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ABSTRACT
Twitter, a popular microblogging service, has received much
attention recently. An important characteristic of Twitter
is its real-time nature. For example, when an earthquake
occurs, people make many Twitter posts (tweets) related
to the earthquake, which enables detection of earthquake
occurrence promptly, simply by observing the tweets. As
described in this paper, we investigate the real-time inter-
action of events such as earthquakes in Twitter and pro-
pose an algorithm to monitor tweets and to detect a target
event. To detect a target event, we devise a classifier of
tweets based on features such as the keywords in a tweet,
the number of words, and their context. Subsequently, we
produce a probabilistic spatiotemporal model for the tar-
get event that can find the center and the trajectory of the
event location. We consider each Twitter user as a sensor
and apply Kalman filtering and particle filtering, which are
widely used for location estimation in ubiquitous/pervasive
computing. The particle filter works better than other com-
parable methods for estimating the centers of earthquakes
and the trajectories of typhoons. As an application, we con-
struct an earthquake reporting system in Japan. Because of
the numerous earthquakes and the large number of Twitter
users throughout the country, we can detect an earthquake
with high probability (96% of earthquakes of Japan Mete-
orological Agency (JMA) seismic intensity scale 3 or more
are detected) merely by monitoring tweets. Our system de-
tects earthquakes promptly and sends e-mails to registered
users. Notification is delivered much faster than the an-
nouncements that are broadcast by the JMA.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; H.3.5 [Information Storage and Retrieval]:
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1. INTRODUCTION
Twitter, a popular microblogging service, has received

much attention recently. It is an online social network used
by millions of people around the world to remain socially
connected to their friends, family members and co-workers
through their computers and mobile phones [18]. Twitter
asks one question, ”What’s happening?” Answers must be
fewer than 140 characters. A status update message, called a
tweet, is often used as a message to friends and colleagues. A
user can follow other users; her followers can read her tweets.
A user who is being followed by another user need not nec-
essarily reciprocate by following them back, which renders
the links of the network as directed. After its launch on
July 2006, Twitter users have increased rapidly. They are
currently estimated as 44.5 million worldwide1. Monthly
growth of users has been 1382% year-on-year, which makes
Twitter one of the fastest-growing sites in the world2.

Some researchers have examined Twitter: Java et al. an-
alyzed Twitter as early as 2007. They described the social
network of Twitter users and investigated the motivation of
Twitter users [13]. Huberman et al. analyzed more than 300
thousand users. They discovered that the relation between
friends (defined as a person to whom a user has directed
posts using an ”@” symbol) is the key to understanding in-
teraction in Twitter [11]. Recently, boyd et al. investigated
retweet activity, which is the Twitter-equivalent of e-mail
forwarding, by which users post messages originally posted
by others [5].

Twitter is categorized as a microblogging service. Mi-
croblogging is a form of blogging that allows users to send
brief text updates or micromedia such as photographs or au-
dio clips. Microblogging services other than Twitter include
Tumblr, Plurk, Emote.in, Squeelr, Jaiku, identi.ca, and oth-
ers3. They have their own characteristics. Some examples
are the following: Squeelr adds geolocation and pictures to
microblogging; and Plurk has a timeline view integrating
video and picture sharing. Although our study, which is
based on their real-time nature, is applicable to other mi-
croblogging services, we specifically examine Twitter in this
study because of its popularity and data volume.

An important common characteristic among microblog-
ging services is their real-time nature. Although blog users

1http://www.techcrunch.com/2009/08/03/twitter-reaches-
44.5-million-people-worldwide-in-june-comscore/
2According to a report from
http://blog.nielsen.com/nielsenwire/online mobile/twitters-
tweet-smell-of-success/
3www.tumblr.com, www.plurk.com, www.emote.in,
www.squeelr.com, www.jaiku.com, identi.ca
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Figure 1: Twitter user map.

Figure 2: Earthquake map.
typically update their blogs once every several days, Twitter
users write tweets several times in a single day. Users can
know how other users are doing and often what they are
thinking about now, users repeatedly return to the site and
check to see what other people are doing. The large num-
ber of updates results in numerous reports related to events.
They include social events such as parties, baseball games,
and presidential campaigns. They also include disastrous
events such as storms, fires, traffic jams, riots, heavy rain-
fall, and earthquakes. Actually, Twitter is used for various
real-time notification such as that necessary for help during
a large-scale fire emergency and live traffic updates. Adam
Ostrow, an Editor in Chief at Mashable, a social media news
blog, wrote in his blog about the interesting phenomenon of
real-time media as follows4:

Japan Earthquake Shakes Twitter Users ...
And Beyonce: Earthquakes are one thing you
can bet on being covered on Twitter first, because,
quite frankly, if the ground is shaking, you’re go-
ing to tweet about it before it even registers with
the USGS and long before it gets reported by the
media. That seems to be the case again today,
as the third earthquake in a week has hit Japan
and its surrounding islands, about an hour ago.
The first user we can find that tweeted about it
was Ricardo Duran of Scottsdale, AZ, who, judg-
ing from his Twitter feed, has been traveling the
world, arriving in Japan yesterday.

This post well represents the motivation of our study. The
research question of our study is, ”can we detect such event
occurrence in real-time by monitoring tweets?”

This paper presents an investigation of the real-time na-
ture of Twitter and proposes an event notification system
that monitors tweets and delivers notification promptly. To
obtain tweets on the target event precisely, we apply seman-
tic analysis of a tweet: For example, users might make tweets

4http://mashable.com/2009/08/12/japan-earthquake/

such as ”Earthquake!”or ”Now it is shaking”, for which earth-
quake or shaking could be keywords, but users might also
make tweets such as ”I am attending an Earthquake Confer-
ence”, or ”I am shaking hands with his boss”. We prepare
the training data and devise a classifier using a support vec-
tor machine based on features such as keywords in a tweet,
the number of words, and the context of target-event words.

After doing so, we can produce a probabilistic spatiotem-
poral model of an event. We make a crucial assumption:
each Twitter user is regarded as a sensor and each tweet as
sensory information. These virtual sensors, which we call
social sensors, are of a huge variety and have various charac-
teristics: some sensors are very active; others are not. A sen-
sor could be inoperable or malfunctioning sometimes (e.g.,
a user is sleeping, or busy doing something). Consequently,
social sensors are very noisy compared to ordinal physical
sensors. Regarding each Twitter user as a sensor, the event
detection problem can be reduced into one of object de-
tection and location estimation in a ubiquitous/pervasive
computing environment in which we have numerous loca-
tion sensors: a user has a mobile device or an active badge
in an environment where sensors are placed. Through in-
frared communication or a WiFi signal, the user location is
estimated as providing location-based services such as navi-
gation and museum guides [9, 25]. We apply Kalman filters
and particle filters, which are widely used for location esti-
mation in ubiquitous/pervasive computing.

As an application, we develop an earthquake reporting
system using Japanese tweets. Because Japan has numerous
earthquakes and because Twitter users are similarly numer-
ous and geographically dispersed throughout the country, it
is sometimes possible to detect an earthquake by monitor-
ing tweets. In other words, many earthquake events occur
in Japan. Many sensors are allocated throughout the coun-
try. Figure 1 portrays a map of Twitter users worldwide
(obtained from UMBC eBiquity Research Group); Fig. 2
depicts a map of earthquake occurrences worldwide (using
data from Japan Meteorological Agency (JMA)). It is appar-
ent that the only intersection of the two maps, which means
regions with many earthquakes and large Twitter users, is
Japan. Other regions such as Indonesia, Turkey, Iran, Italy,
and Pacific coastal US cities such as Los Angeles and San
Francisco also roughly intersect, although their respective
densities are much lower than in Japan. Our system detects
an earthquake occurrence and sends an e-mail, possibly be-
fore an earthquake actually arrives at a certain location: An
earthquake propagates at about 3–7 km/s. For that rea-
son, a person who is 100 km distant from an earthquake has
about 20 s before the arrival of an earthquake wave.

We present a brief overview of Twitter in Japan: The
Japanese version of Twitter was launched on April 2008. In
February 2008, Japan was the No. 2 country with respect
to Twitter traffic5. At the time of this writing, Japan has
the 11th largest number of users (more than half a million
users) in the world. Although event detection (particularly
the earthquake detection) is currently possible because of the
high density of Twitter users and earthquakes in Japan, our
study is useful to detect events of various types throughout
the world.

The contributions of this paper are summarized as follows:

• The paper provides an example of integration of se-
mantic analysis and real-time nature of Twitter, and
presents potential uses for Twitter data.

5http://blog.twitter.com/2008/02/twitter-web-traffic-around-
world.html
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• For earthquake prediction and early warning, many
studies have been made in the seismology field. This
paper presents an innovative social approach that has
not been reported before in the literature.

This paper is organized as follows: In the next section, we
explain semantic analysis and sensory information, followed
by the spatiotemporal model in Section 3. In Section 4, we
describe the experiments and evaluation of event detection.
The earthquake reporting system is introduced into Section
5. Section 6 is devoted to an explanation of related works
and discussion. Finally, we conclude the paper.

2. EVENT DETECTION
As described in this paper, we target event detection. An

event is an arbitrary classification of a space–time region.
An event might have actively participating agents, passive
factors, products, and a location in space/time [21]. We tar-
get events such as earthquakes, typhoons, and traffic jams,
which are visible through tweets. These events have sev-
eral properties: i) they are of large scale (many users ex-
perience the event), ii) they particularly influence people’s
daily life (for that reason, they are induced to tweet about
it), and iii) they have both spatial and temporal regions (so
that real-time location estimation is possible). Such events
include social events such as large parties, sports events,
exhibitions, accidents, and political campaigns. They also
include natural events such as storms, heavy rainfall, torna-
does, typhoons/hurricanes/cyclones, and earthquakes. We
designate an event we would like to detect using Twitter as
a target event.

2.1 Semantic Analysis on Tweet
To detect a target event from Twitter, we search from

Twitter and find useful tweets. Tweets might include men-
tions of the target event. For example, users might make
tweets such as ”Earthquake!” or ”Now it is shaking”. Con-
sequently, earthquake or shaking might be keywords (which
we call query words). But users might also make tweets such
as ”I am attending an Earthquake Conference”, or ”Someone
is shaking hands with my boss”. Moreover, even if a tweet
is referring to the target event, it might not be appropri-
ate as an event report. For instance, a user makes tweets
such as ”The earthquake yesterday was scaring”, or ”Three
earthquakes in four days. Japan scares me.” These tweets
are truly descriptions of the target event, but they are not
real-time reports of the events. Therefore, it is necessary to
clarify that a tweet is truly referring to an actual earthquake
occurrence, which is denoted as a positive class.

To classify a tweet into a positive class or a negative class,
we use a support vector machine (SVM) [14], which is a
widely used machine-learning algorithm. By preparing pos-
itive and negative examples as a training set, we can pro-
duce a model to classify tweets automatically into positive
and negative categories.

We prepare three groups of features for each tweet as fol-
lows:

Features A (statistical features) the number of words
in a tweet message, and the position of the query word
within a tweet.

Features B (keyword features) the words in a tweet6.

6Because a tweet is usually short, we use every word in a
tweet by converting it into a word ID.

Features C (word context features) the words before and
after the query word.

To process Japanese texts, morphological analysis is con-
ducted using Mecab7, which separates sentences into a set
of words. In the case of English, we apply standard stop-
word elimination and stemming. We compare the usefulness
of the features in Section 4. Using the obtained model, we
can classify whether a new tweet corresponds to a positive
class or a negative class.

2.2 Tweet as a Sensory Value
We can search the tweet and classify it into a positive class

if a user makes a tweet on a target event. In other words, the
user functions as a sensor of the event. If she makes a tweet
about an earthquake occurrence, then it can be considered
that she, as an ”earthquake sensor”, returns a positive value.
A tweet can therefore be considered as a sensor reading.
This is a crucial assumption but it enables application of
various methods related to sensory information.

Assumption 2.1 Each Twitter user is regarded as a sen-
sor. A sensor detects a target event and makes a report
probabilistically.

The virtual sensors (or social sensors) have various charac-
teristics: some sensors are activated (i.e. make tweets) only
by specific events, although others are activated to a wider
range of events. The sensors are vastly numerous; there are
more than 40 million ”Twitter sensors” worldwide. A sen-
sor might be inoperable or operating incorrectly sometimes
(which means a user is not online, sleeping, or is busy do-
ing something). Therefore, this social sensor is noisier than
ordinal physical sensors such as location sensors, thermal
sensors, and motion sensors.

A tweet can be associated with a time and location: each
tweet has its post time, which is obtainable using a search
API. In fact, GPS data are attached to a tweet sometimes,
e.g. when a user is using an iPhone. Alternatively, each
Twitter user makes a registration on their location in the
user profile. The registered location might not be the current
location of a tweet. However, we think it is probable that
a person is near the registered location. For this study, we
use GPS data and the registered location of a user. We
do not use the tweet for spatial analysis if the location is
not available (We use the tweet information for temporal
analyses.).

Assumption 2.2 Each tweet is associated with a time and
location, which is a set of latitude and longitude.

By regarding a tweet as a sensory value associated with
a location information, the event detection problem is re-
duced to detecting an object and its location from sensor
readings. Estimating an object’s location is arguably the
most fundamental sensing task in many ubiquitous and per-
vasive computing scenarios [7].

Figure 3 presents an illustration of the correspondence
between sensory data detection and tweet processing. The
motivations are the same for both cases: to detect a target
event. Observation by sensors corresponds to an observa-
tion by Twitter users. They are converted into values by a
classifier. A probabilistic model is used to detect an event,
as described in the next section.

7http://mecab.sourceforge.net/
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Figure 3: Correspondence between event detection
from Twitter and object detection in a ubiquitous
environment.

3. MODEL
For event detection and location estimation, we use prob-

abilistic models. In this section, we first describe event de-
tection from time-series data. Then we describe the location
estimation of a target event.

3.1 Temporal Model
Each tweet has its post time. When a target event oc-

curs, how can the sensors detect the event? We describe the
temporal model of event detection.

First, we examine the actual data. Figures 4 and 5 respec-
tively present the numbers of tweets for two target events:
an earthquake and a typhoon. It is apparent that spikes
occur on the number of tweets. Each corresponds to an
event occurrence. In the case of an earthquake, more than
10 earthquakes occur during the period. In the case of ty-
phoon, Japan’s main population centers were hit by a large
typhoon (designated as Melor) in October 2009.

The distribution is apparently an exponential distribution.
The probability density function of the exponential distri-
bution is f(t; λ) = λe−λt where t > 0 and λ > 0. The ex-
ponential distribution occurs naturally when describing the
lengths of the inter-arrival times in a homogeneous Poisson
process.

In the Twitter case, we can infer that if a user detects an
event at time 0, assume that the probability of his posting
a tweet from t to ∆t is fixed as λ. Then, the time to make
a tweet can be considered as an exponential distribution.
Therefore, even if a user detects an event, she might not
make a tweet right away if she is not online or doing some-
thing. She might make a post only after such problems are
resolved. Therefore, it is reasonable that the distribution
of the number of tweets follows an exponential distribution.
Actually the data fit very well to an exponential distribu-
tion; we get λ = 0.34 with R2 = 0.87 on average.

To assess an alarm, we must calculate the reliability of
multiple sensor values. For example, a user might make a
false alarm by writing a tweet. It is also possible that the

Figure 4: Number of tweets related to earthquakes.

Figure 5: Number of tweets related to typhoons.

classifier misclassifies a tweet into a positive class. We can
design the alarm probabilistically using the following two
facts:

• The false-positive ratio pf of a sensor is approximately
0.35, as we show in Section 4.1.

• Sensors are assumed to be independent and identically
distributed (i.i.d.), as we explain in Section 3.3.

Assuming that we have n sensors, which produce positive
signals, the probability of all n sensors returning a false
alarm is pn

f . Therefore, the probability of event occurrence
can be estimated as 1− pn

f . Given n0 sensors at time 0 and

n0e
−λt sensors at time t. Therefore, the number of sensors

we expect at time t is n0(1 − e−λ(t+1))/(1 − e−λ). Con-
sequently, the probability of an event occurrence at time t
is

poccur(t) = 1− p
n0(1−e−λ(t+1))/(1−e−λ)
f .

We can calculate the probability of event occurrence if we
set λ = 0.34 and pf = 0.35. For example, if we receive
n0 positive tweets and would like to make an alarm with a
false-positive ratio less than 1%, then we can calculate the
expected wait time twait to deliver the notification as

twait = (1− (0.1264/n0))/0.7117− 1.

Although many works describing event detection have been
reported in the data mining field, we use this simple ap-
proach utilizing the characteristics of the classifier and the
distribution.

3.2 Spatial Model
Each tweet is associated with a location. We describe how

to estimate the location of an event from sensor readings.
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To define the problem of location estimation, we consider
the evolution of the state sequence {xt, t ∈ N} of a tar-
get, given xt = ft(xt−1, ut), where ft : Rn

t × Rn
t → Rn

t

is a possibly nonlinear function of the state xt−1. Further-
more, ut is an i.i.d. process noise sequence. The objective
of tracking is to estimate xt recursively from measurements
zt = ht(xt, nt), where ht : Rn

t × Rn
t → Rn

t is a possibly
nonlinear function, and where nt is an i.i.d. measurement
noise sequence. From a Bayesian perspective, the tracking
problem is to calculate, recursively, some degree of belief in
the state xt at time t, given data zt up to time t.

Presuming that p(xt−1|zt−1) is available, the prediction
stage uses the following equation: p(xt|zt−1) =

R
p(xt|xt−1)

p(xt−1|zt−1) dxt−1. Here we use a Markov process of or-
der one. Therefore, we can assume that p(xt|xt−1, zt−1) =
p(xt|xt−1). In the update stage, Bayes’ rule is applied as
p(xt|zt) = p(zt|xt)p(xt|zt−1)/p(zt|zt−1), where the normal-
izing constant is p(zt|zt−1) =

R
p(zt|xt)p(xt|zt−1)dxt.

To solve the problem, several methods of Bayesian filters
are proposed such as Kalman filters, multi-hypothesis track-
ing, grid-based and topological approaches, and particle fil-
ters [7]. For this study, we use Kalman filters and particle
filters, both of which are widely used in location estimation.

3.2.1 Kalman Filters
The Kalman filter assumes that the posterior density at

every time step is Gaussian and that it is therefore param-
eterized using a mean and covariance. We can write it as
xt = Ftxt−1 + ut and zt = Htxt + nt. Therein, Ft and
Ht are known matrices defining the linear functions. The
respective covariants of ut and nt are Qt and Rt.

The Kalman filter algorithm can consequently be viewed
as the following recursive relation:

p(xt−1|zt−1) = N (xt−1; mt−1|t−1, Pt−1|t−1)

p(xt|zt−1) = N (xt; mt|t−1, Pt|t−1)

p(xt|zt) = N (xt; mt|t, Pt|t)

where mt|t−1 = Ftmt−1|t−1+ut, Pt|t−1 = Qt+FtPt−1|t−1F
T
t ,

mt|t = mt|t−1 + Kt(zt − Htmt|t−1), and Pt|t = Pt|t−1 −
KtHtPt|t−1, and where N (x; m, P ) is a Gaussian density
with argument x, mean m, covariance P , and for which the
following are true: Kt = Pt|t−1H

T
t S−1

t , and

St = HtPt|t−1H
T
t + Rt. This is the optimal solution to the

tracking problem if the assumptions hold. A Kalman filter
works better in a linear Gaussian environment.

When utilizing Kalman filters, it is important to construct
a good model and parameters. As described in this paper,
we implement models for two cases as follows.

Case 1: Location estimation of an earthquake center.
In this case, we need not consider the time-transition prop-
erty, thereby we use only location information x(dx, dy). We
set xt = (dxt , dyt)

t where dxt is the longitude and dyt is the
latitude; zt = (dxt , dyt), F = I2, H = I2, and ut = 0. We
assume that errors of temporal transition do not occur, and
assume that errors in observation are Gaussian for simplic-
ity: Qt = 0, Rt = [σ2], and nt = N (0; Rt).

Case 2: Trajectory estimation of a typhoon. We need to
consider both the location and the velocity of an event. We
apply Newton’s motion equation as follows:
xt = (dxt , dyt , vxt , vyt)

t where vxt is the velocity on lon-
gitude, and vyt is the velocity on latitude. We set zt =

Algorithm 1 Particle filter algorithm

1. Initialization: Calculate the weight distribution Dw(x, y)
from twitter users’ geographic distribution in Japan.

2. Generation: Generate and weight a particle set, which
means N discrete hypothesis.

(1) Generate a particle set S0 = (s0
0, s1

0, s2
0, . . . , sN−1

0 )

and allocate them on the map evenly: particle sk
0 =

(xk
0 , yk

0 , wk
0 ), where x corresponds to the longitude, y

corresponds to the latitude and w corresponds to the
weight.

(2) Weight them based on weight distribution Dw(x, y).

3. Re-sampling

(1) Re-sample N particles from a particle set St using
weights of respective particles and allocate them on
the map. (We allow re-sampling of more than one of
the same particles.)

(2) Generate a new particle set St+1 and weight them
based on weight distribution Dw(x, y).

4. Prediction: Predict the next state of a particle set St from
Newton’s motion equation.

(xk
t , yk

t ) = (xk
t−1 + vxt−1∆t +

axt−1

2
∆t2,

yk
t−1 + vyt−1∆t +

ayt−1

2
∆t2)

(vxt , vyt ) = (vxt−1 + axt−1 , vyt−1 , ayt−1 )

axt = N (0; σ2), ayt = N (0; σ2).

5. Weighing: Re-calculate the weight of St by measurement
m(mx, my) as follows.

dxk
t = mx − xk

t , dyk
t = my − yk

t

wk
t = Dw(xk

t , yk
t ) · 1

(
√

2πσ)
· exp

 
− (dxk

t
2

+ dyk
t
2
)

2σ2

!

6. Measurement: Calculate the current object location
o(xt, yt) by the average of s(xt, yt) ∈ St.

7. Iteration: Iterate Steps 3, 4, 5, and 6 until convergence.

(dxt , dyt)
t, F =

0
B@

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

1
CA, H =

„
1 0 0 0
0 1 0 0

«
,

Bt = I4, ut = (
axt
2

∆t2,
ayt
2

∆t2, axt∆t, ayt∆t)t where axt is
the acceleration on longitude, and ayt is the acceleration on
latitude.

Similarly to Case 1, we assume for simplicity that errors of
temporal transition do not occur, and that errors in observa-
tion are Gaussian, as Qt = 0, Rt = [σ2], and nt = N (0; Rt).

3.2.2 Particle Filters
A particle filter is a probabilistic approximation algorithm

implementing a Bayes filter, and a member of the family
of sequential Monte Carlo methods. For location estima-
tion, it maintains a probability distribution for the loca-
tion estimation at time t, designated as the belief Bel(xt) =
{xi

t, w
i
t}, i = 1 . . . n. Each xi

t is a discrete hypothesis about
the location of the object. The wi

t are non-negative weights,
called importance factors, which sum to one.

The Sequential Importance Sampling (SIS) algorithm is a
Monte Carlo method that forms the basis for particle filters.
The SIS algorithm consists of recursive propagation of the
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weights and support points as each measurement is received
sequentially. We use a more advanced algorithm with re-
sampling [1]. We employ weight distribution Dw(x, y) which
is obtained from the twitter user distribution to consider the
biases of user locations8 .The algorithm is shown in Algo. 1.

3.3 Information Diffusion Related to a Real-
time Event

Some information related to an event diffuses through
Twitter. For example, if a user detects an earthquake and
makes a tweet about the earthquake, then a follower of that
user might make tweets about that. This characteristic is
important because, in our model, sensors might not be mu-
tually independent, which would have an undesired effect in
terms of event detection.

Figures 6, 7, and 8 respectively portray the information
flow networks for an earthquake, a typhoon, and a new Nin-
tendo DS game9. We infer the network as follows: Assume
that user A follows user B. If user B makes a tweet about
an event, and soon thereafter user A makes a tweet about
an event, then we consider the information flows from B to
A10. This definition is similar to those used in other studies
of information diffusion (e.g. [15, 16]).

In the case of earthquakes and typhoons, very little infor-
mation diffusion takes place on Twitter. On the other hand,
the release of a new game illustrates the scale and rapidity
of information diffusion. Therefore, we can assume that the
sensors are i.i.d. when considering real-time event detection
such as typhoons and earthquakes.

4. EXPERIMENTS AND EVALUATION
In this section, we describe the experimental results and

evaluation of tweet classification and location estimation.
The whole algorithm is shown in Algo. 2. We prepare

a set of queries Q for a target event. We first search for
tweets T including the query set Q from Twitter every s
seconds. We use a search API11 to search tweets. In the
earthquake case, we set Q = {”earthquake” and ”shaking”};
in the typhoon case, we set Q = {”typhoon”}. We set s as 3
s. After determining a classification and obtaining a positive
example, the system makes a calculation of a temporal and
spatial probabilistic model. We consider that an event is
detected if the probability is higher than a certain threshold
(poccur(t) > 0.95 in our case). The location information of
each tweet is obtained and used for location estimation of
the event. In the earthquake reporting system explained in
the next section, the system quickly sends an e-mail (usually
mobile e-mail) to registered users.

4.1 Evaluation by Semantic Analysis
For classification of tweets, we prepared 597 positive ex-

amples that report earthquake occurrence as a training set.
The classification performance is presented in Table 1. We
use two query words—earthquake and shaking; performances
using either query are shown. We used a linear kernel for
SVM. We obtain the highest F -value when we use feature

8We sample tweets associated with locations and obtain a
user distribution that is proportional to the number of tweets
in each region.
9Love Plus, a game that offers a virtual girlfriend experience,
which was recently released in September 3, 2009.

10Because of this definition, the diffusion includes retweet,
which is a type of message that repeats some information
that was previously tweeted by another user.

11search.twitter.com

Algorithm 2 Event detection and location estimation al-
gorithm.

1. Given a set of queries Q for a target event.

2. Put a query Q using search API every s seconds and obtain
tweets T .

3. For each tweet t ∈ T , obtain features A, B, and C. Apply
the classification to obtain value vt = {0, 1}.

4. Calculate event occurrence probability poccur using vt, t ∈
T ; if it is above the threshold pthre

occur, then proceed to step
5.

5. For each tweet t ∈ T , we obtain the latitude and the lon-
gitude lt by i) utilizing the associated GPS location, ii)
making a query to Google Map the registered location for
user ut. Set lt = null if both do not work.

6. Calculate the estimated location of the event from lt, t ∈ T
using Kalman filtering or particle filtering.

7. (optionally) Send alert e-mails to registered users.

Table 1: Performance of classification.

(i) earthquake query:

Features Recall Precision F -value
A 87.50% 63.64% 73.69%
B 87.50% 38.89% 53.85%
C 50.00% 66.67% 57.14%
All 87.50 % 63.64% 73.69%

(ii) shaking query:

Features Recall Precision F -value
A 66.67% 68.57% 67.61%
B 86.11% 57.41% 68.89%
C 52.78% 86.36% 68.20%
All 80.56 % 65.91% 72.50%

A and all features. Surprisingly, features B and feature C
do not contribute much to the classification performance.
When an earthquake occurs, a user becomes surprised and
might produce a very short tweet. It is apparent that the
recall is not so high as the precision. That result is at-
tributable to the usage of query words in a different context
than we intend. Sometimes it is difficult even for humans to
judge whether a tweet is reporting an actual earthquake or
not. Some examples are that a user might write ”Is this an
earthquake or a truck passing?” Overall, the classification
performance is good considering that we can use multiple
sensor readings as evidence for event detection.

4.2 Evaluation of Spatial Estimation
Figure 9 presents the location estimation of an earthquake

on August 11. We can find that many tweets originate from
a wide region in Japan. The estimated location of the earth-
quake (shown as estimation by particle filter) is close to the
actual center of the earthquake, which shows the efficiency of
the location estimation algorithm. Table 2 presents results
of location estimation based on a total of 621 tweets for
25 earthquakes in August, September, and October, 2009.
We compare Kalman filtering and particle filtering, with
the weighted average and the median as a baseline. The
weighted average simply takes the average of latitudes and
longitude on all the positive tweets, and median simply takes
their median. Particle filters perform well compared to other
methods. The poor performance of Kalman filtering implies
that the linear Gaussian assumption does not hold for this
problem. We can find that if the center of the earthquake is
in an oceanic area, it is more difficult to locate it precisely
from tweets. Similarly, it becomes more difficult to make
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Figure 6: Earthquake informa-
tion diffusion network.

Figure 7: Typhoon information
diffusion network.

Figure 8: New Nintendo game
information diffusion network.

Figure 9: Earthquake location estimation based on
tweets. Balloons show the tweets on the earthquake.
The cross shows the earthquake center. Red repre-
sents early tweets; blue shows later tweets.

good estimations in less-populated areas. That is reason-
able: all other things being equal, the greater the number of
sensors, the more precise the estimation will be.

Figure 10 depicts a trajectory estimation of typhoon Melor
based on a total of 2037 tweets. In the case of an earthquake,
the center is one location. However, in the case of a typhoon,
the center moves and produces a trajectory. A comparison of
the performance is presented in Table 3. The particle filter
works well and outputs a trajectory resembling the actual
trajectory.

5. EARTHQUAKE REPORTING SYSTEM
We developed an earthquake reporting system using the

event detection algorithm. Earthquake information is much
more valuable if it is received in real time. We could turn
off a stove or heater in our house and hide ourselves under
a desk or table if we were to have several seconds’ notice
before an earthquake actually hits. Several Twitter accounts
report earthquake occurrence. Some examples are that the
United States Geological Survey (USGS) feeds tweets on
world earthquake information, but such information is not
useful for prediction or early warning.

Vast amounts of work have been done on intermediate-

Figure 10: Typhoon trajectory estimation based on
tweets.

term earthquake prediction in the seismology field (e.g. [23]).
Various attempts have also been made to produce short-
term forecasts to realize an earthquake warning system by
observing electromagnetic emissions from ground-based sen-
sors and satellites [3]. Other precursor signals such as iono-
spheric changes, infrared luminescence, and air-conductivity
change, along with traditional monitoring of movements of
the earth’s crust, are investigated.

In Japan, the government has allocated a considerable
amount of its budget to mitigating earthquake damage. An
earthquake early warning service has been operated by JMA
since 2007. It provides advance announcements of the es-
timated seismic intensities and expected arrival times. It
detects P-waves (primary waves) and makes an alert imme-
diately so that earthquake damage can be mitigated through
countermeasures such as slowing trains and controlling ele-
vators. In fact, P-waves are a type of elastic wave that can
travel faster than S-waves (secondary waves), which cause
shear effects and engender much more damage.

The proposed system, called Toretter12, has been operated
since August 8 of this year. A system screenshot is depicted
in Fig. 11. Users can see the detection of past earthquakes.
They can register their e-mails to receive notices of future
earthquake detection reports. A sample e-mail is presented
in Fig. 12. It alerts users and urges them to prepare for

12It means ”we have taken it” in Japanese.
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Table 2: Location estimation accuracy of earthquakes from tweets. For each method, we present the difference
of the estimated latitude and the longitude to the actual ones, and their Euclidean distance. Smaller distance
means better performance.

Date Actual center Median (baseline) Weighted ave. (baseline) Kalman filters Particle filters
lat. long. lat. long. dist. lat. long. dist. lat. long. dist. lat. long. dist.

Aug. 10 01:00 33.10 138.50 3.40 -0.80 3.49 2.70 -0.10 2.70 2.67 -0.50 2.72 2.60 0.50 2.65
Aug. 11 05:00 34.80 138.50 0.90 -0.90 1.27 0.70 -0.30 0.76 0.60 -0.20 0.63 0.30 -0.90 0.95
Aug. 13 07:50 33.00 140.80 1.30 -9.60 9.69 2.30 -2.30 3.25 1.63 -3.75 4.09 2.70 -2.70 3.82
Aug. 17 20:40 33.70 130.20 4.60 6.00 7.56 0.90 3.20 3.32 1.63 4.35 4.65 0.10 -0.80 0.81
Aug. 18 22:17 23.30 123.50 7.80 9.90 12.60 8.70 10.90 13.95 8.32 10.13 13.11 5.60 8.10 9.85
Aug. 21 08.51 35.70 140.00 0.50 -4.40 4.43 0.10 -1.00 1.00 0.00 -0.60 0.60 -0.80 0.48 0.93
Aug. 24 13:30 37.50 138.60 -0.40 0.00 0.40 -0.50 0.40 0.64 -0.50 0.30 0.58 2.40 0.70 2.50
Aug. 24 14:40 41.10 140.30 -1.90 1.10 2.20 -1.30 0.50 1.39 -1.50 0.50 1.58 3.10 2.00 3.69
Aug. 25 02:22 42.10 142.80 -2.90 -3.90 4.86 -6.10 -3.80 7.19 -5.20 -3.70 6.38 -1.80 -1.90 2.62
Aug. 25 20:19 35.40 140.40 1.60 -1.80 2.41 2.20 -0.70 2.31 0.70 -1.60 1.75 1.40 0.10 1.40
Aug. 31 00:46 37.20 141.50 -0.40 -3.60 3.62 -1.10 -2.30 2.55 -1.30 -2.20 2.56 -0.30 -0.30 0.42
Aug. 31 21:11 33.40 130.90 -4.50 -3.60 5.76 0.50 2.10 2.16 0.70 1.90 2.02 -0.20 -1.70 1.71
Sep. 3 22:26 31.10 130.30 6.20 -0.10 6.20 4.00 5.00 6.40 4.90 7.20 8.71 2.40 2.10 3.19
Sep. 4 11:30 35.80 140.10 3.10 -1.70 3.54 0.20 -0.90 0.92 0.00 -1.00 1.00 0.80 1.40 1.61
Sep. 05 10:59 37.00 140.20 -2.70 -8.30 8.73 -1.40 -3.10 3.40 -1.30 -3.30 3.55 -2.10 -5.80 6.17
Sep. 08 01:24 42.20 143.00 -3.60 -8.90 9.60 -2.50 -3.90 4.63 -4.50 -6.00 7.50 1.30 -3.60 3.83
Sep. 10 18:29 43.20 146.20 -5.90 -10.20 11.78 -4.90 -7.10 8.63 -4.50 -7.20 8.49 -0.90 -7.00 7.06
Sep. 16 21:38 33.40 130.90 1.10 -0.20 1.12 0.90 2.10 2.28 0.50 1.40 1.49 -0.20 -2.50 2.51
Sep. 22 20:40 47.60 141.70 -11.10 -7.50 13.40 -10.80 -3.10 11.24 -11.30 -3.80 11.92 -7.80 -3.00 8.36
Oct. 1 19:43 36.40 140.70 0.70 -3.80 3.86 -0.60 -1.80 1.90 -0.30 -1.50 1.53 -0.70 0.30 0.76
Oct. 5 09:35 42.40 141.60 -3.70 -3.10 4.83 -2.70 -2.00 3.36 -2.60 -1.60 3.05 1.10 -1.70 2.02
Oct. 6 07:49 35.90 137.60 0.50 1.20 1.30 -0.20 0.80 0.82 -0.10 0.90 0.91 0.30 0.50 0.58
Oct. 10 17:43 41.80 142.20 -3.50 -5.40 6.44 -1.40 -2.10 2.52 -2.20 -2.60 3.41 2.40 -1.30 2.73
Oct. 12 16:10 35.90 137.60 2.80 0.50 2.84 0.80 1.20 1.44 0.80 1.60 1.79 3.60 1.40 3.86
Oct. 12 18:42 37.40 139.70 -2.00 -4.40 4.83 -1.50 -0.90 1.75 -1.70 -1.40 2.20 -1.00 -0.60 1.17

Average distance 5.47 3.62 3.85 3.01

Table 3: Trajectory estimation accuracy of typhoon Melor based on tweets.

Date Location Median (baseline) Weighted ave. (baseline) Kalman filters Particle filters
lat. long. lat. long. dist. lat. long. dist. lat. long. dist. lat. long. dist.

Oct. 7 12:00 29.00 131.80 -1.90 -1.90 2.69 -5.20 -3.60 6.32 -3.90 -1.10 4.05 -4.70 1.10 4.83
Oct. 7 15:00 29.90 132.50 -3.70 -2.60 4.52 -3.80 -2.40 4.49 3.20 3.10 4.46 -2.70 0.90 2.85
Oct. 7 18:00 30.80 133.20 -4.10 -1.90 4.52 -4.40 -3.50 5.62 -6.40 5.40 8.37 -3.20 -0.70 3.28
Oct. 7 21:00 31.60 134.30 -3.90 -3.50 5.24 -3.60 -3.30 4.88 -10.90 -1.60 11.02 -3.70 -0.50 3.73
Oct. 8 0:00 32.90 135.60 -2.30 -0.10 2.30 -2.30 -0.90 2.47 -12.60 -20.40 23.98 -2.90 -3.50 4.55
Oct. 8 6:00 35.10 137.20 1.60 3.00 3.40 0.80 1.70 1.88 4.20 16.00 16.54 -0.60 -2.50 2.57
Oct. 8 9:00 36.10 138.80 -0.60 3.60 3.65 0.00 0.50 0.50 0.50 2.60 2.65 0.70 -0.80 1.06
Oct. 8 12:00 37.10 139.70 1.70 3.90 4.25 1.50 1.20 1.92 2.10 1.60 2.64 1.40 0.10 1.40
Oct. 8 15:00 38.00 140.90 2.30 3.20 3.94 2.40 2.20 3.26 1.70 7.60 7.79 2.40 2.70 3.61
Oct. 8 18:00 39.00 142.30 3.20 7.30 7.97 3.50 5.10 6.19 2.10 -18.80 18.92 3.70 5.10 6.30
Oct. 8 21:00 40.00 143.60 4.30 3.90 5.81 4.00 5.30 6.64 1.60 4.50 4.78 4.20 3.10 5.22

Average distance 4.39 4.02 9.56 3.58

Table 5: Earthquake detection performance for two
months from August 2009. ’Promptly detected’ de-
notes detection within a minutes.

JMA intensity scale 2 or more 3 or more 4 or more
Num. of earthquakes 78 25 3
Detected 70(89.7%) 24 (96.0%) 3 (100.0%)
Promptly detected 53 (67.9%) 20 (80.0%) 3 (100.0%)

the earthquake. It is hoped that the e-mail is received by
a user shortly before the earthquake actually arrives. An
earthquake is transmitted through the earth’s crust at about
3–7 km/s. Therefore, a person has about 20 s before its
arrival at a point that is 100 km distant.

Table 4 presents some facts about earthquake detection
and notification using our system. This table shows that we
investigated 10 earthquakes during 18 August – 2 Septem-
ber, all of which our system detected. The first tweet of
an earthquake is usually made within a minute or so. The
delay can result from the time for posting a tweet by a user,
the time to index the post in Twitter servers, and the time
to make queries by our system. We apply classification for
49,314 tweets retrieved by query words in one month; re-
sults show 6,291 positive tweets posted by 4,218 users. Ev-

ery earthquake elicited more than 10 tweets within 10 min,
except one in Bungo-suido, which is the sea between two
large islands: Kyushu and Shikoku. Our system sent e-mails
mostly within a minute, sometimes within 20 s. The delivery
time is far faster than the rapid broadcast of announcements
of JMA, which are widely broadcast on TV; on average, a
JMA announcement is broadcast 6 min after an earthquake
occurs. Statistically, we detected 96% of earthquakes that
were stronger than JMA seismic intensity scale13 3 or more
as shown in Table 5.

6. RELATED WORK
Twitter is an interesting example of the most recent so-

cial media: numerous researchers have examined Twitter.
Aside from the studies introduced into Section 1, several

13The JMA seismic intensity scale is a measure used in Japan
and Taiwan to indicate earthquake strength. Unlike the
Richter magnitude scale, the JMA scale describes the degree
of shaking at a point on the earth’s surface. For example,
the JMA scale 3 is, by definition, one which is ”felt by most
people in the building. Some people are frightened”. It is
similar to the Modified Mercalli scale IV, which is used along
with the Richter scale in the US.
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Table 4: Facts about earthquake detection.
Date Magnitude Location Time E-mail sent time #tweets within 10 min Announce of JMA

Aug. 18 4.5 Tochigi 6:58:55 7:00:30 35 07:08
Aug. 18 3.1 Suruga-wan 19:22:48 19:23:14 17 19:28
Aug. 21 4.1 Chiba 8:51:16 8:51:35 52 8:56
Aug. 25 4.3 Uraga-oki 2:22:49 2:23:21 23 02:27
Aug. 25 3.5 Fukushima 22:21:16 22:22:29 13 22:26
Aug. 27 3.9 Wakayama 17:47:30 17:48:11 16 17:53
Aug. 27 2.8 Suruga-wan 20:26:23 20:26:45 14 20:31
Aug. 31 4.5 Fukushima 00:45:54 00:46:24 32 00:51
Sep. 2 3.3 Suruga-wan 13:04:45 13:05:04 18 13:10
Sep. 2 3.6 Bungo-suido 17:37:53 17:38:27 3 17:43

Figure 11: Screenshot of Toretter, an earthquake
reporting system.¶ ³

Dear Alice,

We have just detected an earthquake
around Chiba. Please take care.

Toretter Alert System

µ ´
Figure 12: Sample alert e-mail.

others have been done. Grosseck et al. investigated indica-
tors such as the influence and trust related to Twitter [8].
Krishnamurthy et al. crawled nearly 100,000 Twitter users
and examined the number of users that each user follows,
in addition to the number of users following them. Naa-
man et al. analyzed contents of messages from more than
350 Twitter users and manually classified messages into nine
categories [19]. The numerous categories are ”Me now” and
”Statements and Random Thoughts”; statements about cur-
rent events corresponding to this category.

Some studies have examined novel applications of Twit-
ter: Borau et al. tried to use Twitter to teach English to
English-language learners [4]. Ebner et al. investigated the
applicability of Twitter for educational purposes, i.e. mobile
learning [6]. The integration of the Semantic Web and mi-
croblogging was described in a previous report [20] in which
a distributed architecture is proposed and the contents are
aggregated. Jensen et al. analyzed more than 150 thousand
tweets, particularly those mentioning brands in corporate
accounts [12].

In contrast to the small number of academic studies of
Twitter, numerous Twitter applications exist. Some are
used for analyses of Twitter data. For example, Tweet-
tronics14 provides an analysis of tweets related to brands

14http://www.tweettronics.com

and products for marketing purposes. It can classify posi-
tive and negative tweets, and can identify influential users.
The classification of tweets might be done similarly to our
algorithm. Web2express Digest15 is a website that auto-
discovers information from Twitter streaming data to find
real-time interesting conversations. It also uses natural lan-
guage processing and sentiment analysis to discover inter-
esting topics, as we do in our study.

Various studies have been made of the analysis of web
data (except for Twitter) particularly addressing the spatial
aspect: The most relevant study to ours is one by Back-
strom et al. [2]. They use queries with location (obtained
by IP addresses), and develop a probabilistic framework for
quantifying spatial variation. The model is based on a de-
composition of the surface of the earth into small grid cells;
they assume that for each grid cell x, there is a probabil-
ity px that a random search from this cell will be equal
to the query under consideration. The framework finds a
query’s geographic center and spatial dispersion. Exam-
ples include baseball teams, newspapers, universities, and
typhoons. Although the motivation is very similar, events
to be detected differ. Some examples are that people might
not make a search query earthquake when they experience
an earthquake. Therefore, our approach complements their
work. Similarly to our work, Mei et al. targeted blogs and
analyzed their spatiotemporal patterns [17]. They presented
examples for Hurricane Katrina, Hurricane Rita, and iPod
Nano. The motivation of that study is similar to ours, but
Twitter data are more time-sensitive; our study examines
even more time-critical events e.g. earthquakes.

Some works have targeted collaborative bookmarking data,
as Flickr does, from a spatiotemporal perspective: Serdyukov
et al. investigated generic methods for placing photographs
on Flickr on the world map [24]. They used a language
model to place photos, and showed that they can estimate
the language model effectively through analyses of annota-
tions by users. Rattenbury et al. [22] specifically examined
the problem of extracting place and event semantics for tags
that are assigned to photographs on Flickr. They proposed
scale-structure identification, which is a burst-detection method
based on scaled spatial and temporal segments.

Location estimation studies are often done in the field of
ubiquitous computing. Estimating an object’s location is
arguably the most fundamental sensing task in many ubiq-
uitous and pervasive computing scenarios. Representing lo-
cations statistically provides a unified interface for location
information, which enables us to make applications inde-
pendent of the sensors used—even when using very different
sensor types, such as GPS and infrared badges [7], or even
Twitter. Well known algorithms for location estimation are
Kalman filters, multihypothesis tracking, grid-based, and
topological approaches, and particle filters. Hightower and
Borriello investigated the application of particle filters to lo-
cation sensors deployed throughout a lab building [10]. More

15http://web2express.org

WWW 2010 • Full Paper April 26-30 • Raleigh • NC • USA

859



than 30 lab residents were tracked; their locations were es-
timated accurately using the particle filter approach.

7. DISCUSSION
We plan to expand our system to detect events of various

kinds using Twitter. We developed another prototype that
detects rainbow information. A rainbow might be visible
somewhere in the world; someone might be twittering about
a rainbow. Our system can identify rainbow tweets using
a similar approach to that used for detecting earthquakes.
The differences are that in the rainbow case, the information
is not so time-sensitive as that in the earthquake case.

Our model includes the assumption that a single instance
of the target event exists. For example, we assume that no
two or more earthquakes or typhoons occur simultaneously.
Although that assumption is reasonable for these cases, it
might not hold for other events such as traffic jams, acci-
dents, and rainbows. To realize multiple event detection,
we must produce advanced probabilistic models that can
accommodate multiple event occurrences.

A search query is important for seeking tweets that might
be relevant. For example, we set query terms as earthquake
and shaking because most tweets mentioning an earthquake
occurrence use either word. However, to improve the recall,
it is necessary to obtain a good set of queries. We can use
advanced algorithms for query expansion, which is a subject
of our future work.

8. CONCLUSION
As described in this paper, we investigated the real-time

nature of Twitter, in particular for event detection. Seman-
tic analyses were applied to tweets to classify them into a
positive and a negative class. We consider each Twitter user
as a sensor, and set a problem to detect an event based on
sensory observations. Location estimation methods such as
Kalman filtering and particle filtering are used to estimate
the locations of events. As an application, we developed an
earthquake reporting system, which is a novel approach to
notify people promptly of an earthquake event.

Microblogging has real-time characteristics that distin-
guish it from other social media such as blogs and collabora-
tive bookmarks. As described in this paper, we presented an
example using the real-time nature of Twitter. It is hoped
that this paper provides some insight into the future inte-
gration of semantic analysis with microblogging data.
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