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Abstract This paper derives energy-optimal batching periods for asynchronous mul-
tistage data processing on sensor nodes in the sense of minimizing energy consump-
tion while meeting end-to-end deadlines. Batching the processing of (sensor) data
maximizes processor sleep periods, hence minimizing the wakeup frequency and the
corresponding overhead. The algorithm is evaluated on mPlatform, a next-generation
heterogeneous sensor node platform equipped with both a low-end microcontroller
(MSP430) and a higher-end embedded systems processor (ARM). Experimental re-
sults show that the total energy consumption of mPlatform, when processing data
flows at their optimal batching periods, is up to 35% lower than that for uniform pe-
riod assignment. Moreover, processing data at the appropriate processor can use as
much as 80% less energy than running the same task set on the ARM alone and 25%
less energy than running the task set on the MSP430 alone.

Keywords Real-time systems · Energy optimization · Sensor network ·
Heterogeneous platform

1 Introduction

In this paper, an optimal batching algorithm is proposed for asynchronous multistage
data-processing on sensor nodes, where optimality refers to minimizing energy con-
sumption subject to deadline constraints. Sensor data processing may include outlier
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detection, filtering, statistical analysis, correlation, spectrum analysis, CRC compu-
tation, and encryption. These operations can be grouped into computational stages.
Each stage has a constant amount of state to keep, leading to a constant, data-size-
independent overhead, in addition to a processing time that depends on the amount
of data to process. By operating on data batches (as opposed to on individual data
items), the algorithm maximizes processor sleep durations in between processing
bursts, hence minimizing data-size-independent overhead, and maximizing energy-
efficiency.

A trivially optimal batching algorithm is to wait for an amount of time equal to the
data processing deadline less the time it takes to process one data batch. The accumu-
lated batch is then processed all together. In this design, each processing stage waits
until the previous stage has finished the batch. Each stage is triggered immediately
by the completion of the predecessor stage(s).

This paper explores an alternative application design, where appropriately-sized
data processing stages run asynchronously as independent periodic tasks, reading
data from input buffers when they wake up and depositing into output buffers be-
fore going back to sleep. Admittedly, this design consumes more energy than the one
above, because stages are decoupled by data buffering, essentially breaking up one
big input buffer into many smaller interstage buffers. Invocation rates of individual
stages are correspondingly increased to keep the smaller buffers from overflowing.
However, this design is motivated by simplicity. For example, (i) it is lock free as
no synchronization is needed among stages, (ii) it allows separating complex com-
putation into small “independent” components, and (iii) it leads to fewer bugs since
simplicity of design contributes to a more reliable implementation. In a data pro-
cessing graph where individual stages run independently, the question of assigning
periods to different stages becomes important. This question is akin to breaking up
the end-to-end data processing deadline among stages in a way that maximizes en-
ergy savings while maintaining independence (Cao et al. 2010). The optimal period
assignment algorithm described in this paper solves the above problem.

If more than one processor is present, a related question is where to run each
data processing stage. Although higher-end processors consume more power when
active, some are disproportionately faster than their lower-power counterparts. This
means that they consume less energy per byte, as the higher power is consumed for
a much shorter period, leading to a smaller energy product. A problem is the data-
size-independent overhead, which is often also processor-speed-independent (e.g.,
wakeup cost and saving data to flash). Given enough batching, a break-even point
is reached where the increased energy-efficiency in processing the batch outweighs
the larger data-size-independent overhead. Task to processor assignment therefore
depends on whether or not the optimal batching period is larger than the breakeven
point.

We implement our optimal batching algorithm on mPlatform Lymberopoulos et al.
(2007), a heterogeneous sensor node platform consisting of one higher-end processor
(ARM) and one lower-end microcontroller (MSP430). It represents a next generation
of sensor node platforms, evolving from earlier platforms that used to include a low-
end processor alone. The ARM, on mPlatform, is more power-consuming and has
a higher idle power and startup overhead. However, it is also more energy-efficient
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when utilized continuously. We show that up to 25% savings can be achieved in
energy consumption when using our optimal batching algorithm compared to the
case when everything runs on the lower-end microcontroller alone. The mPlatform
is thus not only suitable for high-end sensor network applications, where the ARM
helps with large computational requirements, but also suitable for very low-power
applications, where traditional low-power platforms are unable to deliver the right
energy-efficiency.

The remainder of the paper is organized as follows. Section 2 describes related
work. Section 3 presents the task model and problem formulation. Section 4 describes
optimal batching algorithm. Evaluation results from empirical measurements are pre-
sented in Sect. 6. Finally, the paper concludes with Sect. 7.

2 Related work

There exists extensive research on system-level power optimization for embedded
and real-time systems. Earlier studies are limited to single processor systems, and
using frequency and voltage scaling as power control “knobs” under application per-
formance or time constraints (Shin et al. 2000; Krishna and Lee 2000; Acquaviva et
al. 2001; Zhong and Jha 2004). Wakeup energy and time delay cost can be substan-
tial in duty-cycled embedded devices. Benini et al. (2002) highlighted the notion of
break-even time to accommodate the nontrivial energy cost of waking up a proces-
sor from sleep. Multiprocessor and distributed real-time scheduling are significantly
more complicated than single processor cases. One needs to consider both task to
processor assignment and processor state control (Khemka and Shyamasundar 1997;
Luo 2000). In general, the problem of minimizing energy consumption of dependent
tasks under hard real-time constraints is NP hard for heterogeneous multiprocessors.
Baruah (2004) considers the task allocation problem on heterogeneous multiproces-
sor platforms without task precedence constraints nor hardware configurability. In Jin
et al. (2005), Sivanthi and Killat (2004), and Zheng et al. (2005) the objectives are to
maximize, respectively, the throughput, the minimal task slack, and task extensibil-
ity. An integer linear programming formalism has been proposed in Goraczko et al.
(2008) to compute the schedule.

Dataflow programming models have long been used in signal processing and con-
trol applications (Lee and Messerschmitt 1987; Benveniste et al. 2003). Recently,
static and dynamic dataflow models have been proposed to program sensor net-
works (Chu et al. 2007; Girod et al. 2006; Whitehouse et al. 2006), since they match
well with the data streaming abstraction of the application domain. Typical dataflow
scheduling optimize for throughput (Ha and Lee 1997; Chao and Sha 1997), dynamic
memory usage (Buck 1993), or code size (Bhattacharyya et al. 1999). Our task model
is also inspired by time-triggered architectures and languages, such as Henzinger et
al. (2001). In these models, tasks are woken up periodically to process their inputs
and produce their outputs. However, unlike Giotto, which uses a single buffer and
allows newly generated data to override older, unconsumed data, our model keeps a
traditional FIFO queue model for communication between tasks. This matches the
application requirements for most sensor networks, where each collected piece of
data needs to be processed.
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Energy optimal dataflow scheduling has been explored in the context of buffer
management. The most relevant work is on static or dynamic buffer insertion for
multi-media application (Lu et al. 2002; Cai and Lu 2004). The idea is that by buffer-
ing the inputs, one can scale down the processor to a lower power state, since buffer
insertion is not computationally intensive. Our work is different in that we take advan-
tage of power diversity in heterogeneous processors and address the wake up energy
cost.

Essentially the same idea of leveraging batching to amortize the energy overhead
of high power components has been explored in the context of heterogeneous ra-
dio systems (Lymberopoulos et al. 2008; Sengul et al. 2008). Large data packets are
stored and sent in bulk to take advantage of the energy efficiency of the high power
radio, while short control packets are transmitted over the low power radio to ensure
fast delivery. However, the work in this paper applies the idea to a dual processor
platform under real time constraints, and thus formalizes the energy optimization
problem from the perspective of allocating proper batching periods to tasks on het-
erogeneous processor boards.

The well-known concept of batching has been used in many situations to improve
system performance (Pavlovski and Boyd 1999; Youn et al. 2008). In the context
of sensor network, batching has mostly been done at MAC layer to study the traffic
effect on network energy consumption (Ning and Cassandras 2007). MAC protocols
batch multiple packets to share a single preamble or common header and send batched
packets in a large chunk. This can avoid retransmission of the same header and reduce
the number of times to access the shared medium in a competitive way. Our work
introduces the batching idea to a heterogeneous sensor node platform and exploits
batching to amortize the wake up overhead of high power processors.

There is also increasing interest in the research of reducing the energy of PC by
adding a secondary low power processor (Agarwal et al. 2009; Shih et al. 2002;
Sorber et al. 2005). The basic idea is to use the secondary processor to impersonate
the CPU of PC to fulfill some simple tasks while putting PC into sleep mode for great
energy savings. On the contrary, our approach uses two processors alternately in a
smart way to achieve energy optimization.

3 Model and problem statement

In this section, we formulate the problem of finding the optimal batching period for
each data processing stage, given a particular task-to-processor allocation, such that
energy savings are maximized subject to deadline constraints. Later, we discuss how
to compute the task-to-processor allocation. In practice, allocation is determined by
the nature of the task. For example, the MSP430 is more energy-efficient than the
ARM at simple mathematical and logical instructions, whereas the ARM is more
energy-efficient at complex floating-point operations. In some cases, it also depends
on period.

A point of departure in this paper from most prior schedulability literature lies
in its use of a data-centric task model, where data are a first-order abstraction, and
where the amount of data determines the amount of computation.
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Fig. 1 An example of two paths

Consider a sensor network node with multiple sensors. Each sensor generates data
at a given rate, creating a data flow. Data flows stream through multiple stages of
processing on the node, each performed by its own periodic task. Thus, the topology
mentioned in the paper is the topology of multistage processing tasks in a single
node. Following a periodic task model, tasks will execute once somewhere within
each period (as opposed to being executed exactly on period boundaries). Formally,
we define the notion of a path, p, as an ordered set of periodic tasks that process the
data stream sequentially in the order these tasks appear on the path. We say that a
pair of consecutive tasks Tj and Ti on the path share a (directional) link Tj → Ti ,
and that Tj is Ti ’s immediate predecessor. For example, Fig. 1 shows a task set with
two paths, p1 = (T2, T3, T4) and p2 = (T1, T4). Tasks T3 and T4 are an example of
a pair of tasks that share a link (T3 → T4), where T3 is the immediate predecessor
of T4. Let Rji denote the average rate of data transfer across the link Tj → Ti . Data
are transferred asynchronously. The producer deposits data into a shared buffer. The
consumer then reads from that buffer at a later time.

Let Pi denote the period of task Ti . We call it the batching period to emphasize the
fact that this period does not stem from physical requirements such as control loop
stability or sampling rate. It is simply the period chosen over which data are buffered
before they are processed in batch by Ti . When task Ti is invoked, it reads all the data
from each of its input buffers, processes the data, and deposits results into its output
buffer(s). The amount of data read by task Ti every period is thus equal, on average,
to the sum

∑
j PiRji , carried over the set of its immediate predecessors, j ∈ Predi .

After processing all the data in its queues, task Ti stops and waits until the next
period. The average computation time of task Ti , on processor k, denoted by Ck

i , is
the sum of a fixed, data-independent component, ck

i,0 (e.g., wakeup cost and saving
state to flash), and a component that grows linearly with data size. In other words:

Ck
i = ck

i,0 +
∑

j∈Predi

ck
jiRjiPi (1)

where ck
ji is a constant that reflects the time it takes to communicate, read and process

each unit of data that accumulated from predecessor Tj . Observe that since rates, Rji

are fixed, the above equation can be rewritten as:

Ck
i = ck

i,0 + ck
i Pi (2)
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where ck
i is a constant. In theory, one might be tempted to add other terms to (2),

reflecting algorithms of nonlinear complexity. Most algorithms that operate on data
streams, however, use incremental forms that operate on fixed-size updates (e.g., one
sample or one window of data at a time). They have the same complexity per update.
Hence, while the computation might have arbitrary complexity in other parameters,
it is linear in the number of updates processed, and hence linear in the input data size
or the batching period.

If the energy it takes to execute ck
i,0 and ck

i is ak
i and bk

i , respectively, the total

amount of energy Ek
i needed, on average, each time task Ti runs on processor k, is:

Ek
i = ak

i + bk
i Pi (3)

Observe that bk
i may include the cost of communicating data from the other processor,

if the respective stages are not allocated to the same one. Assuming that the proces-
sors sleep when not executing any tasks and that the sleep energy is negligible,1 the
average power Wk

i consumed by processor k on executing task Ti is:

Wk
i = ak

i

Pi

+ bk
i (4)

Note that ak
i and bk

i are two processor dependent parameters in our model, where
ak
i denotes the data-independent energy cost of the processor k (e.g., processor

wakeup cost and cost of saving states to flash) and bk
i is the data-dependent aver-

age power consumption of the processor k (e.g., data computation and communica-
tion cost). Some higher-end processor (e.g., ARM) has a higher ak

i value, but lower
bk
i value for some tasks (e.g., ARM is more energy efficient at complex operations

and long data types) due to its disproportionately faster speed (Lymberopoulos et al.
2007). However, the energy savings of using the higher-end processor is only pos-
sible when enough amount of data has been accumulated and processed in batch to
offset its higher ak

i overhead. Meanwhile, data usually have to traverse the processing
path within an end-to-end deadline in order to meet the application responsiveness re-
quirements or node buffer constraints. Therefore, we formulate the problem with the
goal to find the optimal batching period for each task on the data path that mini-
mizes the total (average) power consumption of the sensor node while respecting the
end-to-end deadline of the data processing on the node.

Given each task, Ti , 1 ≤ i ≤ n, executing on processor ki , and the paths pl , 1 ≤
l ≤ m, defined on those tasks, it is desired to find the optimal batching period Pi , for
each task, Ti , to minimize W , the total (average) power consumption:

W =
∑

1≤i≤n

(
a

ki

i

Pi

+ b
ki

i

)

(5)

subject to end-to-end time constraints on data paths. Data on path p must traverse the
path from sensor to final output (e.g., the radio buffer to send data to the destination)

1It is trivial to extend this assumption to the case where sleep energy is significant but, in practice, it is
usually negligible.
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Fig. 2 End to end deadline constraints

within an end-to-end delay, Dp . Consider the flow of one byte of data within a sensor
node. This byte, having been generated by a sensor, will wait for the next invocation
of the first task on its path. In a system where tasks execute independently once per
period, the maximum separation between two task invocations is upper bounded by
two periods, which is the maximum waiting time of the packet on the next task.
Once the task operates on its input data, it produces a result, which in turn may
have to wait for up to two periods on the next task. An explanation of such case is
shown in Fig. 2. Hence, for the end-to-end path deadline, Dp to be met, the batching
periods must satisfy the constraint 2

∑
i:Ti∈p Pi ≤ Dp . This constraint is rewritten

more conveniently to say that the sum of the batching periods must add up to no
more than half the end-to-end deadline:

∑

i:Ti∈p

Pi ≤ Dp/2 (6)

This completes the formulation of the optimization problem.

4 Optimal batching periods

The problem formulated in the previous section can be easily solved using the method
of Lagrange multipliers (Vapnyarskii 2001). First, we formulate the Lagrange func-
tion, L, to be minimized, which is defined as:

L =
n∑

i=1

(
a

ki

i

Pi

+ b
ki

i

)

+
m∑

p=1

λp

( ∑

i:Ti∈p

Pi − Dp/2

)

(7)
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where λp is the Lagrange multiplier. The first summation term in (7) is the objec-
tive function to be optimized as discussed in Sect. 3. The second summation term
represents the end-to-end deadline constraints to be satisfied by the batching periods.

Let us denote the optimal batching period of task Ti by P ∗
i . Setting the derivative

dL/dPi = 0 at Pi = P ∗
i yields:

P ∗
i =

√
√
√
√ a

ki

i∑
p:Ti∈p λp

(8)

Similarly, obtaining the derivative dL/dλp yields:
∑

i:Ti∈p

P ∗
i = Dp/2 (9)

The solution to the system of (8) and (9) can be computed numerically using the
following pseudocode, which will converge to the optimal periods given a sufficiently
small constant K :

loop

∀i : Pi =
√

a
ki
i∑

p:Ti∈p λp

∀p : δp = K(
∑

i:Ti∈p Pi − Dp/2)

λp = λp + δp

end loop until δp is small enough

Below, we derive an analytic solution for any non-acyclic aggregation graph topol-
ogy. Data aggregation or fusion is the most common function of sensor networks. To
derive results for arbitrary directed acyclic graphs, we first consider the chain and star
topology. For notational simplicity, since the results in this section are for a particu-
lar task allocation, we omit below the processor index from the processor-dependent
constants a

ki

i and b
ki

i . Hence, we shall use ai and bi to refer to the corresponding
energy overheads of task Ti on the processor that Ti runs on.

4.1 The chain topology

In this section, we consider a set of n tasks, T1, . . . , Tn, that form a single path, p.
Note that, the results are trivially generalizable to multiple independent paths, since
they are applicable to each path separately. For a chain topology, since each task is
precisely on one path, (8) reduces to:

P ∗
i =

√
ai

λp

(10)

Substituting for P ∗
i in (9) and rearranging to solve for λp , we get:

λp = 4(
∑

i:Ti∈p

√
ai)

2

D2
p

(11)
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Finally, substituting from (11) into (10), we get:

P ∗
i =

√
ai

∑
i:Ti∈p

√
ai

Dp

2
(12)

The result is intuitive. First, note that the sum of the optimal batching periods of
tasks on a given path p adds up to Dp/2, as expected. More interestingly, the periods
of different tasks on the path split Dp/2 proportionally to the square root of their
fixed energy cost ai . This may be expected. Since the energy overhead ai is spent
every time the task runs (regardless of how much data it processes), tasks with a high
ai should run less often (i.e., have a higher batching period) than tasks with a small
ai . Note that, the data size dependent cost, bi , does not affect period allocation. This
might have been expected as well because, ultimately, the same amount of data are
processed. Hence, the total energy spent on data processing does not depend on the
batching period and does not affect the outcome of the optimization problem. In view
of the above, we can state the following theorem:

Theorem 1 (Chain period allocation) Given a set of n periodic tasks, T1, . . . , Tn that
form a single path, with an end-to-end delay constraint, D, where task Ti executes on
processor ki , the batching period of task Ti is Pi , and the energy expended by task Ti

on processor ki is ai + biPi , the optimal batching periods P ∗
1 , . . . ,P ∗

n partition D/2
proportionally to

√
a1 : · · · : √an.

Proof The proof follows trivially from (12). �

It is interesting to notice that a chain of n tasks, T1, . . . , Tn, described above, can
be reduced to an equivalent single task, Teq , in the sense that when Teq is executed at
its optimal batching period, P ∗

eq , it consumes the same average power as the original
chain of tasks, executing at their optimal batching periods. From (4), this means:

aeq

P ∗
eq

+ beq =
∑

1≤i≤n

(
ai

P ∗
i

+ bi

)

(13)

Substituting for P ∗
i from (12) and rearranging, we get:

aeq

P ∗
eq

+ beq = (
∑

1≤i≤n

√
ai)

2

D/2
+

∑

1≤i≤n

bi (14)

From (9), the optimal period, P ∗
eq , is trivially D/2, for a single task. Substituting for

D/2 with P ∗
eq in (14) and matching the right hand side to the left hand side, we get:

aeq =
( ∑

1≤i≤n

√
ai

)2

(15)

beq =
∑

1≤i≤n

bi (16)
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This result is stated as the following theorem.

Theorem 2 (Chain reduction) At their optimal batching periods, a set of n pe-
riodic tasks, T1, . . . , Tn that form a single path, is equivalent to a single task of
aeq = (

∑
1≤i≤n

√
ai)

2 and beq = ∑
1≤i≤n bi .

Proof The proof follows trivially from (15) and (16). �

4.2 The star topology

Consider a scenario where outputs of tasks T1, . . . , Tn are inputs to a single task T0.
Let us call the former, leaf tasks and the latter the aggregator task. Hence, there are n

paths, where each path p is composed of task Tp and task T0. We expect that T0 fuses
data that were collected around the same time. Hence, for meaningful aggregation,
the end-to-end deadline, Dp , of each path p that merges into T0 should usually be the
same. Let us denote this common deadline by D. Equation (8) for the optimal period
reduces to:

P ∗
0 =

√
a0

∑
1≤j≤n λj

(17)

P ∗
i =

√
ai

λi

1 ≤ i ≤ n (18)

Substituting for P ∗
0 and P ∗

i into (9), we get:

√
ai

λi

+
√

a0
∑

1≤j≤n λj

= D/2 (19)

Since both the right hand side and the second term of the left hand side are constants
that do not depend on i, it follows that

√
ai/(λi) is constant or λ1/a1 = · · · = λn/an,

from which λj = λiaj /ai . Substituting in (19) and solving for λi , we get:

λi = 4ai

D2

(

1 +
√

a0
∑

1≤j≤n aj

)2

(20)

Finally, substituting for λi in (18), gives:

P ∗
i =

√∑
1≤j≤n aj

√∑
1≤j≤n aj + √

a0

D

2
1 ≤ i ≤ n (21)

Observe that the equation states that the optimal period is the same for all leaf tasks.
By subtracting from D/2, the optimal period of the aggregator task is:

P ∗
0 =

√
a0

√∑
1≤j≤n aj + √

a0

D

2
(22)
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In other words, in a star topology with an aggregator task T0, the optimal periods
of the aggregator task and the leaf tasks divide D/2 in proportion to

√
a0 (for the

aggregator) to
√∑

1≤j≤n aj (for each of the leaf tasks). This is consistent with the

results of Sect. 4.1. Since the leaf tasks run in parallel at the same period, their en-
ergy overheads, ai add up into one equivalent task of the combined fixed energy cost∑

1≤j≤n aj . That equivalent task is in a chain configuration with the aggregator task.
From Sect. 4.1, we know that tasks in a chain split D/2 proportionally to the square
root of their fixed energy costs, which leads to (22). The result is stated more formally
as the following theorem.

Theorem 3 (Star period allocation) Given a set of n periodic leaf tasks, T1, . . . , Tn

in a star topology with an aggregator task T0, and an end-to-end delay constraint,
D, where the batching period of task Ti is Pi and the energy expended by task Ti

on processor k is ai + biPi , the optimal batching periods P ∗
i , . . . ,P ∗

0 on each path

(Ti, T0) partition D/2 proportionally to
√∑

1≤j≤n aj ,
√

a0.

Proof The proof follows trivially from (21) and (22). �

As in the case of the chain reduction theorem, it is now possible to prove the
following.

Theorem 4 (The star reduction) At their optimal batching periods, a set of n periodic
tasks, T1, . . . , Tn that form leaves of a star, is equivalent to a single task of aeq =∑

1≤i≤n ai and beq = ∑
1≤i≤n bi .

Proof The proof follows the derivation steps of the chain reduction theorem and
hence will not be repeated. Intuitively, the theorem arises from observing that leaf
tasks execute at the same period and hence can be lumped together into one task of
their aggregate energy consumption. �

4.3 Period allocation in aggregation trees

The most common topology for data flows on a sensor node is that of an aggregation
tree. Typically data are collected from multiple sensors, filtered, processed, and then
fused. The results stated in Theorems 1 through 4 allow optimal batching periods to
be analytically computed for arbitrary aggregation trees. This is best illustrated by an
example.

Figure 3a shows a system of five tasks, T1, . . . , T5, forming an aggregation tree
sinked in T5. The consumed fixed energy overhead ai for the respective tasks is 4, 4,
1, 4, and 9, as shown in figure. The end-to-end deadline is 48 seconds. It is desired to
optimally allocate batching periods.

We first use Theorem 2 to reduce tasks T1 and T2, that form a chain, into one
equivalent task, called T12, with a12 = (

√
4 + √

4)2 = 16. Similarly, tasks T3 and
T4, that also form a chain, can be reduced into an equivalent task, T34, with a34 =
(
√

1 + √
4)2 = 9. Next, tasks T12 and T34, that form leaves of a star with T5 as the

Author's personal copy



146 Real-Time Syst (2012) 48:135–165

Fig. 3 Optimal period allocation

aggregator can be reduced by Theorem 4 into an equivalent task T1234 with a1234 =
16+9 = 25. This results in Fig. 3b. The figure shows a chain of two tasks. Theorem 1
says that their respective optimal batching periods split half the end-to-end deadline
proportionally to

√
ai or in the ratio of 5:3. Hence, the optimal batching period of T5

is (3/8)∗ 24 = 9 seconds. Each of the two chains must thus finish within 24 − 9 = 15
seconds. By Theorem 1, the chain composed of tasks T1 and T2 split their 15 seconds
equally, each getting a batching period of 7.5. Similarly, tasks T3 and T4 split their
15 seconds in the ratio 1:2. Hence, the optimal batching periods for tasks T1 and
T2 are 5 and 10, respectively. Moreover, for data processing topology of cycles, it
can basically be treated as a special chain topology where the output of the end task
happens to be the input of the first task.

5 Task to processor assignment

The results presented in Sect. 4 determine the period as a function of parameters
that depend on the allocation of tasks to processors. Hence, the period assignment
problem is not entirely separable from the task-to-processor allocation. In general,
the number of tasks on a sensor node is usually quite limited (e.g., 5–10). Given that
each task has only two assignment options, the total number of possible assignments
is tractable (30–1000). It is therefore entirely feasible to run the optimal period as-
signment for each possible task-to-processor allocation and to choose the allocation
that results in the minimum energy solution to the optimal period assignment prob-
lem across all allocations. However, when the number of tasks becomes larger or
the number of processors is more than two, such brute-force search of the optimal
task-to-processor allocation can be time and resource consuming. For example, given
the same number of tasks discussed above (i.e., 5–10), the total number of possible
assignments for three processors increases significantly (200–60000). Therefore, it is
also necessary to design a heuristic algorithm that has a high probability of finding the
optimal solution directly and efficiently. In this section, we first describe the heuristic
algorithm to find locally optimal task-to-processor assignment for a dual processor
platform and then generalize it to a multiple processor platform.
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Algorithm 1 Heuristic Task Allocation Algorithm
Start task allocation all on high-end processor
current_allocation = all_high;
new_allocation=NULL;
while current_allocation �= new_allocation do

for i = 1:i ≤ task_number;i + + do
if Inequality (23) not hold then

Move task Ti to lower-end processor
end if

end for
Get new_allocation;
Calculate the optimal batching periods for new task allocation
if iteration ≥ iterate_threshold then

Break;
end if
iteration + +;

end while
Find the Locally Optimal task assignment

Let the high-end processor be denoted by hi and the low-end processor by lo. If
ahi
i is large for a given task, Ti , it does not make sense to execute the task on that

processor unless there is time to do enough batching to offset the overhead. From (4),
for the energy consumed on executing a task, Ti , on the higher-end processor to be
lower than that on the lower-end processor, the optimal batching period, P ∗

i , must
satisfy:

ahi
i

P ∗
i

+ bhi
i <

alo
i

P ∗
i

+ blo
i (23)

Hence, to find a locally optimal task-to-processor allocation, the following three-step
process is conducted:

1. Run the optimal batching period assignment algorithm assuming that all tasks are
allocated to the higher-end processor (i.e., using values of ahi

i , not alo
i ).

2. Test the resulting optimal batching periods for satisfaction of the period constraint
stated by Inequality (23). If a task Ti fails the test, move it to the lower-end pro-
cessor.

3. Repeat the optimal batching period assignment based on the new task to processor
allocation. Check if the new task allocation is the same as the one before step 2. If
they are different go back to step 2, otherwise the resulting periods and assignment
are (locally) optimal.

The above steps are shown by the following pseudo code of Algorithm 1.
We can also extend the above algorithm of a dual processor platform to a gen-

eralized algorithm for a multiple processor platform (i.e., platform with more than
two processors). Let the set of processors that task i can be allocated to on the plat-
form be K = (ki

1, k
i
2, . . . , k

i
M), where processors are sorted by the ascending order of
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their data-independent cost (i.e., a
ki

i ). Hence, processor ki
1 has the lowest ai for task i

while processor ki
M has the highest. The optimal period constraint stated by (23) has

been changed to:

a
ki
M

i

P ∗
i

+ b
ki
M

i <
a

ki
l

i

P ∗
i

+ b
ki
l

i l = 1,2, . . . ,M − 1 (24)

The generalized algorithm to find a locally optimal task-to-processor allocation for
multiple processor platform is similar as the algorithm on dual processor platform,
except the first two steps of the three-step process discussed above are changed to:

1. Run the optimal batching period assignment algorithm assuming that each task is

allocated to the highest-end processor ki
M respectively (i.e., using values of a

ki
M

i ).
2. Test the resulting optimal batching periods for satisfaction of the constraint stated

by (24). If a task Ti fails the test, move it to the lowest power-consuming processor
ki
l for that task (i.e., processor that has the lowest power consumption of Ti ).

6 Evaluation

In this section, we evaluate the performance of the proposed optimization on mPlat-
form. This mote platform represents the next generation of sensor nodes, that exploits
heterogeneity as opposed to relying on low-end microcontrollers alone. This section
is organized as follows. First, we profile the energy properties of different mPlatform
processor boards. Then, we compare the batching period optimization approach to
several baselines and evaluate the performance of heterogeneous allocation (with op-
timal batching periods) compared to running the task set on one of the processors of
mPlatform alone. Moreover, we also evaluate the performance of the heuristic task
allocation algorithm on heterogeneous boards against the brute-force optimal alloca-
tion scheme, and investigate the effect of task granularity on the energy consumption.
Finally, we evaluate the energy cost inherent in implementing processing stages as in-
dependent, asynchronously executed tasks.

6.1 Energy profiling

As we mentioned earlier, the low-end and high-end processors have their unique but
different power characteristics and types of instructions that they are more energy-
efficient at. We first carry out experiments to profile the energy properties of the two
types of processor boards on mPlatform. The low-end processor board is equipped
with an MSP430F2618 processor while the high-end processor board is equipped
with an ARM LPC2138 processor.

In our experiments, we monitor, through an oscilloscope, the total real-time cur-
rent of the entire processor board while running tasks. To ensure that the oscilloscope
is synchronized with task execution, we use a pulse, toggled in software, on a GPIO
pin of each processor. The pulse on this pin is used to trigger the horizontal scan of the
oscilloscope, essentially causing it to display the waveform of the current consumed
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Table 1 Energy profiling
comparison of MSP board and
ARM board. Board supply
voltage is 4.5 V

Parameter MSP ARM

Frequency 16 MHz 60 MHz

Active current 8.61 mA 75 mA

Active power 38.745 mW 337.5 mW

Sleep current 0.017 mA 0.15 mA

Sleep power 0.0765 mW 0.675 mW

Wakeup time 0.7 ms 3 ms

Wakeup energy 7.43 µJ 217.4 µJ

Flash access energy 0.826 µJ/byte 1.422 µJ/byte

Inter-board transfer time 2 µs/byte

Inter-board transfer energy 0.65 µJ/byte

Sensing energy 1.64 µJ/byte

by the task, which is measured from the voltage drop across a small resistor (7.1 �)
that is in series with the mPlatform node. The integral of the current readings over
the execution time of the task (multiplied by processor board voltage) yields the total
energy the task consumes. The measured energy profiles of two types of processor
boards in basic states is summarized in Table 1. By comparing the ARM board with
the MSP board, we observe that the ARM board has higher active power, sleep power,
wakeup and flash access cost than the MSP board. Moreover, as the sensor resides on
the MSP board, data to be processed on the ARM board need to be transferred from
the MSP board, inter-board transfer overhead is given in the table.

The ARM board can only be more energy efficient than the MSP board when
bARM
i is smaller than MSP bMSP

i . Table 1 compares the basic energy characteristics
of the two processors. To compare energy expended on computation, one also needs
to understand how efficient each processor is at processing different instructions and
data types. Table 2 compares the times and energy spent in performing some basic
operations by the ARM and MSP processor boards on different data types. Please
note that these numbers are for the entire board and hence include energy consump-
tion by all circuitry involved. Observe that different operations and data types have
different energy efficiency on different boards. To be more specific, according to the
table, the ARM board is more energy efficient at multiplication and division for most
data types than the MSP board. This is most obvious for the uint_32 (long integer)
data type. In contrast, the MSP board is better at other operations like addition, sub-
traction, bit operations, relations and logic. This is likely because the ARM processor
is a 32-bit architecture which is good at handling long data types and complex opera-
tors while the MSP processor is a 16-bit architecture which is good at handling short
data types and simple operators. Numbers in bold in Table 2 highlight which board is
more energy efficient when. The results from this experiment give us an idea of what
kinds of tasks will be more energy efficient on each processor board.

6.2 Task set generation

In order to evaluate energy efficiency of representative data processing, we select
some representative routines in wireless sensor networks and digital signal processing
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Table 2 Comparison of basic operations on two processor boards across different data types

OPERATION ARM MSP

Data Type Time (µs) Energy (µJ) Time (µs) Energy (µJ)

ARITHMETIC

Multiply

uint_32 0.66 0.22275 16.2 0.62767

uint_16 0.66 0.22275 9.8 0.37970

float 1.21 0.40838 20.6 0.79815

double 1.9 0.64125 20.9 0.80977

Divide

uint_32 1.12 0.378 26.5 1.02674

uint_16 1.12 0.378 10.1 0.39132

float 2.45 0.82688 26.2 1.01512

double 8.32 2.808 26.2 1.01512

Add

uint_32 0.61 0.20588 2.2 0.08524

uint_16 0.66 0.22275 1.4 0.05424

float 1.5 0.50625 10.1 0.39132

double 2.1 0.70875 10.2 0.3952

Subtract

uint_32 0.61 0.20588 2.2 0.08524

uint_16 0.66 0.22275 1.4 0.05424

float 1.5 0.50625 10.1 0.39132

double 2.2 0.7425 10.2 0.3952

BIT OPERATION

AND
uint_32 0.48 0.162 1.6 0.06199

uint_16 0.48 0.162 1.2 0.04649

OR
uint_32 0.48 0.162 1.68 0.06509

uint_16 0.49 0.16538 1.2 0.04649

XOR
uint_32 0.49 0.16538 1.6 0.06199

uint_16 0.49 0.16538 1.2 0.04649

SHIFT
uint_32 0.46 0.15525 3.7 0.14336

uint_16 0.5 0.16875 3.4 0.13173

RELATION

uint_32 0.64 0.216 2.4 0.09299

≤≥ uint_16 0.68 0.2295 1.7 0.06587

≡�= float 1.18 0.39825 3.6 0.13948

double 1.35 0.45563 3.6 0.13948

LOGIC
AND OR

NOT All 0.31 0.10463 0.7 0.02712

to construct our task sets. The routines we implement and use in our experiments are:
Digital Filter, Fast Fourier Transform (FFT), Statistics (mean, standard derivation,
correlation), Cyclic Redundancy Check (CRC), Checksum, Encryption and Decryp-
tion. The type and parameters used for task routine generation are shown in Table 3.
By pipelining these basic routines, we create several task templates that represent
typical data processing and aggregation flows in sensor networks, including both
chain and star topologies discussed in Sect. 4. For example, a chain template might
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Table 3 Task routine type and
parameters Task routine Type/Parameters

Digital filter Type: FIR; Order: 2-8

FFT Number of Points: 8

Statistics Type: Mean, Standard Deviation,
Correlation

CRC Length: 16 bits

Checksum Type: Parity Word; Length: 16 bits

Encryption/Decryption Type: XOR Cipher

Fig. 4 Flash access overhead for MSP and ARM

be given by the regular expression: (Filter)(Statistics)(Filter)(FFT)(CRC)(Encrypt).
Each data flow is an instantiation of one such template.

Moreover, each of the above routines is parameterized to save and restore a differ-
ent amount of state in Flash memory when the processor goes to sleep. For example,
the digital filter needs to save a different amount of state depending on the order of
the filter. Such flash access overhead is data-independent and encountered once every
batching period (because state can be stored in RAM until the batch is finished). The
measured flash access energy profiles for both MSP and ARM boards are shown in
Fig. 4. Observe that the energy consumed on flash access is a step-like function of the
number of bytes written. Because expensive flash operations happen at block granu-
larity, there are jumps at block boundaries (and different processors have a different
block size). Thus, for a task i, the ai value is calculated as ai = a

wakeup
i + astate

i ,

where a
wakeup
i is the processor wakeup cost and astate

i is the overhead of saving and
restoring state into Flash memory. The bi value is given by bi = b

proc
i +bcomm

i , where
b

proc
i is the cost to process the data that can be computed by having each routine pro-

cess an increasing number of data units and computing the slope of the energy curve
with data size, and bcomm

i is the read and communication overhead to send data to the
appropriate processor board.
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6.3 Experiments with batching periods

In this section, we evaluate the performance of the optimal batching period assign-
ment on a single processor, comparing it with several baseline approaches. The het-
erogeneous processor assignment is evaluated in Sect. 6.4. We use the task model
presented in Sect. 4, and carry out experiments for both the chain and star topology
on MSP and ARM boards respectively. We incorporate all the overheads mentioned
in Sect. 6.1 in the evaluation. The power and energy numbers used are from the mea-
surements listed in Table 1.

We first evaluate the batching period assignment on the MSP board. For each
topology, we generated 20 workflows, each of them is selected from the task tem-
plates we discussed in the previous section. We adopt an end-to-end deadline of 48
seconds. The input data rate is set as 300 Bytes/s. The optimal batching period as-
signment is compared to a uniform period assignment (all periods are the same) and
a random assignment. For fairness, all assignments satisfy the constraint that the sum
of the periods adds up to half the path deadline. Each data point on a graph is repeated
1000 times and the average power consumption is computed. For the random assign-
ment, we also show the maximum and minimum power consumption across the 1000
experiments.

Figure 5 demonstrates the results for the chain topology on an MSP board. The
X-axis is the number of tasks. The Y -axis is the increase (in percentage) of power
consumption compared to the optimal case. Since the optimal case is used as an
implicit baseline, it is not plotted. For the random case, the maximum, minimum,
and average increase are plotted. Observe that the optimal period assignment always
achieves lower power consumption compared to other baselines.

Figure 6 demonstrates the results of the experiment repeated for the star topology
on the MSP board. Consistent with the previous example, we compared the random
and uniform period assignment to the optimal period assignment. Again, we observe
that the optimal period assignment achieves a lower power consumption compared to
the other approaches.

We repeat the same experiments for the two topologies on the ARM boards as
well. Results are shown in Figs. 7 and 8. We observe that the optimal batching period
assignment is better than other approaches in terms of average power consumption.

The above experiments are carried out under the constant input data rate. However,
in some sensor network applications (e.g., event-driven applications), the input data

Fig. 5 Comparison for chain
topology on MSP versus task
number
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Fig. 6 Comparison for star
topology on MSP versus task
number

Fig. 7 Comparison for chain
topology on ARM versus task
number

Fig. 8 Comparison for star
topology on ARM versus task
number

rate may not always be constant. Hence, it is also interesting to investigate how the
variation of the input data rate (and hence task computation time) affects the power
consumption savings of the optimal period assignment compared to other baselines.
We repeated the above experiments to show such effect by varying the variation of
the input data rate. The task number is fixed at 10 and the average input data rate
is set as 300 Bytes/s. We vary the standard deviation of the input data rate from 10
to 50 Bytes/s. Each data point on the graph is repeated 1000 times and the average
power consumption is computed.

Figure 9 demonstrates the result of chain topology on MSP board. Observe that the
optimal period assignment continues to achieve lower power consumption compared
to other baselines and the variation of input data rate does not affect the power con-
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Fig. 9 Comparison for chain
topology on MSP versus input
data rate variation

Fig. 10 Comparison for star
topology on MSP versus input
data rate variation

Fig. 11 Comparison for chain
topology on ARM versus input
data rate variation

sumption savings of the optimal period assignment significantly. The reason is that
the data rate is incorporated into the data dependent average power consumption pa-
rameter (i.e., bk

i ) defined in (3), which is proven to be independent of the period allo-
cation of the optimal assignment scheme. Figure 10 shows the result of star topology
on MSP board. We also observe that the optimal period assignment scheme achieves
the lowest power consumption and the variation of input data rate has limited effect
on the power consumption savings achieved. We repeat the same experiments on the
ARM processor. Results are shown in Figs. 11 and 12. Similar results on the MSP
board are observed on the ARM board as well.
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Fig. 12 Comparison for star
topology on ARM versus input
data rate variation

Fig. 13 Heterogeneous
assignment versus MSP

Fig. 14 Heterogeneous
assignment versus ARM

6.4 Experiments with optimal task assignment

In this section, we compare the performance of assigning tasks to only one of pro-
cessor boards vs the optimal heterogeneous processor board assignment. Reported
results are averaged over 50 experiments. Figures 13 and 14 compare the energy
consumed by the heterogeneous assignment to assignment on the MSP only and the
ARM only, respectively. Observe that utilizing both processors saves a considerable
amount of energy compared to using MSP alone (nearly 25% savings) or ARM alone
(around 80% savings). The figures show energy savings for a different number of
tasks under varying Ri,in values. Interestingly, compared to the MSP processor, het-
erogeneous assignment saves more energy when the Ri,in is larger. In contrast, for

Author's personal copy



156 Real-Time Syst (2012) 48:135–165

Fig. 15 Energy increase of
heuristic task allocation versus
input rate on mPlatform

Fig. 16 Energy increase of
heuristic task allocation versus
deadline on mPlatform

the ARM, the algorithm saves more when the Ri,in is smaller. The reason is that
tasks that have a smaller bi on the ARM board than on the MSP board need to pro-
cess a certain amount data in each batching period to get enough energy savings to
overcome the fixed overheads. Therefore, having a higher data rate for such tasks
makes the ARM more efficient (while a lower rate favors the MSP). Results from
above experiments validate our claim that we can achieve better energy efficiency by
exploiting the processor heterogeneity with an optimal batching period allocation in
sensing applications.

6.5 Experiments with heuristic task allocation and task granularity

In this section, we first evaluate the performance of the heuristic task allocation al-
gorithm we proposed in Sect. 5 as compared to the brute-force optimal task alloca-
tion scheme on mPlatform. Reported results are averaged over 100 experiments. The
heuristic algorithm is much faster and more efficient to implement than the brute-
force one considering the limited energy and resource on motes. Figures 15 and 16
show the energy penalty for the heuristic task allocation algorithm compared to the
brute-force optimal scheme across heterogeneous processor boards. Observe that the
energy increase of the heuristic task allocation compared to the brute-force optimal
scheme is reasonably small (less than 4%) under various input rates and deadlines. In
other words, the proposed heuristic task allocation algorithm is able to find the global
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Fig. 17 Energy increase of
heuristic task allocation versus
input rate on an emulated 3
processor platform

Fig. 18 Energy increase of
heuristic task allocation versus
deadline on an emulated 3
processor platform

optimal task allocation with a high probability. Interestingly, the energy increase is
more obvious when the input rate Ri,in and deadline D are smaller. The reason is
that the energy consumption on MSP and ARM boards becomes similar with small
Ri,in and D values. The similarity provides more opportunities for the global opti-
mal allocation found by the brute-force scheme to be different from the local optimal
allocation found by the heuristic algorithm.

Furthermore, we discussed about the generalization of the proposed heuristic
scheme to a multiple processor platform in Sect. 5. Since mPlatform only has two
type of processors (i.e., MSP and ARM) on boards, for evaluation purpose, we emu-
late a 3-processor platform with the third type of processor chosen as ATmega128L
(i.e., the processor used by MicaZ mote). The power parameters of the ATmega128L
processor emulated are taken from its datasheet.2 The inter-board communication
cost of the emulated platform is assumed to be the same as mPlatform. We run simu-
lations of the above experiments on the emulated 3-processor platform and show the
performance of the generalized heuristics for multiple processor platform. Figures 17
and 18 show the energy penalty for the generalized heuristic task allocation algo-
rithm for multiple processors compared to the brute-force optimal scheme across the
emulated 3-processor platform. Observe that the energy increase of the generalized

2See http://www.datasheetarchive.com/ATMEGA128L-datasheet.html.
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Fig. 19 Energy cost versus task
granularity

heuristic task allocation scheme compared to the brute-force optimal scheme is larger
than the dual processor case on mPlatform. However, it still remains to be reasonably
small under various input rates and deadlines. The reason for such energy increase is
that the larger the number of different types of processors, the more chances that the
heuristic allocation scheme can deviate from the global optimal one. Results verify
the effectiveness of the proposed generalized heuristics to find the optimal task to
processor allocation across multiple processor platform.

Additionally, we also evaluate the effect of task granularity on the energy con-
sumption of the platform. The task granularity here is defined as the number of task
routines that are tied up together (i.e. written, compiled and programmed) to run on
a single processor board. Figure 19 shows the result of energy consumption increase
of the platform under varying task granularity compared to the optimal case (i.e.
granularity = 1) with different size of task set. Observe that the energy cost increases
as the task granularity increases. This is intuitive: as more tasks are bound together
on a single board, the task allocation scheme will have less flexibility in manipulating
tasks across different boards. This trade off can give helpful hints to programmers in
implementing and compiling their task routines over heterogeneous platforms.

6.6 The cost of asynchrony

The reader is reminded that the paper starts with an assumption on application struc-
ture. Namely, we consider applications where the processing of each data flow is
structured as a set of independent periodic tasks, each executing on the flow indepen-
dently, without synchronization with other tasks. Buffers between stages make such
independence possible. The approach is motivated by advantages of simplicity, sep-
aration of concerns, and possibly increased reliability as a result of fewer bugs, com-
pared to designs where synchronization primitives are used to trigger stage-execution
in a synchronized fashion. Next we examine the cost paid for asynchrony. To do so,
we compare our asynchronous optimal period assignment to the synchronous case
where all processing stages are lumped in one that executes at a period equal to
the end-to-end data processing deadline. The energy consumption difference of two
schemes is given by:

Easyn − Esyn =
∑

i

ai ×
(⌊

Dp

P ∗
i

⌋

− 1

)

(25)
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Fig. 20 The cost of
asynchronous scheme compared
to synchronous scheme

where, Easyn and Esyn denote the energy consumption of the asynchronous and syn-
chronous scheme respectively. Observe that the extra energy cost of asynchronous
scheme comes from the data-independent cost (i.e., ai ) of processors. This is because
processors may wake up multiple times under asynchronous scheme while they only
wake up once under synchronous scheme. Meanwhile, the data-dependent costs of
two schemes are the same (i.e., they both process the same amount of data).

The normalized cost of asynchrony is:

Casyn = Easyn − Esyn

Esyn

=
∑

i ai × (⌊Dp

P ∗
i

⌋ − 1
)

∑
i ai + biDp

(26)

Note that P ∗
i < Dp for all i and �Dp

P ∗
i
� > 1 for some i in the asynchronous scheme,

hence Casyn > 0. This indicates that the synchronous scheme should always use less
energy than the asynchronous one as it allows for more batching and less wake up of
processors.

We run same experiments as in the previous sections for the two approaches. Fig-
ure 20 shows the overhead paid in our optimal period assignment compared to the
synchronized case. Observe that for a large number of tasks and small data rates, the
cost of asynchrony is relatively high. This is because the average batching period be-
comes smaller in our approach as the number of tasks increases. When the data rate
is small, the data-dependent energy component for both approaches shrinks, mag-
nifying the effects of the data-size-independent cost encountered. We conclude that
application designers should choose with care which approach to use. The choice may
depend on many factors including component availability nature of interfaces, and of
course energy implications. For a system that uses the asynchronous approach, our
contribution lies in optimizing performance while maintaining independence among
processing stages.

6.7 The trade-offs between energy savings and responsiveness

In some sensor network applications (e.g., health monitoring), the network respon-
siveness is the primary concern. The model proposed in Sect. 3 incorporates the end-
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Fig. 21 Trade-offs between
energy savings and
responsiveness

to-end deadline of data processing on a sensor node, which can help impose the re-
sponsiveness guarantees on such applications. Therefore, it is interesting to show the
trade-offs between energy savings achieved by the proposed batching scheme and the
average end-to-end deadline of data processing on a sensor node. We run the same
experiments as in the previous sections and show the energy savings of the proposed
optimal batching scheme compared to the scheme where no batching is done (i.e.,
processors are always kept on) under different average data processing deadline and
input data rate. We set the number of tasks to be 10 and vary the average end-to-end
deadline from 1.2 to 0.3 s. Reported results are averaged over 100 experiments.

Figure 21 shows the trade-offs between the energy savings achieved by the pro-
posed batching scheme and the average end-to-end deadline of data processing on a
sensor node. Observe that the energy savings of the optimal batching scheme drops
as the average deadline of data processing decreases. This is intuitive: the batching
period decreases when the average deadline of data processing decreases, which di-
rectly shortens the time that processors stay in the sleep mode. After the deadline of
data processing falls below certain values, the proposed batching scheme stops gain-
ing energy savings. The reason is that the batching period is so small under those
conditions that the processor wakeup cost overweights the energy savings obtained
during the sleeping period. Also note that the energy savings is high when the input
data rate is low. This is because lower data rate results in shorter task computation
time, which allows the processor to sleep longer within a batching period.

6.8 The impact of batching on network communication

We also note that the proposed batching scheme has an impact on the network com-
munication. In particular, the network traffic becomes more bursty when the batching
is done more aggressively (i.e., with longer batching periods) on sensor nodes. We
study the effect of our proposed batching scheme on the network traffic by simulation,
where multiple sensor nodes have to share the radio channel to concurrently transmit
data. The simulation is implemented in ns-2.34 simulator with IEEE 802.15.4 mod-
ule developed by CUNNY.3 In the simulation scenario, we run our experiments under
a typical one-hop neighborhood of a sensor network where a node is exposed to the

3ns-2 network simulator: http://www.isi.edu/nsnam/ns/index.html.
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Fig. 22 The batching impact on
end to end delay of packets

Fig. 23 The batching impact on
network throughput

traffic from multiple neighboring nodes. Specifically, there are one coordinator in the
center of the neighborhood and 5 to 15 sensor nodes with the same distance away
from the coordinator. All nodes including the coordinator are in each other’s trans-
mission range. At each node, data transmission is invoked at the period that equals
to the end-to-end deadline of data processing on that sensor node to transmit all the
processed data accumulated over the period. Data packets are transmitted from sensor
nodes to the coordinator. The packet size is set to 100 Bytes and packet interval is set
to 0.05 s. The simulation time is 10000 seconds.

Figure 22 shows the effect of batching on the end-to-end delay of packets. The
X axis is the average deadline of data processing of the proposed batching scheme
on a sensor node and the Y axis is the end-to-end delay of packets. Observe that
the end-to-end delay of packets increases as the average deadline of data processing
increases. This is because the network traffic becomes more bursty as the average
deadline of data processing grows. It is then more difficult for the MAC protocol
to accommodate nodes that have conflicting transmission schedule to finish the data
transmission within their periods. We also observe that the end-to-end delay is longer
when the number of nodes in the neighborhood becomes larger. The reason is that the
probability of two nodes starting to transmit at the same time increases as the network
becomes denser, hence the back-off scheme of the MAC protocol will further delay
the packet transmission.

Figure 23 shows the effect of batching on the network throughput. Observe that the
network throughput degrades gracefully as the average deadline of data processing
on a sensor node increases. This is attributed to the contention avoidance feature
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of the CSMA/CA protocol implemented on 802.15.4 nodes. Even though the traffic
becomes more bursty as the average deadline of data processing becomes larger, the
CSMA/CA still manages to deliver most of the packets when the network is not very
dense. Moreover, we also observe that the network throughput degradation becomes
more significant when the number of nodes in the network increases.

7 Conclusions

This paper describes how to optimally amortize energy overheads by batching sensor
data processing, when sensor data flows are processed asynchronously by stages im-
plemented as independent periodic tasks. An algorithm was developed for computing
the optimal batching period for tasks involved in sensory data processing, with a spe-
cial emphasis on aggregation trees. Experimental results, measured on mPlatform,
show that the optimal batching period algorithm saves energy over other baselines
for batching period assignment. Results also show that running some of the batched
tasks on a heterogeneous processor platform (e.g., mPlatform with ARM and MSP)
can save energy compared to running all the tasks on either the lower-end processor
(e.g., MSP) alone or the higher-end processor (e.g., ARM) alone. This approach is
useful for saving energy in sensor applications where sensor data pipelines are ma-
nipulated by independently executed periodic stages.
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