bus but is using phone apps, he is in the office. Apparently,
this particular user uses apps only at home, in bus, and in
office. Some rules can be specific to a single user and may
not generally apply to all users. For example, the last rule
in Table 2 applies to a user who jogs in a treadmill at home,
and it may not apply to someone who runs outside.

3.1 Challenges
Even though many association rule mining algorithms ex-

ist, we need to address several challenges to use them in
ACE.

3.1.1 Defining Transactions
Association rule mining algorithms take transactions of

tuples: each transaction defines which tuples occur together.
For a rule A⇒ B to be derived, both A and B need to ap-
pear together in the same transaction. In ACE, various
contexters may be invoked for different applications asyn-
chronously. Thus, co-occurring context attributes may not
be inferred exactly at the same time, rather within a short
window of time. Yet, for mining useful rules, we need to
batch them as a single transaction of co-occurring tuples.

One straightforward way to address this is to use a time
window: all attributes sensed within a window is considered
to be co-occurring and hence are batched together in a sin-
gle transaction. Unfortunately, deciding a good window size
is nontrivial. A small window will generate small (or even
singleton) transactions that will miss many rules involving
multiple tuples. On the other hand, a large window may put
conflicting tuples (e.g., AtHome = True and AtHome = False)
in the same transaction when the user changes his context
in the middle of the window. Then, a rule mining algo-
rithm can produce invalid itemsets such as {AtHome = True,
AtHome = False} and meaningless rules such as {AtHome = True}
⇒ {AtHome = False}.

To understand the impact of window size, we run Rule
Miner on ACE Dataset as follows. We assume that a hy-
pothetical application wakes up once every 30 seconds, and
determines the value of a randomly chosen attributes in Ta-
ble 1. (This simulates the combined behavior of a random
collection of continuous context-aware applications.) Thus,
we get a sequence of tuples, with two consecutive tuples 30

seconds apart from each other. Then, for a given window
size W , we batch all tuples within W as a single transac-
tion. Note that a batch may contain the same tuple multiple
times, in which case we keep only one. Moreover, a batch
may also contain conflicting tuples, in which case we drop
all tuples involving the corresponding attribute.

Figure 3 shows the effect of various window sizes. The y-
axis in the graph shows the fraction of rules learned, normal-
ized to the maximum number of manually-verified “good”
rules we could learn for various parameters and averaged
over all users in ACE Dataset. The graph shows the trade-
off introduced by various window sizes. A 5-minute window
gives the maximum number of good rules.

Dynamic Window Size. Even with a carefully chosen
window size, we do not find the maximum number of rules.
This is because many transactions contain a small number of
tuples, due to removal of conflicting tuples within the same
window. Since a user can change his context any time within
a window, such conflicting tuples occur very often. To avoid
this, we use dynamic windowing, where we use a default win-
dow size (say 5 minutes), but trim a window into a shorter
one whenever the value of any context attribute changes
(e.g., when the user’s AtHome context is changed from True

to False). After such a trimmed window, we restore the
default window size. Thus, a window never contains con-
flicting tuples. We also ignore the windows that have only a
single tuple. Figure 3 shows that dynamic windowing with
5-minute default window size produces 18% more “good”
rules than static windowing with 5-minute window.

Increasing default window size can reduce the number of
rules produced, as shown in Figure 3. This is because in-
creasing window size can reduce relative frequencies of pop-
ular tuples since multiple occurrences of a popular tuple are
treated as a single occurrence within a transaction. If the
relative frequency of an itemset containing a popular item
goes below the minSup threshold, APriori algorithm will
ignore the itemset and no rules containing the itemsets will
be produced.

Based on the discussion above, ACE uses dynamic win-
dow with 5 minutes default window.

3.1.2 Dealing with Low Support
As mentioned before, ACE uses a small minSup value

(e.g., 4%). With such a small support value, Apriori needs
to enumerate a very large number of itemsets and becomes
extremely expensive. This is because with a small support,
many itemsets will be considered frequent and each of the
frequent itemsets will contain a combinatorial number of
shorter sub-itemsets, each of which will be frequent as well.

Figure 4 shows the time required by ACE’s rule mining
algorithm run with the Reality Mining dataset on a Sam-
sung Focus phone with 1 GHz Scorpion CPU and 512MB
RAM. The minSup and minConf are set to be 4% and
99% respectively. Depending on the length of the history,
the process can take more than a few hours. Such a high
overhead is not acceptable in practice.

Offloading. ACE addresses this problem by offloading the
task of rule mining to a remote, powerful server (similar to
many systems such as Maui [5]). ACE locally logs all con-
text tuples, periodically uploads them to a server when it has
connectivity and time, and gets the rules back. By default,
this is done once a day. Computing rules in a server takes

a few minutes. With a 2.7GHz dual-core server, the maxi-
mum time required for offloading context history, computing
rules, and downloading them to the phone is around 15 min-
utes for a 269-day trace in the Reality Mining Dataset. For
traces smaller than 90 days, the time is around 3 minutes.

Incremental Update. Between periodic downloads of
rules from the remote server, Rule Miner incrementally up-
dates its rules in the phone as follows. With rules, ACE
also downloads various statistics required to compute sup-
ports and confidence of various rules. As new context tuples
are added to context history, Rule Miner incrementally up-
dates support and confidence statistics of existing rules and
deletes the rules whose supports and confidence go below
Rule Miner thresholds. Note that this only removes existing
rules if they no longer hold, but does not produce new rules.
However, this affects ACE’s efficiency only (as ACE may
miss opportunities to exploit potential rules), not the cor-
rectness of its inference. The inefficiency is addressed when
new rules are downloaded from remote server.

3.1.3 Dealing with Inaccuracies
Since Inference Cache and Speculative Sensing are based

on context rules, it is important than the rules are as ac-
curate as possible. ACE conservatively uses rules that al-
most always hold (e.g., minConf = 99% in Apriori). A
user, however, may change his habits, which may invali-
date some rules. For example, he may buy a treadmill
and start running at home instead of outside. Then, the
rule {IsRunning = True} ⇒ {AtHome = False} needs to
be replaced with a new rule. To achieve this, ACE cross
validates its inferred results with ground truths (collected
by occasionally running contexters or getting feedback from
users/applications, as mentioned in Section 2). ACE conser-
vatively drops a rule if its support and confidence go below
minSup and minConf due to the ground truths. New rules
emerged due to change in habits are eventually learned by
the Rule Miner as their itemsets become frequent.

3.1.4 Suppressing Redundant Rules
Rule mining algorithms often produce a large number of

rules, especially with a small support. The cost of using
the rules for Inference Cache and Sensing Planner increases
linearly with the number of rules. Fortunately, many rules
generated by standard rule mining algorithms are redun-
dant; for example, the standard APriori algorithm can pro-
duce rules such as {A ⇒ B,B ⇒ C,A ⇒ C,AD ⇒ B}.
However, given the two rules {A ⇒ B,B ⇒ C}, other two
rules can be generated and hence they are redundant.

In order to reduce the inference overhead, ACE uses an
algorithm for mining a compact, non-redundant set of asso-
ciation rules [28]. We have used both this algorithm and the
Apriori algorithm on both our datasets. The basic Apriori
algorithm generates around 750 rules on average on both
datasets; eliminating redundant rules brings the number of
rules below 40, on average, for both the datasets.

3.1.5 Bootstrapping
It takes a few days of context history for ACE to learn

meaningful rules. Thus, in the beginning, ACE does not
have any context history or rules that it can exploit. To deal
with that, ACE starts with a set of seed rules that apply
to almost all the users. Such universal rules are learned by
the remote server where users offload their rule mining task.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Fr
ac

ti
o

n
 o

f
ru

le
s

le
ar

n
t

Window Size (minutes)

Fixed window size
Dynamic window size

Figure 3: Effect of window size
in batching

0

50

100

150

200

250

300

350

0 20000 40000 60000 80000

Ti
m

e
 (

M
in

u
te

s)

History length

Figure 4: Time required to
learn rules on a Samsung Fo-
cus phone

Rules: 𝑅1: {H=T} I=T, 𝑅2: {D=T, W=T} I=T, …, 𝑅𝑚:…

I=T

AND AND

D=F W=F H=T

I=T AND

D=F W=F

H=T I=T

Boolean expression: I=T H=T (D=F W=F) … I=T

… …

(i) (ii) (iii)
OR OR

Figure 5: Expanding a node

To learn such rules, the server runs the same rule mining
algorithm, but on all users’ context history. In the Reality
Mining Dataset, more than 60% of the rules of each user are
such universal rules. As new context tuples are added to
context history, ACE updates its rule set by learning new
personalized rules and dropping universal rules that do not
apply to the user.

4. INTELLIGENT CONTEXT CACHING
The Inference Cache in ACE, like traditional cache, pro-

vides a Get/Put interface. Put(X, v) puts the tuple X = v
in the cache, with a predefined expiration time (default is 5
minutes). On a Get(X) request for a context attribute X,
it returns the value of X not only if it is in the cache, but
also if a value of X can be inferred from unexpired tuples in
the cache by using context rules learned by the Rule Miner.

To illustrate the operation of Inference Cache, assume that
an application requires the value of D (IsDriving). Suppose,
ACE determines its value to be True by using the corre-
sponding contexter. The tuple D = T is put in the cache
with an expiration time of, e.g., 5 minutes. Suppose, before
this tuple expires, another application requires the value of
D. Like traditional cache, Context Cache returns the value
True. Now, suppose a third application requires the value of
I (IsIndoor). Even though there is no tuple with I in the
cache, Context Cache infers that the user cannot be indoor,
thanks to the rule {D = T} ⇒ I = F , and hence it returns
the value False as the answer.

Note that Inference Cache can sometimes return results
that are (a) incorrect, if user’s behavior deviates from con-
text rules, or (b) stale, if results are inferred from unexpired
but stale values in cache, and hence incorrect if cached val-
ues no longer hold. As mentioned before, the severity of (a)
is reduced by the Rule Miner conservatively choosing rules
that almost always hold. Similarly, to reduce the effect of
(b), we choose a small cache expiry time of 5 minutes. This
helps us keep the overall inaccuracy of ACE within < 4%
for our dataset. (Using an expiry time of 10 minutes and 15
minutes make the inaccuracy 6% and 10% respectively.)

A key challenge in enabling Inference Cache is to effi-
ciently exploit rules. One straightforward way to do this
is to go over all the rules to find the ones whose right hand
sides contain the target attribute and all the tuples in their
left hand sides are satisfied by currently unexpired tuples in
the cache. Then, the cache can output the tuples on the right
hand sides of those rules. However, this simple approach fails
to exploit transitive relationship among rules. For example,
consider two rules: {M = T} ⇒ O = T and {O = T} ⇒ I = T

Without using transitivity of the rules, the cache will fail to
infer the state of I = T even if M = T is in the cache. Such

transitivity is common among the rules, especially since our
Rule Miner produces a succinct set of non-redundant rules.

To address this, ACE constructs expression trees over
rules and performs inference on the trees.

4.1 Expression Trees
Informally, an expression tree for a tuple a = v is a tree

representation of the Boolean expression that implies the
value v for the attribute a. It is generated by combin-
ing various rules that imply a = v directly, or indirectly via
transitive relationships with other rules. More formally, an
expression tree is a Boolean AND-OR tree, where (a) a non-
leaf node represents an AND or OR operation on the value
of its child nodes, and (b) a leaf node represents a tuple.
An AND node (or, OR node) evaluates to True if all (or
any, respectively) of its child nodes recursively evaluate to
True. The expression tree for the tuple a = v is the one that
evaluates to True if and only if the tuple holds according to
context rules. Figure 6(b) shows an expression tree for the
tuple Indoor = True.

The expression tree for a given tuple a = v is constructed
as follows. We start from a tree with a single leaf node a = v

(Figure 5(i)). Then, we continue expanding each leaf node
in the current tree by using context rules until no leaf nodes
can be further expanded or all the rules have been used for
expansion. To expand a leaf node a = v, we find all the rules
R1, R2, · · · , Rm that have a = v on the right hand side. We
then replace the leaf node with a subtree rooted at an OR
node. The OR node has child nodes a = v, X1, X2, · · · , Xm,
where Xi is an AND node with all the tuples on the left
hand side of Ri as child nodes. An example of this process
is shown in Figure 5(ii), where the node I = T is expanded
using the rules shown at the top of the figure.

After a node is expanded, all the leaf nodes in the tree
are recursively expanded (to deal with transitive relation-
ship). Note that we do not need to expand the same tuple
more than once; for example, in Figure 5, if the I : T node
is expanded again, we will unnecessarily replicate a portion
of the tree, without changing the semantics of the tree. We
thus expand each tuple only once—only if it has not already
been expanded and there are rules with it on the right hand
side. This ensures termination of the expansion process.

4.2 Inference Cache
The Inference Cache maintains one expression tree for

each tuple; e.g., one for the tuple D = T, one for D = F, and
so on. On a Get request on attribute X, the cache evaluates
two expression trees—one for X = T and one for X = F—and
see if any of these trees is satisfied (explained shortly) by
unexpired tuples in the cache. If the tree for X = T is satis-
fied, the Get call returns the value True, if the tree for X = F

Indoor:True

OR

AND

OR

Alone:False Indoor:True

OR

AND

OR

Indoor:True Walking:False

AND

OR

InOffice:True Walking:False

AND

OR

AtHome:True Walking:False

AND

OR

Driving:True Walking:False

AND

OR

Working:True Walking:False

Indoor:True

AND

OR

AND

OR

Working:True InOffice:True

Indoor:True

AND

OR

AtHome:True Indoor:True

AND

OR

Working:True Indoor:True

AND

OR

AND

OR

Indoor:True Driving:False

AND

OR

Alone:False Driving:False

AND

OR

InOffice:True Driving:False

AND

OR

AtHome:True Driving:False

AND

OR

Working:True Driving:False

Indoor:True

OR

Walking:False Indoor:True

Indoor:True

OR

AND

Driving:False Walking:False

AND

Alone:False Walking:False

Indoor:True AtHome:True InMeeting:True InOffice:True

(a) Initial expanded tree (labels can be ignored) (b) Equivalent reduced tree

Figure 6: An expression tree for Indoor = True, shown upside down

is satisfied, False is returned, otherwise, the cache invokes
the Sensing Planner module to invoke necessary contexters.

The procedure to check if an expression tree is satisfied
with the tuples currently available in the cache is recursive.
A leaf node is satisfied if and only if the corresponding tuple
is in the cache. A non-leaf OR node is satisfied if any of its
child nodes are satisfied (recursively). Similarly, an AND
node is satisfied if all of its child nodes are satisfied. Finally,
the whole tree is satisfied if the root node is satisfied.

4.3 Minimal Expression Tree
Expression trees obtained by expanding rules can be large.

Since Inference Cache needs to maintain one tree for each
tuple and needs to evaluate two trees on every Get request,
larger trees impose memory and computation overhead. To
avoid this, ACE normalizes the trees to shorter ones, by
using standard Boolean logic to eliminate their redundancy.

IAlternating AND-OR level: An AND-OR tree can
always be converted so that (a) a level has either all AND
nodes or all OR nodes, and (b) AND levels and OR levels
alternate. This can be done as follows: if an OR node (or
an AND node) u has an OR child node (or an AND child
node, respectively) v, child nodes of v can be assigned to u
and v can be deleted. This compacts the tree.

IAbsorption: If a non-leaf node N has two child nodes A
and B such that the set of child nodes of A is a subset of the
set of child nodes of B, we can remove B and its subtrees. In
a tree with alternating AND-OR levels, if N is an OR node,
then A and B will be AND nodes. Suppose A = a ∧ b and
B = a∧b∧c. Then, N = A∨B = (a∧b)∨(a∧b∧c) = a∧b =
A. Similarly, if N is an AND node, (a∨b)∧(a∨b∨c) = (a∨b),
and hence the longer subexpression B = (a ∨ b ∨ c) can be
removed.

ICollapse: If a node N has one child, the child can
be assigned to N ’s parent node and N can be removed
(Fig. 6(iii)).

Such transformation significantly reduces the size of ex-
pression trees without changing their semantics. Figure 6
shows the result of such transformation: (a) shows the tree
for the tuple Indoor = True after initial expansion, and (b)
shows the result of compacting the tree. (In (a), we intend
to show the large size of the tree; the labels inside nodes are
not expected to be read.)

5. SENSING PLANNER
When Inference Cache fails to determine the value of X

on a Get(X) call, ACE needs to call necessary contexters to
determine the value of X. The straightforward way to find
the value is to invoke the contexter that directly produces
value of X (e.g., the AtHome contexter that uses GPS and
WiFi signature). However, by using context rules, ACE may

InMeeting?

Time in
[5pm,6pm]

AtHome?

Audio, Light,
GPS

Answer

Answer
= false

Accelerometer

IsJogging?

InMeeting?

Acquire WiFi,
Audio, Light,

Accelerometer

Answer

(a) Traditional plan (b) Conditional plan

WiFi
F

T

T
T

F

F

Figure 7: A conditional acquisition plan that ac-
quires different sensor data depending on various
conditions

be able to find the value of X in an indirect and cheaper way,
by speculatively sensing additional proxy attributes.

5.1 Conditional Plan for Speculative Sensing
We define a sensing plan as the order in which various

attributes are checked in order to determine the value of a
target attribute. An optimal ordering may depend on var-
ious conditions such as the cost ci of checking an attribute
i (i.e., the cost of running the corresponding contexter) and
the likelihood pi of the attribute returning a True value. A
plan that orders attributes to check based on such condi-
tions is called a conditional plan. We illustrate this with an
example.

Suppose an application wants to find if the user is InMeeting.
A traditional system will determine the value of the at-
tribute by acquiring necessary sensor data, e.g., audio, GPS,
and WiFi signature and by using necessary classifiers. How-
ever, ACE’s conditional planning exploits context rules to
opportunistically infer the value of InMeeting by acquir-
ing attributes that are cheaper (in terms of sensing cost)
and are likely to conclude a value of InMeeting. For ex-
ample, if the current time is 5.30pm and the user is likely
to be jogging between 5pm and 6pm, ACE can specula-
tively acquire the value of IsJogging, and if it is found to
be True, ACE can infer InMeeting = False according to the
rule IsJogging = True ⇒ InMeeting = False. Similarly, if
checking AtHome is cheaper (by sensing WiFi only) and the
user is likely to be at home, ACE can check if the user is ac-
tually at home and if so, can conclude InMeeting = False.
If no other cheaper ways provide the value of the target at-
tribute, ACE acquires the necessary sensor data to directly
determine the value of the target attribute. Figure 7 shows
both traditional and conditional plans for InMeeting.

Given a conditional plan, the true sensing cost depends
on the exact path ACE takes to generate a result. In the
previous example, if the user is indeed jogging, then the cost

equals to the cost of acquiring accelerometer data only. The
expected sensing cost of a plan can be computed by using
the values of ci and pi of various attributes in the plan.
ACE knows the value of ci from the configuration file for
contexter for attribute i. The value of pi is computed from
context history—ACE incrementally maintains one pi for
every hour of the day.

Figure 7 shows only one conditional sensing plan for the
attribute InMeeting. However, there are many other plans—
another valid plan is to first check whether both IsDriving

and IsWalking are False, and if not, to check other at-
tributes. In general, the number of valid plans can be expo-
nential in the number of attributes. Our goal in ACE is to
choose the plan with the minimum expected cost.

Note that, even when using the best conditional plan,
ACE’s speculation may occasionally end up spending more
energy than directly acquiring the target attribute. In the
previous example, IsJogging may return False, in which
case ACE needs to acquire IsIndoor, making the cost of
acquiring IsJogging a waste. However, hopefully such mis-
takes are not made often (e.g., IsJogging is acquired only
if it is likely to return True), and the expected sensing cost
is less than the cost of directly acquiring target attributes.

Hardness of the Problem. The value of an attribute A is
True if the Boolean expression given by the expression tree
for the tuple A = True is satisfied. How can we evaluate a
Boolean expression with minimum cost? Note that value of
a Boolean expression may be determined by evaluating only
a subset of variables in the expression. Thus the evaluation
cost depends on the order various attributes are checked.
Suppose A1 = False, A2 = True, A3 = False. Then the value
of the Boolean expression A1 ∨ A2 ∨ A3 can be determined by
checking A2 alone, without checking the values of A1 and A3.
On the other hand, first checking A1 does not yield any value
of the expression, and requires checking other variables. An
optimal algorithm would evaluate variables with small cost
but high likelihood to determine the value of the whole ex-
pression before other variables.

The problem outlined above is an instance of the prob-
abilistic And-Or tree resolution (PAOTR) problem. The
problem is shown to be NP-Hard in general [9]. Efficient
algorithms can be found for special cases when (a) each at-
tribute appears at most once in the expression, (b) attributes
are independent, and (c) the expression tree has a height of
at most 2 [9]. The assumptions do not hold for our expres-
sion trees—they may violate any of these conditions.

5.2 Speculative Sensing API
Before describing how ACE chooses the best sensing plan,

we describe how it programmatically uses a plan. One op-
tion is to enumerate the entire plan as a graph as shown in
Figure 7. However, given such a plan, ACE will traverse
only part of the graph, based on the outcomes of condi-
tional nodes. Therefore, instead of enumerating the whole
plan, ACE incrementally enumerates only the next node to
traverse in the plan. More specifically, it implements fol-
lowing four methods, the details of which we will describe
later.
• Init(X) : Initializes for a target attribute X.
• attribute ← Next() : Returns the attribute whose

value needs to be determined next, or null if the target
attribute value has already been determined.
• Update(a, v) : Updates the planner’s internal state

Algorithm 1 Exhaustive search for the optimal sensing
plan

1: procedure Init(X)
2: target← X
3: trace, next, result, dpCache← φ

4: procedure Result
5: return result

6: procedure Update(attrib, value)
7: trace← trace ∪ [attrib = value]
8: if attrib = target then
9: result← value

10: procedure Next
11: if result = φ then
12: return φ

13: (attrib, cost)← NextHelper(trace)
14: return attrib

15: procedure NextHelper(trace)
16: if trace is in dpCache then
17: [next, cost]← dpCache[trace]
18: return [next, cost]

19: minCost←∞
20: bestAttrib← φ
21: for all State s 6∈ trace do
22: traceT ← trace ∪ {s = true}
23: if traceT satisfies expressionTree(target = T) then
24: CostT ← 0
25: else
26: [next, CostT]← NextHelper(traceT)

27: traceF ← trace ∪ {s = false}
28: if traceF satisfies expressionTree(target = F) then
29: CostF ← 0
30: else
31: [next, CostF]← NextHelper(traceF)

32: ExpctedCost ← Cost(s) + Prob(s = true) · CostT +
Prob(s = false) · CostF

33: if ExpectedCost < minCost then
34: minCost← ExpectedCost
35: bestAttrib← s
36: dpCache[trace]← [bestAttrib,minCost]
37: return [bestAttrib,minCost]

with the tuple a = v. The planner moves to the con-
ditional branch of the plan based on this value of a.
• value← Result(): Returns the value of attribute X.

When the Inference Cache requests the Sensing Planner to
determine the value of the attribute X, it first calls Init(X).
Then, it repeatedly calls a ← Next(), determines the value
v of a by using necessary contexter, and calls Update(a, v).
The process continues until the Next() call returns a null,
at which point it returns the output of the Result() method
to the Inference Cache.

5.3 Optimal Speculative Sensing Algorithm
The hardness result in the previous section indicates that

a polynomial time algorithm for obtaining an optimal plan
is unlikely to exist. However, when the number of attributes
is relatively small (fewer than 10), it may be feasible to ex-
haustively search for all possible ordering of the attributes
and then to choose the one that minimizes the expected
cost. With n attributes, there are n! such ordering. For-
tunately, we can reduce the computational overhead with
a dynamic programming algorithm that prunes the search
space by early evaluation and caching.

The search space of our dynamic programming algorithm
is defined over traces, where a trace is a sequence of tuples
already sensed by various contexters. For example, sup-
pose three invocations of the GetNext() method returned
attributes a, b, and c and in response, their contexters have
sensed their values to be True, False, and True respectively.
Then the trace at that point is the sequence a = T, b = F,
c = T. A trace represents a sensing plan as it defines the
attributes to be sensed and the order of sensing. The key
observation that allows us to employ dynamic programming
is that once an attribute X is sensed, the original problem of
finding the optimal plan is decomposed into two independent
subproblems: one for finding the best trace having X = True

and the other for finding the best trace having X = False.
Each subproblem covers a disjoint subspace of the attribute-
value space covered by the original problem, and hence can
be solved independently.

Algorithm 1 shows the pseudocode of four methods in
Sensing Planner. Given a target attribute, the methods start
with an empty trace. Given the current trace T , the Next()
method finds the optimal next attribute as follows. For each
attribute A 6∈ T , it considers its True and False value. If
the current trace plus A = T or A = F satisfies the expression
tree, the search is pruned on additional attributes. Other-
wise, expected cost of each possibility is recursively com-
puted and added together, with weights equal to the prob-
ability of A = T and A = F, to compute the overall expected
cost (Line 32). Finally, the attribute with the minimum
expected cost is returned. For efficiency, values of various
traces are cached in dpCache for memoization.

5.4 Heuristic Algorithm
When the number of attributes is large, the exhaustive al-

gorithm can become prohibitively expensive. In such cases,
ACE uses an efficient heuristic algorithm. The algorithm is
sequential in nature—it does not use any conditioning pred-
icate to dynamically choose the next best attribute, rather
it ranks the attributes once based on their ci and pi val-
ues, and the attributes are sensed in that order regardless
of observed attribute values. One ordering of attributes is
computed for each target attribute. The nice aspect of this
algorithm is that the ordering of attributes can be deter-
mined offline once (e.g., by a remote server). Next() method
simply returns attributes according to the optimal order.

We now describe how the ordering for a target attribute X

is computed; pseudocode for four methods of Sensing Plan-
ner is omitted for brevity. Intuitively, the algorithm tra-
verses an expression tree in a depth-first manner and ranks
attributes with small cost but high probability of producing
a conclusion before other attributes.

1. Convert expression trees for X = T and X = F to their
disjunctive normal forms. Combine them into one tree T by
merging roots of both trees into one OR node.

2. Initialize a queue Q to be empty. At the end of the
procedure, Q will contain attributes in the same order they
need to be sensed. I.e., Next() simply needs to dequeue
attributes from Q.

3. For each leaf node i in T , let Ci = ci and Pi = pi.

4. Use the Procedure AssignCostAndProb shown in
Algorithm 2 to assign costs and probabilities of all non-leaf
nodes of T . The procedure simply traverses the tree in a

Algorithm 2 Generating attribute sensing order

1: procedure AssignCostAndProb(And-OR Tree Node T)
2: if T is a leaf node then
3: (CT ,PT)← (cT , pT)
4: return (CT ,PT)

5: for all child node Ni of T , 1 ≤ i ≤ k do
6: (CN ,PN)← AssignCostAndProb(N)
7: if T is an AND node then
8: PN ← 1− PN

9: Sort the child nodes of T in decreasing order of their values
of PNi

/CNi
, 1 ≤ i ≤ k

10: CT ← CN1
+

∑k
i=2 CNi

∏i−1
j=1(1− PNj

)

11: if T is an AND node then
12: PT ←

∏k
i=1 PNi

13: else
14: PT ← 1−

∏k
i=1(1− PNi

)

15: return (CT ,PT)

16: procedure FindOrdering(And-Or Tree Node T)
17: if T is a leaf node then
18: Q.Enqueue(T)

19: for all child Ni of T in ascending order of PNi
/CNi

do
20: FindOrdering(Ni)

depth-first manner, first considering nodes that have lower
cost and higher probability to conclude a value for its parent
node. If node i’s parent is an OR node, then the probability
Pi that i can conclude (a True value of) its parent is Pi, the
same as the probability of i being True. If the parent is an
AND node, then the probability Pi that i can conclude (a
False value of) its parent is 1− Pi.

5. Finally, use the procedure FindOrdering in Algo-
rithm 2 to enqueue attributes to Q in the order they should
be sensed. The ordering prefers nodes with higher values of
Pi/Ci; i.e., with higher Pi and lower Ci.

The heuristic above is a generalization of the 4-approximate
algorithm proposed by Mungala et al. [20] for finding the
optimal sequential plan for conjunctive queries. The gen-
eralization is done in order to support arbitrary AND-OR
expression. The depth-first nature and sorting child nodes
based on P/C values are similar to an algorithm in [9], which
is optimal for a depth-2 tree with independent and non-
repeated attributes. Our evaluation in Section 7 shows that
the heuristic algorithm provides < 10% worse plans than the
optimal algorithm, but with very little overhead.

6. DISCUSSION
As mentioned before, energy savings in ACE come at the

cost of occasional inaccuracy in context inference. This lim-
itation is fundamental to ACE because the absolute true
value of a context attribute can be found by sensing the at-
tribute, which ACE tries to avoid as much as possible. There
are several important parameters that can affect this inac-
curacy: rule mining parameters (support and confidence),
cache expiry time, and cross-validation frequency (i.e., how
often outputs of ACE are compared with outputs of contex-
ters, in order to drop invalid rules). There parameters need
to be carefully set based on target application scenarios.

There are few other limitations in the current version of
ACE. These limitations are not fundamental and can be
addressed in future work. First, currently ACE supports
Boolean attributes only. Supporting non-Boolean attributes

(e.g., a user’s location) would introduce complexity in vari-
ous components of ACE. One possible approach would be to
make the Rule Miner learn more complex rules in the form of
decision trees, the Inference Cache to employ decision tree-
based inference algorithm, and the Sensing Planner to use
planning techniques such as the ones used in [6].

Second, ACE currently does not exploit temporal corre-
lation across attributes. We believe that capturing and ex-
ploiting rules such as “if a user is inOffice now, he cannot
be atHome for the next 10 minutes” can be very useful in
practice. Such rules can also be useful in efficient support
for context-aware triggers (e.g., a location-based reminder)
as the rules would enable applications to check contexts less
frequently (similar to SeeMon [12]).

Third, the Inference Cache uses the same expiry time for
all context attributes. In practice, expiry time can depend
on attribute semantics. ACE can support this by letting
each contexter define a suitable expiry time of its attribute—
ACE can easily use this expiry time without knowing the
semantics of the attribute.

Fourth, the cost function in Sensing Planner considers
only the energy cost of acquiring a context attribute. How-
ever, ACE could use a more complex cost function (e.g., a
weighted linear combination) of various parameters such as
energy, latency, and accuracy of relevant contexters. How
these various parameters are combined may depend on ap-
plication scenarios. Once such a cost function is defined, the
algorithms described in Section 5 will work seamlessly.

Fifth, the Inference Cache currently returns only the value
of an attribute. It can be easily extended to return the
confidence of a returned value. Note that the Rule Miner
computes confidence of each rule (to keep the ones with con-
fidence ≥ minConf). Thus, the Inference Cache can com-
pute the confidence of a result from the confidence of all
rules used to infer the result.

7. EVALUATION
In this section we evaluate various components of ACE

and find that (1) the Inference Cache alone can reduce the
sensing energy consumption by a factor of 2.2× (for the Re-
ality Mining Dataset), compared to a baseline cache that
shares sensor data and context attribute across applications.
(2) Sensing Planner can further reduce the energy consump-
tion by an additional factor of ≈ 2×. Overall, applica-
tions running on ACE consume 4.2× less sensing energy
on average compared to what they consume when running
on a baseline cache. The savings would have been less
than half had ACE used a set of predefined rules instead
of dynamically-learned personalized rules for each user. (3)
the latency and memory overhead introduced by ACE is
negligible (< 0.1ms and < 15MB respectively).

Our performance related experiments are done with a pro-
totype of ACE running on a Samsung Focus phone running
Windows Phone 7.5 OS. The phone has 1 GHz Scorpion
CPU, 512MB RAM, and a Li-Ion 1500 mAh battery. On the
other hand, since effectiveness of various ACE components
depends on individual user’s context history, we measure the
effectiveness with an ACE prototype running on a laptop
with the Reality Mining Dataset and the ACE Dataset.

Prototype Implementation. We have implemented
ACE in Windows Phone 7.5 (Mango) platform. It is im-
plemented as a C# library shared by context-aware applica-

tions. (We use the same prototype on a laptop having .Net
platform for our trace-driven evaluation.)

Windows Phone OS currently imposes several restrictions
on its apps. First, it does not allow cross-application sharing
or communication within the phone; all sharing/communication
happen through the Cloud. To avoid such expensive commu-
nication, we build our context-aware “applications” as sepa-
rate tabs (i.e., pivots) within a single Windows Phone app.
This allows ACE to share sensor data and context attributes
among multiple “applications.” This restriction, however,
does not affect the overhead numbers we report here. We
are currently porting our prototype to Android that does
not pose the above restriction and hence independent appli-
cations will be able to use ACE as a library.

Trace-driven Experiments. We use three applications
and two datasets described in Section 2 for evaluating ACE’s
effectiveness in reducing sensing energy of the applications.
The applications use various context attributes mentioned
in Table 1. Specifically, the JogTracker application requires
the attributes IsWalking, isJogging, and IsBiking (Real-
ity Mining dataset only), the GeoReminder application re-
quires AtHome, InOffice, Indoor (ACE dataset only), and
PhoneBuddy requires IsDriving,InMeeting (ACE dataset
only), IsAlone, and InOffice.

To work with the datasets, we port our ACE prototype
to run on a laptop and replace its contexters with fake ones
that return a user’s current context from a given trace, in-
stead of by acquiring necessary sensor data. The energy
costs of various contexters are modeled according our en-
ergy measurements of real contexters, as shown in Table 1.
We process each user’s trace in discrete ticks, where each
tick represents 5 minutes in wall clock time.6 At each tick,
we run all three applications and a contexter invoked by an
application returns the true context of a user at correspond-
ing wall clock time from his trace. To avoid any bias in
the caching results, at each tick we run the applications in
a random order, and each application requests for required
attributes in a random order. Sensor data and context at-
tributes have an expiration time of 1 tick; i.e., applications
can share them within the same tick, but not across ticks.
Increasing the expiration time will further increase the ben-
efit of ACE.

For each user, we start our experiment with rules learned
from first 1 week of data (and then the rules are dynamically
updated). We report the sensing energy only; i.e., the energy
consumed by contexters executed in order to satisfy requests
of various applications.

7.1 Effectiveness of Inference Cache
We first show that Inference Cache of ACE gives a signifi-

cant energy-savings over a baseline cache that shares sensor
data and context attributes across applications.

Figure 8 shows the average and 95% confidence interval
of hit rates of various applications under two datasets. The
applications have some overlap in terms of required sensor
data and context attributes, and hence the baseline cache
gives nonzero hit rates (5− 30%). The hit rate is the high-
est for PhoneBuddy because it has the maximum overlap
with other applications. Compared to the baseline cache,
Inference Cache consistently provides significantly higher hit

6A shorter tick will increase the absolute energy savings by
ACE.

0

0.2

0.4

0.6

0.8

1

Jo
g

T
ra

ck
e

r

G
e

o
R

m
n

d
e

r

P
h

o
n

e
B

u
d

d
y

En
e

rg
y

Sa
vi

n
gs

Jo
g

T
ra

ck
e

r

G
e

o
R

m
n

d
e

r

P
h

o
n

e
B

u
d

d
y

En
e

rg
y

Sa
vi

n
gs

AceData RealityMining

H
it

 R
at

e

Baseline Cache Inference Cache

Figure 8: Hit rates and energy sav-
ings of Inference Cache

65

70

75

80

85

90

95

100

0 20 40 60 80 100

P
e

rc
e

n
ta

ge

Expiration time (minutes)

% correct inference
Hit rate

Figure 9: Effect of cache expiration
time on hit rate and accuracy

0
1
2
3
4
5
6
7
8
9

Jo
g

Tr
ac

ke
r

G
e

o
R

m
n

d
e

r

P
h

o
n

e
B

u
d

d
y

W
e

ig
h

td
A

ve
ra

ge

Jo
g

Tr
ac

ke
r

G
e

o
R

m
n

d
e

r

P
h

o
n

e
B

u
d

d
y

W
e

ig
h

td
A

ve
ra

ge

AceData RealityMining

A
ve

ra
ge

 P
o

w
e

r
(m

W
) Baseline

Sensing Planner (Exhaustive)
Sensing Planner(Heuristics)

Figure 10: Energy savings by Sens-
ing Planner

rates (65− 75%), for all applications and datasets. The ad-
ditional benefit comes from its ability to return the value of
an attribute even if it is not in cache, yet can be inferred
from existing attributes in the cache.

Since various attributes have different energy costs, the
overall energy savings due to a cache hit differs across at-
tributes (and applications). We therefore plot the fraction
of energy savings, compared to a No Sharing scheme that
does not share sensor data or context attribute among ap-
plications, in the same Figure 8. Both baseline cache and
Inference Cache provides a non-zero energy savings; but the
energy savings with Inference Cache is > 3× more than that
with the baseline cache.

7.2 Accuracy
Figure 9 shows the effect of expiry time on cache hit rates

and accuracy of results returned by Get(). The effect is
shown for the Reality Mining dataset only. As expected,
increasing expiration times increases cache hit rates. How-
ever, with large expiry times, Inference Cache can contain
stale tuples, and any inference based on them can be stale
or incorrect. Figure 9 shows inaccuracy due to such stal-
eness as well as due to users deviating from automatically
learned context rules. As shown, the inaccuracy is negligible
with a small expiration time (e.g., < 4% with ACE’s default
expiration time of 5 minutes).

7.3 Effectiveness of Sensing Planner
In Figure 10, we show average power consumed for context

sensing by various applications. We compare with a base-
line planner that determines the value of an attribute by
directly executing corresponding contexter. Both schemes
are run with the Inference Cache enabled; i.e., the value of
an attribute is determined only on a cache miss.

Figure 10 shows that, compared to the baseline planner,
the heuristics-based Sensing Planner reduces energy con-
sumption by 5− 60% for various applications and datasets.
The savings is more significant in applications requiring ex-
pensive attributes (e.g., PhoneBuddy), because often those
expensive attributes are computed by executing cheaper con-
texters. Since Jog Tracker already uses cheap attributes, the
Planner does not provide significant savings beyond the sav-
ings due to Inference Cache.) Overall, the savings is around
55% on average for both datasets.

The above savings can be slightly higher if Sensing Plan-
ner uses the dynamic programming-based exhaustive algo-
rithm, instead of the heuristic algorithm. However, as shown
in Figure 10, the heuristic algorithm performs close to the
exhaustive algorithm—the difference is less than 10% for
both datasets. On the other hand, the heuristic algorithm
runs significantly faster than the exhaustive algorithm, as

we will show later. Therefore, ACE uses the heuristic algo-
rithm as default.

As mentioned in Section 5, speculative sensing may occa-
sionally be useless and consume more energy than the base-
line planner. Figure 11 shows the fraction of times Sensing
Planner consumes no more energy than the baseline planner.
As shown, Sensing Planner consumes less or equal energy as
the baseline planner most of the time. The only case Sens-
ing Planner makes a lot of “mistakes” (≈ 40%) is with the
GeoReminder application and Reality Mining dataset. This
is due to the fact that probability distributions of various
attributes in this dataset have high variances for a few users
(because the data is not precise enough; e.g., location is
based only at the granularity of a cell tower). Since Sens-
ing Planner chooses an attribute ai based on its average
probability pi of having True, it makes more mistakes for pi
with high a variance. The possibility of such high variance
decreases if the user’s behavior is repetitive and the prior
probability distribution is tight. This is generally the case,
as we found in the ACE Dataset. Note that even though
Sensing Planner consumes more energy sometimes, on aver-
age, it consumes less energy than the baseline planner.

7.4 Overhead of ACE

Figure 12 shows the average latency of a Get() request
when it is answered by the Inference Cache (i.e., a cache hit).
The latency depends on complexity of expression trees, and
we report both average and 95% confidence interval of the
latency on the Samsung phone. The latency is negligible.

On an Inference Cache miss, ACE needs to use Sensing
Planner to determine the value of the target attribute. Fig-
ure 13 shows the time spent by Sensing Planner on such a
miss. (The latency does not include the sensing latency.)
We show both the average and maximum latency for the
exhaustive algorithm and the heuristic algorithm. The ex-
haustive algorithm can be slow and take up to a second.
Planning time of exhaustive algorithm depends on the num-
ber of attributes. The ACE Dataset has one more attribute
than the Reality Mining Dataset, and this results in an av-
erage latency increase of ≈ 2× for the ACE Dataset. This
shows that the exhaustive algorithm does not scale well as
the number of attributes increases. In contrast, the heuris-
tic algorithm, which is the default in ACE, runs very fast
(< 0.1 ms) and remains comparable across various datasets
and applications.

Overall, the overhead introduced by ACE on a Get() re-
quest (hit or miss) is less than a millisecond. This is neg-
ligible compared to the time needed to acquire sensor data
and to infer user contexts (can be up to many seconds). The
memory footprint is < 15MB for all users in both datasets.

0

0.2

0.4

0.6

0.8

1

1.2

Jo
g

Tr
ac

ke
r

G
e

o
R

m
n

d
e

r

P
h

o
n

e
B

u
d

d
y

A
ve

ra
ge

Jo
g

Tr
ac

ke
r

G
e

o
R

m
n

d
e

r

P
h

o
n

e
B

u
d

d
y

A
ve

ra
ge

AceData RealityMining

Fr
ac

ti
o

n

Baseline InferPlan (Exhaustive)

Figure 11: Fraction of times Sens-
ing Planner does better

0

0.01

0.02

0.03

0.04

Jo
g

Tr
ac

ke
r

G
e

o
R

e
m

in
d

er

P
h

o
n

e
B

u
d

d
y

Jo
g

Tr
ac

ke
r

G
e

o
R

e
m

in
d

er

P
h

o
n

e
B

u
d

d
y

AceData RealityMiner

Ti
m

e
(m

s)

Figure 12: Latency of a Get() re-
quest on Inference Cache hit

0.01

0.1

1

10

100

1000

10000

100000

Jog
Tracker

Geo
Reminder

Phone
Buddy

Jog
Tracker

Geo
Reminder

Phone
Buddy

AceData RealityMining

Ti
m

e
 (

m
s)

Exhaustive-Avg Exhaustive-Max

Heuristics-Avg Heuristics-Max

Figure 13: Time required to gen-
erate a plan on a Samsung Focus
phone

7.5 End-to-end Energy Savings
Figure 14 shows the average end to end energy savings of

ACE for the Reality Mining dataset. “No sharing” refers to
a scheme where applications do not share any sensor data or
context attributes with each other (e.g., if two applications
require IsDriving attribute, they both invoke its contex-
ter, which collects accelerometer data independently). As
shown, a baseline cache reduces the energy consumption by
24%. In comparison, Inference Cache and the combination
of Inference Cache and Sensing Planner reduce energy con-
sumption by 64% and 82% respectively. Overall, ACE con-
sumes 4.23× less sensing energy than the combination of
baseline cache and baseline planner.

Clearly, the overall benefit of ACE depends on individual
users as the context rules vary across users. Figure 15 shows
the savings of various schemes for all 95 users in the Reality
Mining dataset. User IDs are sorted according to energy
consumed by ACE. As shown, for most users, both Inference
Cache and Sensing Planner provide significant savings.

7.6 Importance of Dynamic Rule Learning
Finally we ask how much value do dynamically learned

rules add compared to a set of predefined rules? To answer
this, we compare two versions of ACE: V1: ACE with its
default Rule Miner and V2: ACE with a set of predefined
static rules.

The performance of V2 will depend on the set of rules
chosen a priori. For concreteness, we select universal rules
from the ones discovered by Rule Miner. Ideally, we would
like to select universal rules that hold for all the users. How-
ever, Rule Miner may miss a few of such rules for some users
if their context traces do not have enough evidence of nec-
essary patterns. We therefore choose k most frequent rules
among all users. A caveat of this approach is that some of
the selected rules may not hold for some users, and hence
the value of k needs to be carefully chosen.

We measure the end-to-end energy of V1 and V2 for
the Reality Mining dataset. V1 consumes around 3.5mW
(shown in Figure 14). In contrast, V2 consumes around
10mW and 7.5mW with k = 10 and k = 15, respectively.
(Energy consumption increases for larger k as some rules do
not hold for some users). This > 2× savings in V1 shows
the significance of dynamically learned personalized rules.

8. RELATED WORK
The idea of context-aware computing is not new [23]; how-

ever it has gained a lot of interest recently, mostly due to
the increasing availability of rich sensors on today’s mobile

devices. iOS, Android, and Windows Phone marketplaces
contain a large number of context-aware applications. Most
of these applications aim to enable new scenarios and to
provide new features, with no or very basic optimizations
for reducing energy overhead. Research community has also
proposed many techniques to infer various context attributes
of a user. They include techniques for inferring a user’s ac-
tivity [4, 13], location [2, 15], group state [27], proximity
to others [3], surrounding sound events [16], etc. techniques
have also proposed for inferring context attributes in energy-
efficient ways (e.g., a-Loc [15] for energy-efficient location
and [13] for energy-efficient activity). All these works are
orthogonal to ACE as context inference is done within its
black-box contexters. ACE can use any of these techniques
in its contexter implementation.

SeeMon [12], like ACE, focuses on efficient and continuous
context monitoring. It uses three optimizations: detecting
change in context at earlier stages of the processing pipeline,
exploiting temporal continuity of contexts, and selecting a
small subset of sensors sufficient to answer a query. These
optimizations can be used inside ACE’s black-box contex-
ters. The second optimization can also be used in ACE to
produce richer rules such as “if a user is inOffice now, he
cannot be atHome in next 10 minutes.” Exploring such rich
rules is part of our future work.

Our idea of sharing context attributes across applications
is similar to using middleware cache in a mobile system [10].
However, these systems support exact lookup only—unlike
Inference Cache, they do not support returning tuples that
are not in the cache but can be inferred based on what is
in the cache. Sensor substitution techniques substitute one
sensor with another semantically related sensor for inferring
a target attribute. SENST* [24] and a-Loc [15] have shown
this for inferring location by substituting one expensive sen-
sor with another cheap sensor. Inference cache is more pow-
erful in that 1) it supports arbitrary context attributes, 2)
attributes related to each other by a set of general associa-
tion rules, and 3) the rules are learned automatically.

Our idea of speculative sensing is analogous to speculative
execution used in pipelined processor [11] and other system
architecture [21]. In contrast to these works, we use specula-
tion for sensing and with conditional planning. Prior work
has used conditional planning for acquisitional query pro-
cessing [6], however this prior work 1) exploits correlation of
various attributes, instead of association rules, 2) uses plans
at sensor-level rather than context attribute-level, and 3)
uses conditional plan for query processing rather than gen-
eral context-aware applications.

0

5

10

15

20

No sharing Baseline
cache

Inference
cache

ACE

Av
g.

 P
ow

er
 (m

W
)

Figure 14: End-to-end energy sav-
ings

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

Av
er

ag
e

Po
w

er
 (m

W
)

User ID

NoSharing Baseline Cache Inference Cache ACE (Inference Cache + Sensing Planner)

Figure 15: Per user power consumption (users sorted by ACE power)

9. CONCLUSION
We have presented ACE, a middleware for efficient and

continuous sensing of user’s context in a mobile phone. ACE
automatically learns relationships among various context at-
tributes and use them for two novel optimizations: inference
caching and speculative sensing. Experiments with two real
context traces of total 105 people and a Windows Phone
prototype show that, compared to a traditional cache, ACE
can reduce sensing costs of three context-aware applications
by around 4.2×, with a very small memory and processing
overhead.

Acknowledgements. We thank our shepherd, Alexander
Varshavsky, and anonymous reviewers for their feedback.
We thank Tarek Abdelzaher, Jie Liu, and Oriana Riva for
feedback on earlier drafts; Miguel Palomera for writing an
earlier version of the ACE Data collection tool; and vari-
ous members of the Sensing and Energy Research Group at
Microsoft Research for collecting context data.

10. REFERENCES
[1] Agrawal, R., Imieliński, T., and Swami, A. Mining

association rules between sets of items in large databases.
In ACM SIGMOD (1993).

[2] Azizyan, M., Constandache, I., and Roy Choudhury,
R. Surroundsense: mobile phone localization via ambience
fingerprinting. In ACM MobiCom (2009).

[3] Banerjee, N., Agarwal, S., Bahl, P., Chandra, R.,
Wolman, A., and Corner, M. Virtual compass: Relative
positioning to sense mobile social interactions. In Pervasive
(2010).

[4] Choujaa, D., and Dulay, N. TRAcME: Temporal activity
recognition using mobile phone data. In IEEE/IFIP
International Conference on Embedded and Ubiquitous
Computing (2008).

[5] Cuervo, E., Balasubramanian, A., Cho, D., Wolman,
A., Saroiu, S., Chandra, R., and Bahl, P. Maui: making
smartphones last longer with code offload. In MobiSys
(2010).

[6] Deshpande, A., Guestrin, C., Hong, W., and Madden,
S. Exploiting correlated attributes in acquisitional query
processing. In ICDE (2005).

[7] Eagle, N., Pentland, A., and Lazer, D. Inferring social
network structure using mobile phone data. In Proceedings
of the National Academy of Sciences (PNAS) (2009),
vol. 106, pp. 15274–15278.

[8] Ficek, M., and Kencl, L. Spatial extension of the reality
mining dataset. In International Conference on Mobile
Adhoc and Sensor Systems (MASS) (2010).

[9] Greiner, R., Hayward, R., Jankowska, M., and
Molloy, M. Finding optimal satisficing strategies for
and-or trees. Artificial Intelligence 170 (January 2006),
19–58.

[10] H. Höpfner, K. S. Cache-supported processing of queries
in mobile dbs. Database Mechanisms for Mobile
Applications (2003), 106–121.

[11] Hammond, L., Willey, M., and Olukotun, K. Data
speculation support for a chip multiprocessor. In ASPLOS
(1998).

[12] Kang, S., Lee, J., Jang, H., Lee, H., Lee, Y., Park, S.,
Park, T., and Song, J. SeeMon: scalable and
energy-efficient context monitoring framework for
sensor-rich mobile environments. In ACM MobiSys (2008).

[13] Kwapisz, J. R., Weiss, G. M., and Moore, S. A. Activity
recognition using cell phone accelerometers. SIGKDD
Explor. Newsl. 12 (March 2011), 74–82.

[14] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D.,
Choudhury, T., and Campbell, A. T. A survey of mobile
phone sensing. Comm. Mag. 48 (September 2010), 140–150.

[15] Lin, K., Kansal, A., Lymberopoulos, D., and Zhao, F.
Energy-accuracy trade-off for continuous mobile device
location. In ACM MobiSys (2010).

[16] Lu, H., Pan, W., Lane, N. D., Choudhury, T., and
Campbell, A. T. SoundSense: scalable sound sensing for
people-centric applications on mobile phones. In MobiSys
(2009).

[17] Lu, H., Yang, J., Liu, Z., Lane, N. D., Choudhury, T.,
and Campbell, A. T. The jigsaw continuous sensing engine
for mobile phone applications. In ACM SenSys (2010).

[18] Miluzzo, E., Lane, N. D., Fodor, K., Peterson, R., Lu,
H., Musolesi, M., Eisenman, S. B., Zheng, X., and
Campbell, A. T. Sensing meets mobile social networks:
the design, implementation and evaluation of the CenceMe
application. In ACM SenSys (2008).

[19] Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J.,
Estrin, D., Hansen, M., Howard, E., West, R., and
Boda, P. PEIR, the personal environmental impact report,
as a platform for participatory sensing systems research. In
ACM MobiSys (2009).

[20] Munagala, K., Babu, S., Motwani, R., and Widom, J.
The pipelined set cover problem. In ICDT (2005).

[21] Nightingale, E. B., Chen, P. M., and Flinn, J.
Speculative execution in a distributed file system. ACM
Trans. Comput. Syst. 24 (November 2006), 361–392.

[22] Qin, C., Bao, X., Choudhury, R. R., and Nelakuditi, S.
TagSense: A smartphone based approach to automatic
image tagging. In ACM MobiSys (2011).

[23] Schilit, B., Adams, N., and Want, R. Context-aware
computing applications. In Proceedings of the 1994 First
Workshop on Mobile Computing Systems and Applications
(1994).

[24] Schirmer, M., and Höpfner, H. SENST*: approaches for
reducing the energy consumption of smartphone-based
context recognition. In CONTEXT (2011).

[25] Tarzia, S. P., Dinda, P. A., Dick, R. P., and Memik, G.
Indoor localization without infrastructure using the
acoustic background spectrum. In ACM MobiSys (2011).

[26] Ullman, J. D. A survey of association-rule mining. In
Third International Conference on Discovery Science
(2000).

[27] Wirz, M., Roggen, D., and Troster, G. Decentralized
detection of group formations from wearable acceleration
sensors. In Intl. Conf. on Computational Science and
Engineering - Volume 04 (2009).

[28] Zaki, M. J. Mining non-redundant association rules. Data
Mining and Knowledge Discovery 9, 3 (Nov 2004), 223–248.

