
Groundhog Day: Near-Duplicate Detection on Twitter

Ke Tao1, Fabian Abel1,2, Claudia Hauff1, Geert-Jan Houben1, Ujwal Gadiraju1

1TU Delft, Web Information Systems, PO Box 5031, 2600 GA Delft, the Netherlands
wis@st.ewi.tudelft.nl

2XING AG, Gänsemarkt 43, 20354 Hamburg, Germany
fabian.abel@xing.com

ABSTRACT
With more than 340 million messages that are posted on
Twitter every day, the amount of duplicate content as well
as the demand for appropriate duplicate detection mecha-
nisms is increasing tremendously. Yet there exists little re-
search that aims at detecting near-duplicate content on mi-
croblogging platforms. We investigate the problem of near-
duplicate detection on Twitter and introduce a framework
that analyzes the tweets by comparing (i) syntactical char-
acteristics, (ii) semantic similarity, and (iii) contextual infor-
mation. Our framework provides different duplicate detec-
tion strategies that, among others, make use of external Web
resources which are referenced from microposts. Machine
learning is exploited in order to learn patterns that help
identifying duplicate content. We put our duplicate detec-
tion framework into practice by integrating it into Twinder,
a search engine for Twitter streams. An in-depth analysis
shows that it allows Twinder to diversify search results and
improve the quality of Twitter search. We conduct extensive
experiments in which we (1) evaluate the quality of different
strategies for detecting duplicates, (2) analyze the impact of
various features on duplicate detection, (3) investigate the
quality of strategies that classify to what exact level two
microposts can be considered as duplicates and (4) optimize
the process of identifying duplicate content on Twitter. Our
results prove that semantic features which are extracted by
our framework can boost the performance of detecting du-
plicates.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Information filtering ; H.4.m [Information Sys-
tems]: Miscellaneous

Keywords
Duplicate Detection; Twitter; Diversification; Search

1. INTRODUCTION
On microblogging platforms such as Twitter or Sina Weibo,

where the number of messages that are posted per second ex-
ceeds several thousands during big events1, solving the prob-

1
http://blog.twitter.com/2012/02/post-bowl-twitter-analysis.

html

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

lem of information overload and providing solutions that al-
low users to access new information efficiently are non-trivial
research challenges. The majority of messages on microblog-
ging platforms refer to news, e.g. on Twitter more than 85%
of the tweets are news-related [9]. Many of the microp-
osts convey the same information in slightly different forms
which puts a burden on users of microblogging services when
searching for new content. Teevan et al. [23] revealed that
the search behaviour on Twitter differs considerably from
the search behaviour that can be observed on regular Web
search engines: Twitter users issue repetitively the same
query and thus monitor whether there is new content that
matches their query.

Traditional Web search engines apply techniques for de-
tecting near-duplicate content [8, 12] and provide diversifi-
cation mechanisms to maximize the chance of meeting the
expectations of their users [19]. However, there exists lit-
tle research that focuses on techniques for detecting near-
duplicate content and diversifying search results on micro-
blogging platforms. The conditions for inferring whether
two microposts comprise highly similar information and can
thus be considered near-duplicates differ from traditional
Web settings. For example, the textual content is limited
in length, people frequently use abbreviations or informal
words instead of proper vocabulary and the amount of mes-
sages that are posted daily is at a different scale (more than
340 million tweets per day2).

In this paper, we bridge the gap and explore near-duplicate
detection as well as search result diversification in the mi-
croblogging sphere. The main contributions of this paper
can be summarized as follows3.

• We conduct an analysis of duplicate content in Twit-
ter search results and infer a model for categorizing
different levels of duplicity.

• We develop a near-duplicate detection framework for
microposts that provides functionality for analyzing (i)
syntactical characteristics, (ii) semantic similarity and
(iii) contextual information. The framework also ex-
ploits external Web content which is referenced by the
microposts.

• Given our duplicate detection framework, we perform
extensive evaluations and analyzes of different dupli-
cate detection strategies on a large, standardized Twit-

2
http://blog.twitter.com/2012/03/twitter-turns-six.html

3We make our framework and datasets publicly available on
our supporting website [22].

1273

ter corpus to investigate the quality of (i) detecting
duplicates and (ii) categorizing the duplicity level of
two tweets.

• We integrate our duplicate detection framework into a
Twitter search engine to enable search result diversifi-
cation and analyze the impact of the diversification on
the search quality.

2. RELATED WORK
Since Twitter was launched in 2006 it has attracted a lot

of attention both from the general public and research com-
munities. Researchers managed to find patterns in user be-
haviours on Twitter, including users’ interests towards news
articles [1], users’ behaviour over time [10], and more gen-
eral habits that users have on Twitter [18]. Previous re-
search also studied the characteristics of emerging network
structures [14] and showed that Twitter is rather a news
media than a social platform [9]. Another area of interest is
event detection in social Web streams [24], for example in
the context of natural disasters [20].

The keyword-based search functionality is a generic tool
for users to retrieve relevant information. Teevan et al. [23]
analyzed the search behaviour on Twitter and found differ-
ences with respect to normal Web search. A first benchmark
on Twitter data was introduced at TREC4 2011 with a track
related to search in microblogs5. Among the solutions devel-
oped by participating researchers are many feature-driven
approaches that exploit topic-insensitive features such as
“does the tweet contain a URL?” to rank the tweets that
match a given keyword query, e.g. [16]. More sophisticated
search solutions also extract named entities from tweets in
order to analyze the semantic meaning of tweets [21]. Bern-
stein et al. [5] investigated alternative topic-based browsing
interfaces for Twitter while Abel et al. [2] investigated the
utility of faceted search for retrieval on Twitter. However,
none of the aforementioned research initiatives investigated
strategies for near-duplicate detection and search result di-
versification in microblogs.

Traditional Web search engines benefit from duplicate de-
tection algorithms and diversification strategies that make
use of Broder et al.’s [6] shingling algorithm or Charikar’s [7]
random projection approach. Henzinger conducted a large-
scale evaluation to compare these two methods [8] and Manku
et al. [12] proposed to use the latter one for near-duplicate
detection during Web crawling. To achieve diversification
in search results, Agrawal et al. [3] studied the problem of
search result diversification in the context of answering am-
biguous Web queries and Rafiei et al. [19] suggested a solu-
tion to maximize expectations that users have towards the
query results. However, to the best of our knowledge, the
problem of identifying near-duplicate content has not been
studied in the context of microblogs. In this paper, we thus
aim to bridge the gap and research near-duplicate detection
and search result diversification on Twitter.

3. DUPLICATE CONTENT ON TWITTER
In this section, we provide the outcomes of our study of

duplicate content on the Twitter platform. We present a

4http://trec.nist.gov
5http://sites.google.com/site/microblogtrack/

definition of near-duplicate tweets in 5 levels and show con-
crete examples. We then analyze near-duplicate content in
a large Twitter corpus and investigate to what extent near-
duplicate content appears in Twitter search results.

All our examples and experiments utilize the Twitter cor-
pus which is provided by TREC [13].

3.1 Different levels of Near-Duplicate tweets
In this paper, we define duplicate tweets as tweets that

convey the same information either syntactically or seman-
tically. We distinguish near-duplicates in 5 levels.

Exact copy The duplicates at the level of exact copy are
identical in terms of characters. An example tweet pair (t1,
t2) in our Twitter corpus is:
t1 and t2: Huge New Toyota Recall Includes 245,000 Lexus GS,

IS Sedans - http://newzfor.me/?cuye

Nearly exact copy The duplicates of nearly exact copy
are identical in terms of characters except for #hashtags,
URLs, or @mentions. Consider the following tweet:
t3: Huge New Toyota Recall Includes 245,000 Lexus GS,

IS Sedans - http://bit.ly/ibUoJs

Here, the tweet pair of (t1, t3) is a near-duplicate at a level
of nearly exact copy.

Strong near-duplicate A pair of tweets is strong near-
duplicate if both tweets contain the same core messages syn-
tactically and semantically, but at least one of them con-
tains more information in form of new statements or hard
facts. For example, the tweet pair of (t4, t5) is strong near-
duplicate:
t4: Toyota recalls 1.7 million vehicles for fuel leaks:

Toyota’s latest recalls are mostly in Japan, but they

also... http://bit.ly/dH0Pmw

t5: Toyota Recalls 1.7 Million Vehicles For Fuel Leaks

http://bit.ly/flWFWU

Weak near-duplicate Two weak near-duplicate tweets
either (i) contain the same core messages syntactically and
semantically while personal opinions are also included in one
or both of them, or (ii) convey semantically the same mes-
sages with differing information nuggets. For example, the
tweet pair of (t6, t7) is a weak near-duplicate:
t6: The White Stripes broke up. Oh well.

t7: The White Stripes broke up. That’s a bummer for me.

Low-overlapping The low-overlapping pairs of tweets se-
mantically contain the same core message, but only have a
couple of common words, e.g. the tweet pair of (t8, t9):
t8: Federal Judge rules Obamacare is unconsitutional...

t9: Our man of the hour: Judge Vinson gave Obamacare its

second unconstitutional ruling. http://fb.me/zQsChak9

If a tweet pair does not match any of the above definitions,
it is considered as non-duplicate.

3.2 Near-Duplicates in Twitter Search Results
In Section 3.1, the example tweets come from the Tweets

2011 corpus [13], which was used in the Microblog track of
TREC 2011. The corpus is a representative sample from
tweets posted during a period of 2 weeks (January 23rd to
February 8th, 2011, inclusive). As the corpus is designed to
be a reusable test collection for investigating Twitter search

1274

1.89%&

9.51%&

21.09%&

48.71%&

18.80%&

Exact©&

Nearly&exact&
copy&

Strong&near;
duplicate&

Weak&near;
duplicate&

Low&overlapping&

Figure 1: Ratios of near-duplicates in different levels

and ranking, it is used for the experiments of duplicate de-
tection and search result diversification in the rest of the
paper. The original corpus consists of 16 million tweets.

Besides the tweets, 49 topics (or queries) were provided
for retrieval purposes. Moreover, TREC assessors judged
the relevance between 40,855 topic-tweet pairs. A total of
2,825 topic-tweet pairs were judged as relevant. In other
words, each topic on average has 57.65 relevant tweets. Em-
ploying Named Entity Recognition (NER) services on the
content of these relevant tweets and the content of the 1,661
external resources referred by the links mentioned in them
results in 6,995 and 56,801 entity extractions respectively
when using DBpedia Spotlight [15], or 6,292 and 35,774 en-
tity extractions respectively when using OpenCalais6. For
each topic, we manually labelled all pairs of relevant tweets
according to the levels of near-duplicates that we defined in
in Section 3.1. In total, we labelled 55,362 tweet pairs. As
a result, we found that 2,745 pairs of tweets are duplicate,
1.89% of them were labelled as exact copy and 48.71% of
them were judged as weak near-duplicates (see Figure 1).

For each of the 49 topics, we ranked the tweets accord-
ing to their relevance to the corresponding topic based on
previous work [21] to investigate to what extent the ranked
search results contain duplicate items. In the top 10, 20, 50
items and whole range of search results, we find that 19.4%,
22.2%, 22.5%, and 22.3% respectively are duplicates. Given
one fifth of the items are duplicates, we consider duplicate
detection an important step in the processing pipeline to
diversify the search results.

4. DUPLICATE DETECTION FRAMEWORK
We consider the problem of duplicate detection as a clas-

sification task that can be performed in two steps: (i) de-
ciding whether a pair of tweets are duplicates or not; and
(ii) determining the duplicate level. For both steps, we rely
on a collection of features that exploit syntactical elements,
the semantics in both tweets and the content of referred Web
pages, as well as context information about tweets and users.
Finally, we employ logistic regression classifiers to ensemble
the characteristics from pairs of tweets into the detection of
duplicates and the determination of the levels.

4.1 Features of Tweet Pairs
We now provide an overview of the different features that

we extract from tweet pairs for the task of duplicate detec-
tion. Given a pair of tweets (ta, tb), four sets of features are
constructed. In the following sections, we elaborate on the
definition of the features and the hypotheses that led us to
include them in our strategies.

6http://www.opencalais.com

4.1.1 Syntactic Features
We construct syntactical features by matching the tweet

pairs with respect to their overlap in letters, words, hashtags
and URLs.

Levenshtein distance This feature indicates the number
of characters required to change one tweet to the other. Each
change can be a deletion, insertion, or substitution. Hence,
Levenshtein distance evaluates the difference between a pair
of tweets on the basis of differences in the usages of words,
phrases, et cetera. As the furthest Levenshtein distance be-
tween a pair of tweets is Lmax = 140 (the maximum length
of a tweet), we normalize this feature by dividing the origi-
nal value by Lmax. Therefore, the final value of this feature
is in the range of [0, 1].
Hypothesis H1: The smaller the Levenshtein distance be-
tween a pair of tweets, the more likely they are duplicates
and the higher the duplicate score.

Overlap in terms This feature compares tweet pairs by
words. Although the tweets of near-duplicates use similar
sets of words, the ordering of words may differ. Therefore we
check the overlap in terms between tweet pairs. In our im-
plementation, this feature is measured by using the Jaccard
similarity coefficient as following:

overlap(w(ta), w(tb)) =
|w(ta) ∩ w(tb)|
|w(ta) ∪ w(tb)|

(1)

Here, w(ta) and w(tb) are the sets of words that are used
in ta and tb respectively. As we use the Jaccard similarity
coefficient to measure the overlap, the value of this feature
is in the range of [0, 1]. Similarly, the following features that
describe overlap in different aspects are measured by the
Jaccard similarity coefficient.
Hypothesis H2: The more overlap in terms we find between
a pair of tweets, the higher the duplicate score.

Overlap in hashtags Hashtags are often used by users in
tweets to get involved in the discussion about a topic, and
also to make their voice easier to be found by others. This
feature measures the overlap in hashtags between tweet pairs.
Hypothesis H3: The more common hashtags we find between
a pair of tweets, the more likely they are duplicates and the
higher the duplicate score.

Overlap in URLs Due to the length limitation of tweets,
users often make use of URLs to give pointers to relevant
detailed information. Hence we check the overlap of the
links contained in the given pair of tweets. If a pair of tweets
contain the same URL, they are probably about the same
topic and are likely to be duplicates.
Hypothesis H4: The more overlap in URLs we find between
a pair of tweets, the more likely they are duplicates and the
higher the duplicate score.

Overlap in expanded URLs Various Twitter client ap-
plications and sharing functions used by news media sites
shorten the URLs in order to give more space for real con-
tent [4]. As a result, we may miss some actual overlap in
URLs if we only check original URLs. For this reason, we
measure the overlap in expanded URLs between tweets. The
expanded URLs can be obtained via the redirected locations
given in the HTTP responses.
Hypothesis H5: The more common URLs we found between
a pair of tweets after expanding the URLs, the more likely
they are duplicates and the higher the duplicate score.

1275

Length difference Besides matching letters, words, hash-
tags, and URLs, we also calculate the difference in length
between two tweets and normalize it by Lmax:

length difference =
abs(|tweeta| − |tweetb|)

140
(2)

Hypothesis H6: The smaller the difference in length between
two tweets, the higher the likelihood of them being duplicates
and the higher their duplicate score.

4.1.2 Semantic Features
Apart from syntactical features of tweet pairs, semantic

information may also be valuable for identifying duplicates,
especially when the core messages or important entities in
tweets are mentioned in different order. For this reason, we
analyze the semantics in both tweets of a pair and construct
features that may help with distinguishing duplicate tweets.
We utilize NER services like DBpedia Spotlight, OpenCalais
as well as the lexical database WordNet to extract the fol-
lowing features.

Overlap in entities Given extracted entities or concepts
by employing NER services, we can check the overlap be-
tween the sets of entities in tweet pairs. The near-duplicate
tweet pairs should contain the same core messages and there-
fore the same entities should be mentioned.
Hypothesis H7: The tweet pairs with more overlapping enti-
ties are more likely to have a high duplicate score.

Overlap in entity types For entities extracted from NER
services, the types of the entities can also be retrieved. For
example, if tb contains the entities of type person and loca-
tion, ta should also contain the same type of entities to con-
vey the core messages if they are a near-duplicate tweet pair.
Otherwise, more types of entities may indicate it contains
more information or less types may suggest only a partial
coverage of the core message in ta. Therefore, we construct
features that measure the overlap in entity types between
tweet pairs.
Hypothesis H8: The tweet pairs with more overlapping entity
types are more likely to have a high duplicate score.

In fact, we found only a slight difference in performance
between using DBpedia Spotlight and OpenCalais. In prac-
tice, we construct two features and derivative features (in-
troduced later) by using DBpedia Spotlight because it yields
slightly better results.

Overlap in topics Besides outputting entities with types,
OpenCalais can classify the input textual snippets into 18 dif-
ferent categories a.k.a. topics. In this case, each tweet may
be assigned more than one topic label or no topic at all.
Therefore, it is possible to construct a feature by checking
the overlap in topics.
Hypothesis H9: The tweet pairs that share more topics are
more likely to have a high duplicate score.

Overlap in WordNet concepts We constructed this fea-
ture to compute the overlap based on lexical standards. To
achieve this, we make use of the lexical database Word-
Net [17] to identify the nouns in pairs of tweets and calculate
their overlap in these nouns. Practically, we use JWI (MIT
Java Wordnet Interface)7 to find the root concepts of the
nouns in the tweets.
Hypothesis H10: The more overlap in WordNet noun con-
cepts we find in a pair of tweets, the more likely they are to
be duplicates and the higher their duplicate score.
7http://projects.csail.mit.edu/jwi/

Algorithm 1: WordNet similarity of a tweet pair

input : Tweet Pair (ta, tb)
output: WordNet similarity of Tweet Pair (ta, tb)

acc ← 0;
if |ta| > |tb| then

swap(ta, tb);

foreach WordNet noun concept ca in ta do
maximum ← 0;
foreach WordNet noun concept cb in tb do

if maximum < similaritylin (ca, cb) then
maximum ← similaritylin (ca, cb);

acc ←acc + maximum;

return acc
|Wa| ;

Overlap in WordNet synset concepts Making use of
merely WordNet noun concepts may not fully cover the over-
lap in information because different tweets may use differ-
ent words or synonyms to convey the same information. In
WordNet, synsets are interlinked by means of conceptual-
semantic and lexical relations. We can make use of synsets
to include all words with similar meaning for checking the
overlap between tweet pairs.
Hypothesis H11: If the concepts in synsets are included for
checking overlap between tweet pairs then the overlap fea-
ture may have a more positive correlation with the duplicate
scores.

WordNet similarity There are several existing algorithms
for calculating the semantic relatedness between WordNet
concepts, e.g. the method proposed by Lin et al. [11] can
measure the semantic relatedness between two concepts with
a value between [0, 1]. The WordNet concepts are paired in
order to get the highest relatedness. Practically, we follow
Algorithm 1 to get this feature for a tweet pair (ta, tb). In
the description of the algorithm, Wa stands for the set of
WordNet noun concepts that appear in ta.
Hypothesis H12: The higher the WordNet similarity of a
tweet pair, the higher the likelihood of the tweets being du-
plicates and the higher their duplicate score.

4.1.3 Enriched Semantic Features
Due to the length limitation of tweets, 140 characters may

not be enough to tell a complete story. Furthermore, some
tweets, created by sharing buttons from other news sites for
example, may even break the complete message. Thus, we
make use of the external resources that are linked from the
tweets. This step yields additional information and further
enriches the tweets’ semantics. Finally, we build a set of
so-called enriched semantic features.

We construct six enriched semantic features, which are
constructed in the same way as semantic features introduced
in Section 4.1.2. The only difference is that the source of
semantics contains not only the content of the tweets but
also the content that we find by retrieving the content of
the Web sites that are linked from the tweets.

4.1.4 Contextual Features
Besides analyzing syntactical and semantic aspects, which

describe the characteristics of tweet pairs, we also evalu-
ate the effects of the context in which the tweets were pub-
lished on the duplicate detection. We investigate three types

1276

of contextual features: temporal difference of the creation
times, similarity of the tweets’ authors, and the client appli-
cation that the authors used.

Temporal difference For several popular events, e.g. UK
Royal wedding, Japanese earthquake, and Super Bowl, users
have posted thousands of tweets per second. During these
events, breaking news are often retweeted not long after be-
ing posted. Therefore, it is reasonable to assume that the
time difference between duplicate tweets is rather small. We
normalize this feature by dividing the original value by the
length of the temporal range of the dataset (two weeks in
our setup).
Hypothesis H13: The smaller the difference in posting time
between a pair of tweets, the higher the likelihood of it being
a duplicate pair and the higher the duplicate score.

User similarity Similar users may publish similar content.
We measure user similarity in a lightweight fashion by com-
paring the number of followers and the number of followees.
Hence, we extract two features: the differences in #followers
and #followees to measure the similarity of the authors of
a post. As the absolute values of these two features vary in
magnitude, we normalize this feature by applying log-scale
and dividing by the largest difference in log-scale, which is
7 in our case.
Hypothesis H14: The higher the similarity of the authors of a
pair of tweets, the more likely that the tweets are duplicates.

Same client This is a boolean feature to check whether
the pair of tweets were posted via same client application.
With authorization, third-party client applications can post
tweets on behalf of users. Hence, different Twitter client
applications as well as sharing buttons on various Web sites
are being used. As the tweets that are posted from the
same applications and Web sites may share similar content,
provenance information and particularly information about
the client application may be used as evidence for duplicate
detection.
Hypothesis H15: The tweet pairs that are posted from the
same client application tend to be near-duplicates.

4.2 Feature Analysis
As previously stated, we take the Twitter corpus released

at TREC (Tweets2011) as our Twitter stream sample for
the task of duplicate detection. Before we turn to (eval-
uating) duplicate detection strategies, we first perform an
in-depth analysis of this sample with respect to the features
that we presented in Section 4.1. We extracted these fea-
tures for the 55,362 tweet pairs with duplicity judged (see
Section 3.2). In Table 1, we list the average values and
the standard deviations of the features and the percentages
of true instances for the boolean feature respectively (same
client). Moreover, Table 1 shows a comparison between fea-
tures of duplicate (on all 5 levels) and non-duplicate tweet
pairs.

Unsurprisingly, the Levenshtein distances of duplicate tweet
pairs are on average 15% shorter than the ones of non-
duplicate tweet pairs. Similarly, duplicate tweet pairs share
more identical terms than non-duplicate ones: the dupli-
cates have a Jaccard Similarity of 0.2148 in terms, whereas
only 0.0571 for the non-duplicates. Hence, these two fea-
tures which compare the tweets in letters and words may
be potentially good indicators for duplicate detection. Al-
though there is a difference in common hashtags between the
duplicates and the non-duplicates, the overlap in hashtags

does not seem to be a promising feature because of the low
absolute value. This may be explained by the low usage of
hashtags. The two features that check overlap in hyperlinks
show similar characteristics but are slightly better. As ex-
pected, we discover more overlap in links by expanding the
shortened URLs.

Tweet pairs may convey the same messages with syntac-
tically different but semantically similar words. If this is the
case then the syntactical features may fail to detect the du-
plicate tweets. Therefore, the features that are formulated
as overlap in semantics are expected to be larger in absolute
values than the syntactical overlap features. Overall, the
statistics that are listed in Table 1 are in line with our ex-
pectations. We discover more overlap in the duplicates along
3 dimensions, including entities, entity types, and topics, by
exploiting semantics with NER services. More distinguish-
able differences can be found in the features constructed
from WordNet. The duplicate tweet pairs have more overlap
in WordNet noun concepts or synsets (0.38) than the non-
duplicate pairs (0.12). The feature of WordNet similarity is
also potentially a good criterion for duplicate detection: the
average similarity of duplicate pairs is 0.61 compared to 0.35
for non-duplicate pairs. The comparison of the enriched se-
mantic features shows similar findings to those we observed
for the semantic features. Again, the features that compare
WordNet-based concepts are more likely to be good indica-
tors for duplicate detection. However the WordNet similar-
ity shows less difference if we consider external resources.

Finally, we attempted to detect the duplicates based on
information about the context in which the tweets were
posted. Hypothesis H13 (see Section 4.1.4) states that du-
plicates are more likely to be posted in a short temporal
range. The result for the feature of temporal difference in
Table 1 supports this hypothesis: the average value of this
feature for the duplicate pairs is only 0.0256 (about 8 hours
before normalization, see Section 4.1.4) in contrast to 0.2134
(about 3 days) for the non-duplicate ones. With respect to
user similarity, we have not discovered an explicit differ-
ence between the two classes. Regarding the client appli-
cations from which duplicate tweets are posted, we observe
the following: 21.1% of the duplicate pairs were posted from
the same client applications whereas only 15.8% of the non-
duplicate ones show the same characteristic.

4.3 Duplicate Detection Strategies
Having all the features constructed in Section 4.1 and

preliminarily analyzed in Section 4.2, we now create differ-
ent strategies for the task of duplicate detection. In prac-
tice, as requirements and limitations may vary in process-
ing time, real-time demands, storage, network bandwidth
et cetra, different strategies may be adopted. Given that
our models for duplicate detection are derived from logis-
tic regression, we define the following strategies by combin-
ing different sets of features, including one Baseline strategy
and six Twinder strategies: Sy (only syntactical features),
SySe (including tweet content-based features), SyCo (with-
out semantics), SySeCo (without enriched semantics), Sy-
SeEn (without contextual features), and SySeEnCo (all fea-
tures).

4.3.1 Baseline Strategy
As baseline strategy, Levenshtein distance, which com-

pares tweet pairs in letters, is used to distinguish the dupli-
cate pairs and further the duplicate levels.

1277

Category Feature Duplicate Std. deviation Non-duplicate Std. deviation

syntactical

Levenshtein Distance 0.5340 0.2151 0.6805 0.1255
overlap in terms 0.2148 0.2403 0.0571 0.0606
overlap in hashtags 0.0054 0.0672 0.0016 0.0337
overlap in URLs 0.0315 0.1706 0.0002 0.0136
overlap in expanded URLs 0.0768 0.2626 0.0017 0.0406
length difference 0.1937 0.1656 0.2254 0.1794

semantics

overlap in entities 0.2291 0.3246 0.1093 0.1966
overlap in entity types 0.5083 0.4122 0.3504 0.3624
overlap in topics 0.1872 0.3354 0.0995 0.2309
overlap in WordNet concepts 0.3808 0.2890 0.1257 0.1142
overlap in WordNet Synset concepts 0.3876 0.2897 0.1218 0.1241
WordNet similarity 0.6090 0.2977 0.3511 0.2111

enriched semantics

overlap in entities 0.1717 0.2864 0.0668 0.1230
overlap in entity types 0.3181 0.3814 0.1727 0.2528
overlap in topics 0.2768 0.3571 0.1785 0.2800
overlap in WordNet concepts 0.2641 0.3249 0.0898 0.0987
overlap in WordNet Synset concepts 0.2712 0.3258 0.0927 0.1046
WordNet similarity 0.7550 0.2457 0.5963 0.2371

contextual

temporal difference 0.0256 0.0588 0.2134 0.2617
difference in #followees 0.3975 0.1295 0.4037 0.1174
difference in #followers 0.4350 0.1302 0.4427 0.1227
same client 21.13% 40.83% 15.77% 36.45%

Table 1: The comparison of features between duplicate and non-duplicate tweets

4.3.2 Twinder Strategies
The Twinder strategies exploit the sets of features that

have been introduced in Section 4.1). In our duplicate detec-
tion framework which is integrated in the Twinder search en-
gine for Twitter streams (see Section 6), new strategies can
easily be defined by grouping together different features.

Sy The Sy strategy is the most basic strategy in Twinder.
It includes only syntactical features that compare tweets on
a term level. These features can easily be extracted from
the tweets and are expected to have a good performance on
the duplicates for the levels of Exact copy or Nearly exact
copy.

SySe This strategy makes use of the features that take
the actual content of the tweets into account. Besides the
syntactical features, this strategy makes use of NER services
and WordNet to obtain the semantic features.

SyCo The strategy of SyCo (without semantics) is formu-
lated to prevent the retrieval of external resources as well
as a large amount of semantics extractions that rely on ei-
ther external Web services or extra computation time. Only
syntactical features and contextual features are considered
by this strategy.

SySeCo Duplicate detection can be configured as applying
features without relying on external Web resources. We call
the strategy that uses the sytactical features, semantics that
are extracted from the content of tweets, and the contextual
informaiton SySeCo.

SySeEn The contextual features, especially the ones re-
lated to users, may require extra storage and may be recom-
puted frequently. Therefore, the duplicate detection may
work without contextual information by applying the so-
called SySeEn (without contextual features).

SySeEnCo If enough hardware resources and network band-
width are available then the strategy that integrates all the
features can be applied so that the quality of the duplicate
detection can be maximized.

5. EVALUATION OF DUPLICATE DETEC-
TION STRATEGIES

To understand how different features and strategies influ-
ence the performance of duplicate detection, we formulated

a number of research questions, which can be summarized
as follows:

1. How accurately can the different duplicate detection
strategies identify duplicates?

2. What kind of features are of particular importance for
duplicate detection?

3. How does the accuracy vary for the different levels of
duplicates?

5.1 Experimental Setup
We employ logistic regression for both steps of the task of

duplicate detection: (i) to classify tweet pairs as duplicate or
non-duplicate and (ii) to estimate the duplicate level. Due
to the limited amount of duplicate pairs (of all 5 levels, 2,745
instances) in the manually labelled dataset (55,362 instances
in total, see Section 3.2), we use 5-fold cross-validation to
evaluate the learned classification models. At most, we used
22 features as predictor variables (see Table 1). Since the
fraction of positive instances is considerably smaller than
the negative one, we employed a cost-sensitive classification
setup to prevent all the tweet pairs from being classified as
non-duplicates. Moreover, because the precision and recall
for non-duplicate are over 90%, we use the non-duplicate
class as the reference class and focus on the performance
of the class of duplicates. We use precision, recall, and F-
measure to evaluate the results. Furthermore, since our final
objective in this paper is to reduce duplicates in search re-
sults, we also point out the fraction of false positives as the
indicator of the costs of losing information by applying our
framework.

5.2 Influence of Strategies on Duplicate De-
tection

Table 2 shows the performance of predicting the dupli-
cate tweet pairs by applying the strategies described in Sec-
tion 4.3. The baseline strategy, which only uses Levensthein
distance, leads to a precision and recall of 0.5068 and 0.1913
respectively. It means, for example, if 100 relevant tweets
are returned for a certain search query and about 20 tweets
(the example ratio of 20% according to the statistics given in
Section 3.2) are duplicates that could be removed, the base-
line strategy would identify 8 tweets as duplicates. How-
ever, only 4 of them are correctly classified while 16 other

1278

Strategies Precision Recall F-measure

Baseline 0.5068 0.1913 0.2777

Sy 0.5982 0.2918 0.3923
SyCo 0.5127 0.3370 0.4067

SySe 0.5333 0.3679 0.4354
SySeEn 0.5297 0.3767 0.4403

SySeCo 0.4816 0.4200 0.4487
SySeEnCo 0.4868 0.4299 0.4566

Table 2: Performance Results of duplicate detection
for different sets of features

true duplicates are missed. In order to measure both pre-
cision and recall in once, the F-measure is used and for the
Baseline strategy the value is 0.2777. In contrast, the Sy
strategy, which is the most basic one for Twinder, leads to
a much better performance in terms of all measures, e.g. an
F-measure of 0.3923. By combing the contextual features,
the SyCo strategy achieves a slightly better F-measure of
0.4067. It appears that the contextual features contribute
relatively little to the performance.

Subsequently, we leave out the contextual features and
check the importance of semantics in the content of the
tweets and external resources. The SySe (including tweet
content-based features) strategy considers not only the syn-
tactical features but also the semantics extracted from the
content of the tweets. We find that the semantic features can
boost the classifier’s effectiveness as the F-measure increased
to 0.4354. The enriched semantics extracted from external
resources brought little benefit to the result as the SySeEn
strategy has a performance with F-measure of 0.4403. Over-
all, we conclude that semantics play an important role as
they lead to a performance improvement with respect to F-
measure from 0.3923 to 0.4403.

Thus the so-called SySeCo strategy excludes the features
of enriched semantics but again includes the contextual fea-
tures. Given this strategy, we observe an F-measure of
0.4487. However, if we adopt the strategy of SySeEnCo (all
features), the highest F-measure can be achieved. At the
same time, we nearly keep the same precision as with the
Baseline strategy but boost the recall from 0.1913 to 0.4299.
This means that more than an additional 20% of duplicates
can be found while we keep the accuracy high. In this stage,
we will further analyze the impact of the different features
in detail as they are used in the strategy of SySeEnCo.

In the logistic regression approach, the importance of fea-
tures can be investigated by considering the absolute value of
the coefficients assigned to them. We have listed the details
about the model derived for the SySeEnCo (all features)
strategy in Table 3. The most important features are:

• Levenshtein distance: As it is a feature of negative
coefficient in the classification model, we infer that a
shorter Levenshtein distance indicates a higher proba-
bility of being duplicate pairs. Therefore, we confirm
our Hypothesis H1 made in Section 4.1.1.

• overlap in terms: Another syntactical feature also plays
an important role as the coefficient is ranked fourth
most indicative in the model. This can be explained
by the usage of common words in duplicate tweet pairs.
This result supports Hypothesis H2.

• overlap in WordNet concepts: The coefficients of se-
mantic and enriched semantic vary in the model. How-
ever, the most important feature is overlap in Word-
Net concepts. It has the largest positive weight which

Performance Measure Score

precision 0.4868
recall 0.4299
F-measure 0.4566

Category Feature Coefficient

syntactical

Levenshtein distance -2.9387
overlap in terms 2.6769
overlap in hashtags 0.4450
overlap in URLs 1.2648
overlap in expanded URLs 0.8832
length difference 1.2820

semantics

overlap in entities -2.1404
overlap in entity types 0.9624
overlap in topics 1.4686
overlap in WordNet concepts 4.5225
overlap in WordNet Synset concepts 0.6279
WordNet similarity -0.8208

overlap in entities -0.8819
overlap in entity types 0.9578

enriched overlap in topics -0.1825
semantics overlap in WordNet concepts -2.0867

overlap in WordNet Synset concepts 2.5496
WordNet similarity 0.7949

contextual

temporal difference -12.6370
difference in #followees 0.4504
difference in #followers -0.3757
same client -0.1150

Table 3: The coefficients of different features. The
five features with the highest absolute coefficients
are underlined.

means that pairs of tweets with high overlap in Word-
Net concepts are more likely to be duplicates, con-
firming Hypothesis H10 (Section 4.1.2). However, we
noticed a contradiction in the feature set of enriched
semantics, in which the coefficient for overlap in Word-
Net concepts is negative (-2.0867) whereas the one the
coefficient for the overlap in WordNet synset concept is
positive (2.5496). It can be explained by the high cor-
relation between these two features, especially for high
coverage of possible words in external resources. For
this reason, they counteract each other in the model.

• temporal difference: In line with the preliminary analy-
sis, the shorter the temporal difference between a pair
of tweets, the more likely that it is a duplicate pair.
The highest value of the coefficient is partially due to
low average absolute values of this feature. However,
we can still conclude that Hypothesis H13 holds (see
Section 4.1.4).

Overall, we noticed that the hypotheses that we made
for syntactical features can all be confirmed. Although the
same conclusion could not be made for all the features con-
structed based on semantics, some of them can be explained.
For example, the overlap of WordNet concepts in the set of
enriched semantics is negative. The reason for this may
be twofold: (i) more general terms (such as politics, sport,
news, mobile) are overlapping if we consider external re-
sources; (ii) the features in the set of enriched semantics
may mislead when we extract the features for a pair of tweets
from which no external resources can be found or only one
tweet contains a URL. The situation for other features, e.g.
WordNet similarity, can be explained by the dependencies
between some of them. More specifically, the features that
are based on WordNet similarity in the sets of semantics and
enriched semantics may have positive correlation. Therefore,
the coefficients complement each other in values. When we

1279

consider only the contextual features, all other three fea-
tures except the temporal difference do not belong to the
most important features. More sophisticated techniques for
measuring user similarity might be used to better exploit,
for example, the provenance of tweets for the duplicate de-
tection task.

5.3 Influence of Topic Characteristics on Du-
plicate Detection

In all reported experiments so far, we have considered the
entire Twitter sample available to us. In this section, we in-
vestigate to what extent certain topic (or query) character-
istics play a role for duplicate detection and to what extent
those differences lead to a change in the logistic regression
models.

Consider the following two topics: Taco Bell filling lawsuit
(MB0208) and Egyptian protesters attack museum (MB010).
While the former has a business theme and is likely to be
mostly of interest to American users, the latter topic belongs
into the category of politics and can be considered as being of
global interest, as the entire world was watching the events in
Egypt unfold. Due to these differences, we defined a number
of topic splits. A manual annotator then decided for each
split dimension into which category the topic should fall. We
investigated four topic splits, three splits with two partitions
each and one split with five partitions:
• Popular/unpopular: The topics were split into popular

(interesting to many users) and unpopular (interesting
to few users) topics. An example of a popular topic is
2022 FIFA soccer (MB002) – in total we found 24.
In contrast, topic NIST computer security (MB005) is
classified as unpopular (as one of 25 topics).
• Global/local: In this split, we considered the inter-

est for the topic across the globe. The already men-
tioned topic MB002 is of global interest, since soccer
is a highly popular sport in many countries, whereas
topic Cuomo budget cuts (MB019) is mostly of local
interest to users living or working in New York where
Andrew Cuomo is the governor. We found 18 topics
of global and 31 topics of local interest.
• Persistent/occasional: This split is concerned with the

interestingness of the topic over time. Some topics
persist for a long time, such as MB002 (the FIFA world
cup will be played in 2022), whereas other topics are
only of short-term interest, e.g. Keith Olbermann new
job (MB030). We assigned 28 topics to the persistent
and 21 topics to the occasional topic partition.
• Topic themes: The topics were classified as belonging

to one of five themes, either business, entertainment,
sports, politics or technology. MB002 is, e.g., a sports
topic while MB019 is considered to be a political topic.

Our discussion of the results focuses on two aspects: (i)
the difference between the models derived for each of the
two partitions, and (ii) the difference between these models
(denoted MsplitName) and the model derived over all topics
(MallTopics) in Table 5. The results for the three binary
topic splits are shown in Table 4.

Popularity: A comparison of the most important fea-
tures of Mpopular and Munpopular shows few differences with
the exception of a single feature: temporal difference. While
temporal difference is the most important feature in Mpopular,

8The identifiers of the topics correspond to the ones used in
the official TREC dataset.

it is ranked fourth in Munpopular. We hypothesize that the
discussion on popular topics evolve quickly on Twitter, thus
the duplicate tweet pairs should have less differences in post-
ing time.

Global vs. local: The most important feature in Mglobal,
the overlap in terms, and the second most important fea-
ture in Mlocal, Levenshtein distance, do not have a similar
significance in each others’ models. We consider it as an
interesting finding and the possible explanation can lie in
the sources of the information. In more detail, on the one
hand the duplicate tweets about the local topics may share
the same source thus are low in Levenshtein distances; on
the other hand, different sources may report on the global
topics in their own styles but with the same terms.

Temporal persistence: Comparing the Mpersistent and
the Moccasional models, yields to similar conclusions as in the
previous two splits: (i) the persistent topics are continuously
discussed so that the duplicate pairs are more likely to have
short temporal differences, while the temporal differences
between tweets on occasional topics are relatively insignif-
icant; (ii) the occasionally discussed topics are often using
the same set of words.

Topic Themes: The partial results of the topic split
according to the theme of the topic are shown in Table 5
(full results can be found on the supporting website for this
paper [22]). Three topics did not fit in one of the five cat-
egories. Since the topic set is split into five partitions, the
size of some partitions is extremely small, making it diffi-
cult to reach conclusive results. Nevertheless, we can detect
trends such as the fact that duplicate tweet pairs in sports
topics are more likely to contain the same source links (pos-
itive coefficient of overlap in original URLs and the opposite
of overlap in expanded URLs), while duplicate pairs in en-
tertainment topics contain more shortened links (positive
coefficient of overlap in expanded URLs). The overlap in
terms has a large impact on all themes but politics. Another
interesting observation is that a short temporal difference,
is a prominent indicator for the duplicates in the topics of
entertainment and politics but not in the other models.

The observation that certain topic splits lead to models
that emphasize certain features also offers a natural way
forward: if we are able to determine for each topic in advance
to which theme or topic characteristic it belongs to, we can
select the model that fits the topic best.

5.4 Analysis of Duplicate levels
Having estimated whether a tweet pair is duplicate or

not, we now proceed to the second step of the duplicate
detection task: determining the exact level of the duplicate
tweet pairs. We compare the different strategies (see Sec-
tion 4.3) in the same way as we have done in Section 5.2.
To analyze the performance in general, we used weighted
measures, including precision, recall, and F-measure across
5 levels. The results are summarized in Table 6; a simi-
lar pattern in performance improvement can be observed.
However, it appears that the enriched semantics are more
prominent than the contextual features as the so-called Sy-
SeEn strategy (without contextual features) performs better
than SySeCo strategy (without enriched semantics).

In Figure 2, we plot the performance of the classification
for 5 different levels and the weighted average of them with
all the strategies that we have introduced in Section 4.3.
The weight of each level depends on the ratio of duplicate
instances. The curves for 5 different levels show the simi-

1280

Performance Measure popular unpopular global local persistent occasional
#topics 24 25 18 31 28 21
#samples 32,635 22,727 19,862 35,500 33,474 21,888

precision 0.4480 0.6756 0.6148 0.4617 0.4826 0.6129
recall 0.4569 0.6436 0.5294 0.5059 0.5590 0.5041
F-measure 0.4524 0.6592 0.5689 0.4828 0.5180 0.5532

Category Feature popular unpopular global local persistent occasional

syntactical

Levenshtein distance -3.4919 -0.6126 0.1342 -3.5136 -3.5916 -1.2338
overlap in terms 2.8352 6.0905 6.7126 1.0498 1.3474 5.7705
overlap in hashtags 0.6234 -2.5868 -1.8751 1.2671 2.2210 -2.7187
overlap in URLs -0.1865 5.8130 0.3275 1.6342 3.4323 0.4907
overlap in expanded URLs 0.5180 2.7594 1.4933 0.6362 1.4936 1.0751
length difference 1.2459 0.5974 0.5028 1.3236 1.5043 0.3793

semantics

overlap in entities -2.3460 0.5430 -0.2263 -3.3525 -3.1071 0.5538
overlap in entity types 1.2612 -1.1651 -0.3301 1.1571 0.8802 -0.8804
overlap in topics 1.6607 0.7505 1.2147 1.2294 1.3911 0.7848
overlap in WordNet concepts 5.5288 7.1115 5.8185 2.5319 4.0427 4.6365
overlap in WordNet Synset concepts -0.7763 -2.4393 -0.7335 3.0327 1.8752 0.5750
WordNet similarity -0.6254 1.8168 1.1355 -0.3909 -0.5141 1.0457

overlap in entities -1.3013 0.0583 0.0501 -0.5548 -1.9666 0.8555
overlap in entity types 0.8997 1.2098 0.1179 0.8132 1.0279 0.3228

enriched overlap in topics -0.5470 0.6581 0.0118 -0.1282 0.0292 -0.1884
semantics overlap in WordNet concepts -1.8633 -1.2312 -2.3160 -2.4825 -2.5058 -2.1868

overlap in WordNet Synset concepts 2.4274 1.0336 3.4218 2.6263 3.0461 2.5514
WordNet similarity 0.7328 0.4342 -1.0359 0.9406 1.0470 -1.1867

contextual

temporal difference -15.8249 -2.9890 -5.2712 -17.3894 -18.9433 -5.6780
difference in #followees 0.7026 0.2322 -1.0797 0.5489 0.0659 -1.0473
difference in #followers -0.9826 1.1960 -0.3224 0.0048 -0.1281 -0.5178
same client -0.1800 0.3851 -0.0272 -0.0692 -0.2641 0.3058

Table 4: Influence comparison of different features among different topic partitions. There are three splits
shown here: popular vs. unpopular topics, global vs. local topics and persistent vs. occasional topics. While
the performance measures are based on 5-fold cross-validation, the derived feature weights for the logistic
regression model were determined across all topics of a split. The total number of topics is 49. For each topic
split, the three features with the highest absolute coefficient are underlined.

Performance Measure business entertainment sports politics technology
#topics 6 12 5 21 2
#samples 11,445 7,678 1,722 30,037 1,622

precision 0.6865 0.6844 0.5000 0.4399 0.6383
recall 0.6615 0.7153 0.6071 0.4713 0.7143
F-measure 0.6737 0.6995 0.5484 0.4551 0.6742

Table 5: This table shows the comparison of performance when partitioning the topic set according to five
broad topic themes. The full results can be found on the supporting website for this paper [22].

Strategies Precision Recall F-measure

Baseline 0.5553 0.5208 0.5375

Sy 0.6599 0.5809 0.6179
SyCo 0.6747 0.5889 0.6289

SySe 0.6708 0.6151 0.6417
SySeEn 0.6694 0.6241 0.6460

SySeCo 0.6852 0.6198 0.6508
SySeEnCo 0.6739 0.6308 0.6516

Table 6: Performance Results of predicting dupli-
cate levels for different sets of features

lar trend with the weighted average of them that indicates
the overall performance. We observe that the level of Weak
near duplicate performs better than average and the reason
can be attributed to the large ratio of learning instances
(see Figure 1). The classification regarding the level of Ex-
act copy is the best because of the decisive influence of the
Levensthein distance. However, we see a declining trend
in performance as we integrate more other tweets. Hence,
further optimization is possible.

5.5 Optimization of Duplicate Detection
To optimize the duplicate detection procedure, we exploit

the fact that duplicate pairs of level Exact copy can easily

0.00#
0.10#
0.20#
0.30#
0.40#
0.50#
0.60#
0.70#
0.80#
0.90#
1.00#

Ba
sel
ine
##

Sy
nta
c8
ca
l#

Wi
tho
ut#
Se
ma
n8
cs#

Tw
ee
t#C
on
en
tAb
ase
d#

Wi
tho
ut#
Co
nte
xtu
al#

Wi
tho
ut#
Ex
ter
na
l#

All
#Fe
atu
res
#

Exact#Copy#

Nearly#Exact#Copy#

Strong#NearADuplicate#

Weak#NearADuplicate#

Low#Overlapping#

Weighted#

Figure 2: The F-measure of classification for differ-
ent levels and weighted average by applying different
strategies

be detected by their Levenshtein distance of 0. After the re-
moval of mentions, URLs, and hashtags, we can also apply
the same rule for Nearly exact copy. Therefore, we can op-
timize the duplicate detection procedure with the following
cascade:

1. If the Levensthein distance is zero between a pair of
tweets or after removal of mentions, URLs, and hash-
tags from both of them, they can be classified as Exact
copy or Nearly exact copy ;

1281

Strategies Precision Recall F-measure

Baseline 0.9011 0.2856 0.4337

Sy 0.7065 0.4095 0.5185
SyCo 0.6220 0.4550 0.5256

SySe 0.6153 0.4849 0.5424
SySeEn 0.5612 0.5395 0.5501

SySeCo 0.6079 0.4914 0.5435
SySeEnCo 0.5656 0.5512 0.5583

Table 7: Performance Results of duplicate detection
using different strategies after optimization

Feature	
 Extrac+on	

	

	

	

	

	

	

Relevance	
 Es+ma+on	

Social	
 Web	
 Streams	

Fe
at
ur
e	

Ex
tr
ac
+o

n	

Ta
sk
	

Br
ok
er
	

Cloud
Computing

Infrastructure

Index	

Keyword-­‐based	

Relevance	

messages

Twinder
Search
Engine

feature
extraction

tasks

Search	
 User	
 Interface	

query
results

feedback

users

Duplicate	
 Detec+on	
 and	
 Diversifica+on	

Seman+c-­‐based	

Relevance	

Seman+c	
 Features	
 Syntac+cal	
 Features	

Contextual	
 Features	
 Further	
 Enrichment	

Figure 3: Architecture of the Twinder Search En-
gine: duplicate detection and diversification based
on feature extraction modules.

2. Otherwise, we apply aforementioned strategies to de-
tect duplicity.

After this optimization, we get a performance improvement
from 0.45 to 0.55 with respect to the F-measure. The cor-
responding results are listed in Table 7 (the original results
are given in Table 2).

6. SEARCH RESULT DIVERSIFICATION
A core application of near-duplicate detection strategies

is the diversification of search results. Therefore, we inte-
grated our duplicate detection framework into the so-called
Twinder [21] (Twitter Finder) search engine which provides
search and ranking functionality for Twitter streams. Fig-
ure 3 depicts the architecture of Twinder and highlights the
core modules which we designed, developed and analyzed in
the context of this paper.

The duplicate detection and diversification is performed
after the relevance estimation of the tweets. Hence, given a
search query, the engine first ranks the tweets according to
their relevance and then iterates over the top k tweets of the
search result to remove near-duplicate tweets and diversify
the search results. Both, the duplicate detection and the
relevance estimation module, benefit from the features that
are extracted as part of the indexing step which is performed
iteratively as soon as new tweets are monitored.

The lightweight diversification strategy applies the near-
duplicate detection functionality as listed in Algorithm 2.
It iterates from the top to the bottom of the top k search
results. For each tweet i, it removes all tweets at rank j with
i < j (i.e. tweet i has a better rank than tweet j) that are
near-duplicates of tweet i.

In Section 3.2, we analyzed the ratios of duplicates in the
search results. After applying the lightweight diversification
strategy proposed above, we again examine the ratios. The
results are listed in Table 8 and reveal that the fraction

Algorithm 2: Diversification Strategy

input : Ranking of tweets T , k
output: Diversified top k ranking T ′@k

T ′@k ← ∅;
i← 0;
while i < k and i < T.length do

j ← i+1 ;
while j < T.length do

if T [i] and T [j] are duplicates then
remove T [j] from T;

else
j++;

T ′[i] = T [i]

return T ′@k;

Range Top 10 Top 20 Top 50 All

Before diversification 19.4% 22.2% 22.5% 22.3%
After diversification 9.1% 10.5% 12.0% 12.1%

Improvement 53.1% 52.0% 46.7% 45.7%

Table 8: Average ratios of near-duplicates in search
results after diversification

of near-duplicate tweets within the top k search results is
considerably smaller. For example, without diversification
there exists, on average, for 22.2% of the tweets at least
one near-duplicate tweet within the top 20 search results.
In contrast, the diversification strategy improves the search
result quality with respect to duplicate content by more than
50%. Thus there are, on average, less than 11% duplicates
in the top 20 search results.

7. CONCLUSIONS
People are confronted with a high fraction of near-duplicate

content when searching and exploring information on mi-
croblogging platforms such as Twitter. In this paper, we
analyzed the problem of near-duplicate content on Twitter
and developed a duplicate detection and search result di-
versification framework for Twitter. Our framework is able
to identify near-duplicate tweets with a precision and recall
of 48% and 43% respectively by combining (i) syntactical
features, (ii) semantic features and (iii) contextual features
and by considering information from external Web resources
that are linked from the microposts. For certain types of top-
ics such as occasional news events, we even observe perfor-
mances of more than 61% and 50% with respect to precision
and recall. Our experiments show that semantic features
such as the overlap of WordNet concepts are of particular
importance for detecting near-duplicates. By analyzing a
large Twitter sample, we also identified five main levels of
duplicity ranging from exact copies which can easily be iden-
tified by means of syntactic features such as string similarity
to low overlapping duplicates for which an analysis of the
semantics and context is specifically important. Our frame-
work is able to classify the duplicity score on that level with
an accuracy of more than 60%. Given our near-duplicate
detection strategies, we additionally developed functionality
for the diversification of search results. We integrated this
functionality into the Twinder search engine and could show
that our duplicate detection and diversification framework
improves the quality of top k retrieval significantly since we
decrease the fraction of duplicate content that is delivered
to the users by more than 45%.

Acknowledgements. This work is co-funded by the EU
FP7 project ImREAL (http://imreal-project.eu).

1282

8. REFERENCES
[1] F. Abel, Q. Gao, G.-J. Houben, and K. Tao.

Analyzing User Modeling on Twitter for Personalized
News Recommendations. In Proceedings of the 19th
International Conference on User Modeling, Adaption
and Personalization (UMAP), pages 1–12. Springer,
July 2011.

[2] F. Abel, C. Hauff, G.-J. Houben, R. Stronkman, and
K. Tao. Twitcident: Fighting Fire with Information
from Social Web Stream. In Proceedings of the 21st
International Conference Companion on World Wide
Web (WWW), pages 305–308. ACM, April 2012.

[3] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.
Diversifying Search Results. In Proceedings of the 2nd
ACM International Conference on Web Search and
Data Mining (WSDM), pages 5–14. ACM, February
2009.

[4] D. Antoniades, I. Polakis, G. Kontaxis,
E. Athanasopoulos, S. Ioannidis, E. P. Markatos, and
T. Karagiannis. we.b: The web of Short URLs. In
Proceedings of the 20th International Conference on
World Wide Web (WWW), pages 715–724. ACM,
April 2011.

[5] M. S. Bernstein, B. Suh, L. Hong, J. Chen, S. Kairam,
and E. H. Chi. Eddi: Interactive Topic-based
Browsing of Social Status Streams. In Proceedings of
the 23rd Annual ACM Symposium on User Interface
Software and Technology (UIST), pages 303–312.
ACM, October 2010.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic Clustering of the Web. In Selected
Papers from the 6th International Conference on
World Wide Web (WWW), pages 1157–1166. Elsevier
Science Publishers Ltd., September 1997.

[7] M. S. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing
(STOC), pages 380–388. ACM, May 2002.

[8] M. Henzinger. Finding Near-Duplicate Web Pages: A
Large-Scale Evaluation of Algorithms. In Proceedings
of the 29th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR), pages 284–291. ACM,
August 2006.

[9] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a Social Network or a News Media? In
Proceedings of the 19th International Conference on
World Wide Web (WWW), pages 591–600. ACM,
April 2010.

[10] C. Lee, H. Kwak, H. Park, and S. Moon. Finding
Influentials Based on the Temporal Order of
Information Adoption in Twitter. In Proceedings of
the 19th International Conference on World Wide
Web (WWW), pages 1137–1138. ACM, April 2010.

[11] D. Lin. An Information-Theoretic Definition of
Similarity. In Proceedings of the 15th International
Conference on Machine Learning (ICML), pages
296–304. Morgan Kaufmann, July 1998.

[12] G. S. Manku, A. Jain, and A. Das Sarma. Detecting
Near-Duplicates for Web Crawling. In Proceedings of
the 16th International Conference on World Wide
Web (WWW), pages 141–150. ACM, May 2007.

[13] R. McCreadie, I. Soboroff, J. Lin, C. Macdonald,
I. Ounis, and D. McCullough. On Building a Reusable
Twitter Corpus. In Proceedings of the 35th
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR),
pages 1113–1114. ACM, August 2012.

[14] B. Meeder, B. Karrer, A. Sayedi, R. Ravi, C. Borgs,
and J. Chayes. We Know Who You Followed Last
Summer: Inferring Social Link Creation Times In
Twitter. In Proceedings of the 20th International
Conference on World Wide Web (WWW), pages
517–526. ACM, April 2011.

[15] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and
C. Bizer. DBpedia Spotlight: Shedding Light on the
Web of Documents. In Proceedings of the 7th
International Conference on Semantic Systems
(I-SEMANTICS), pages 1–8. ACM, September 2011.

[16] D. Metzler and C. Cai. USC/ISI at TREC 2011:
Microblog Track. In Working Notes, The Twentieth
Text REtrieval Conference (TREC 2011) Proceedings.
NIST, November 2011.

[17] G. Miller et al. WordNet: A Lexical Database for
English. Communications of the ACM, 38(11):39–41,
November 1995.

[18] M. Pennacchiotti and A.-M. Popescu. A Machine
Learning Approach to Twitter User Classification. In
Proceedings of the 5th International AAAI Conference
on Weblogs and Social Media (ICWSM), pages
281–288. AAAI Press, July 2011.

[19] D. Rafiei, K. Bharat, and A. Shukla. Diversifying Web
Search Results. In Proceedings of the 19th
International Conference on World Wide Web
(WWW), pages 781–790. ACM, April 2010.

[20] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake
Shakes Twitter Users: Real-time Event Detection by
Social Sensors. In Proceedings of the 19th
International Conference on World Wide Web
(WWW), pages 851–860. ACM, April 2010.

[21] K. Tao, F. Abel, C. Hauff, and G.-J. Houben.
Twinder: A Search Engine for Twitter Streams. In
Proceedings of the 12th International Conference on
Web Engineering (ICWE), pages 153–168. Springer,
July 2012.

[22] K. Tao, F. Abel, C. Hauff, G.-J. Houben, and
U. Gadiraju. Supporting Website: datasets and
additional findings., November 2012.
http://wis.ewi.tudelft.nl/duptweet/.

[23] J. Teevan, D. Ramage, and M. R. Morris.
#TwitterSearch: A Comparison of Microblog Search
and Web Search. In Proceedings of the 4th
International Conference on Web Search and Web
Data Mining (WSDM), pages 35–44. ACM, February
2011.

[24] J. Weng and B.-S. Lee. Event Detection in Twitter. In
Proceedings of the 5th International AAAI Conference
on Weblogs and Social Media (ICWSM). AAAI Press,
July 2011.

1283

