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Abstract
In this paper, we consider the design of a system in which

Internet-connected mobile users contribute sensor data as
training samples, and collaborate on building a model for
classification tasks such as activity or context recognition.
Constructing the model can naturally be performed by a ser-
vice running in the cloud, but users may be more inclined
to contribute training samples if the privacy of these data
could be ensured. Thus, in this paper, we focus onprivacy-
preserving collaborative learningfor the mobile setting,
which addresses several competing challenges not previ-
ously considered in the literature: supporting complex clas-
sification methods like support vector machines, respecting
mobile computing and communication constraints, and en-
abling user-determined privacy levels. Our approach, Pickle,
ensures classification accuracy even in the presence of sig-
nificantly perturbed training samples, is robust to methods
that attempt to infer the original data or poison the model,
and imposes minimal costs. We validate these claims using
a user study, many real-world datasets and two different im-
plementations of Pickle.
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1 Introduction
As smartphones proliferate, their sensors are generating a

deluge of data. One tool for handling this data deluge is sta-
tistical machine classification; classifiers can automatically
distinguish activity, context, people, objects, and so forth.
We envision classifiers being used extensively in the futurein
mobile computing applications; already, many pieces of re-
search have used standard machine learning classifiers (Sec-
tion 5).

One way to build robust classifiers is throughcollabora-
tive learning[42, 8, 5], in which mobile users contribute sen-
sor data as training samples. For example, mobile users may
submit statistical summaries (features) extracted from audio
recordings of their ambient environment, which can be used
to train a model to robustly recognize the environment that a
user is in: a mall, an office, riding public transit, and so forth.
Collaborative learning can leverage user diversity for robust-
ness, since multiple users can more easily cover a wider va-
riety of scenarios than a single user.

We envision that collaborative learning will be enabled
by a software system that efficiently collects training sam-
ples from contributors, generates statistical classifiers, and
makes these classifiers available to mobile users, or software
vendors. In this paper, we address the challenges involved in
designing a system for collaborative learning. Such a system
must support the popular classifiers (such as Support-Vector
Machines or SVMs and k-Nearest Neighbors or kNNs), must
scale to hundred or more contributors, and must incentivize
user contribution (Section2). To our knowledge, no prior
work has discussed the design of a collaborative learning sys-
tem with these capabilities.

An impediment to scaling collaborative learning is the
computational cost of constructing the classifier from train-
ing data. With the advent of cloud computing, a natural way
to address this cost is to let mobile users submit their sensor
data to a cloud service which performs the classifier con-
struction. In such a design, however, to incentivize users
to participate in collaborative learning it is essential toen-
sure the privacy of the submitted samples. Training sam-
ples might accidentally contain sensitive information; fea-
tures extracted from audio clips can be used to approximately
reconstruct the original sound [41, 18], and may reveal over
70% of the words in spoken sentences (Section4.1).

In this paper, we present Pickle, a novel approach to
privacy-preserving collaborative learning. Pickle is based



on the following observation: the popular classifiers rely
on computing mathematical relationships such as the inner
products and the Euclidean distances between pairs of sub-
mitted training samples. Pickle perturbs the training data
on the mobile device using lightweight transformations to
preserve the privacy of the individual training samples, but
regresses these mathematical relationships between training
samples in a unique way, thereby preserving the accuracy of
classification. Beyond addressing the challenges discussed
above, Pickle has many desirable properties: it requires no
coordination among users and all communication is between
a user and the cloud; it allows users to independently tune
the level of privacy for perturbing their submitted training
samples; finally, it can be made robust to poisoning attacks
and is collusion-resistant. Pickle’s design is heavily influ-
enced by the requirements of mobile sensing applications,
and occupies a unique niche in the body of work on privacy-
preserving methods for classifier construction (Section5).

A user study demonstrates that Pickle preserves privacy
effectively when building a speaker recognition classifier
(Section4.1); less than 2% of words in sentences recon-
structed by attacking Pickle transformations were recogniz-
able, and most of these were stop words. Results from
a prototype (Section4.2) show that Pickle communication
and storage costs are small, classification decisions can be
made quickly on modern smartphones, and model train-
ing can be made to scale using parallelism. Finally, using
several datasets, we demonstrate (Section4.3) that Pickle’s
privacy-preserving perturbation is robust to regression at-
tacks in which the cloud attempts to reconstruct the origi-
nal training samples. The reconstructed samples are signif-
icantly distributionally-different from the original samples.
Despite this, Pickle achieves classification accuracy thatis
within 5%, in many cases, of the accuracy obtained without
any privacy transformation.

2 Motivation and Challenges
Modern phones are equipped with a wide variety of sen-

sors. An emerging use of this sensing capability iscollabo-
rative learning, where multiple users contribute individually
collected training samples (usually extracted from raw sen-
sor data) so as to collaboratively construct statistical models
for tasks in pattern recognition. In this paper, we explore the
design of a system for collaborative learning.

What is Collaborative Learning? As an example of col-
laborative learning, consider individual users who collect au-
dio clips from their ambient environments. These users may
be part of a social network. Alternatively, they may have
no knowledge of each other and may have volunteered to
provide samples, in much the same way as volunteers sign
up for distributed computing efforts like SETI@HOME; in
this sense, we focus onopencollaborative learning. Train-
ing samples extracted from these clips are collected and used
to build a classifier that can determine characteristics of the
environment: e.g., determine whether a user is at home, on
a bus, in a mall, or dining at a restaurant, etc. As another
example, consider a mobile health application that collects
patient vital signs to build a model for classifying diseases.

Collaborative learning results in classifiers of activity,or
of environmental or physiological conditions etc. Many
proposed systems in the mobile sensing literature (e.g.,
[35, 8, 10, 43, 4]) have used machine-learning classifiers, of-
ten generated by using training samples from asingleuser.
Due to the diversity of environments or human physiology,
classifiers that use data from a single user may not be robust
to a wide range of inputs. Collaborative learning overcomes
this limitation by exploiting the diversity in training samples
provided by multiple users. More generally, collaborative
learning is applicable in cases, such as human activity recog-
nition or SMS spam filtering, where a single user’s data is far
from being representative.

Designing a system for collaborative learning sounds con-
ceptually straightforward, but has many underlying chal-
lenges. Before we describe these challenges, we give the
reader a brief introduction to machine-learning classifiers.

The Basics of Classification. The first step in many
machine-learning algorithms isfeature extraction. In this
step, the raw sensor data (an image, an audio clip, or other
sensor data) are transformed into a vector of features that
are most likely to be relevant to the classification task at
hand. Examples of features in images include edges, con-
tours, and blobs. For audio clips, the fundamental frequency,
the spreads and the peaks of the spectrum, and the number
of harmonics are all examples of features.

Classifiers are first trained on a set of training samples
denoted by:D = {(xxx1,y1),(xxx2,y2), . . . ,(xxxN,yN)} wherexxxi ∈
R

P is the i-th training feature vector, andyi is a categorical
variable representing the class to whichxxxi belongs. For ex-
ample,xxxi may be a list of spectral features of an audio clip,
andyi may identify this audio clip as “bus” (indicating the
clip was recorded in a bus). In what follows, we useXXX to
denote the data matrix withxxxi as column vectors, andU or
V to refer to users.

The goal of classification is to construct a classifier using
D such that when presented with a new test feature vector
xxx, the classifier outputs a labely that approximatesxxx’s true
class membership.

One popular, yet simple and powerful, classifier is the k-
Nearest-Neighbor (kNN) classifier. Given a feature vectorxxx
and a training setD, kNN finds thek training feature vectors
which are the closest toxxx, in terms of the Euclidean distance
between them:

‖xxx− xxxi‖
2
2 = xxxTxxx−2xxxTxxxi + xxxT

i xxxi . (1)

The classifier then outputs the majority of all the nearest
neighbors’ labels as the label forxxx (ties broken arbitrarily).

Support Vector Machine (SVM) is another popular and
more sophisticated classifier. It leverages a non-linear map-
ping to mapxxx into a very high-dimensional feature space.
In this feature space, it then seeks a linear decision bound-
ary (i.e., a hyperplane) that partitions the feature space into
different classes [16]. For the purposes of this paper, two
computational aspects of this classifier are most relevant:

• The training process of SVMs rely on computing either the
inner productxxxT

i xxx j or the Euclidean distance‖xxxi −xxx j‖
2
2 be-

tween pairs of training feature vectors.



• The resulting classifier is composed of one or more of the
submitted training samples — support vectors.

Design Goals and Challenges.A system for open collabo-
rative learning must support three desirable goals.

First, it mustsupport the most commonly-used classifiers
such as the Support Vector Machine (SVM) classifier and the
k-Nearest Neighbor (kNN) classifier described above. These
popular classifiers are used often in the mobile sensing lit-
erature for logical localization [7], collaborative video sens-
ing [8], behavioral detection of malware [10], device iden-
tification [40] and so on. Other pieces of work, such as
CenceMe [43], EEMSS [4], and Nericell [44] could have
used SVM to get better classification performance.

Second, the system mustscaleto classifiers constructed
using training samples from 100 or more users. At this scale,
it is possible to get significant diversity in the training sam-
ples in order to enable robust classifiers. A major hurdle for
scaling is computational complexity. Especially for SVM,
the complexity of constructing the classifier is the dominant
computational task, and using the classifier against test fea-
ture vectors (i.e.,xxx above) is much less expensive. As we dis-
cuss later, it takes a few hours on a modern PC to construct
a classifier using data from over 100 users; as such, this is
a task well beyond the capabilities of smartphones today. A
less crucial, but nevertheless important, scaling concernis
network bandwidth usage.

Third, the system must have the rightadoption incentives
to enable disparate users to contribute training samples: (1)
The system must ensure theprivacy of the submitted sam-
ples, as we discuss below; (2) It must be robust todata
poisoning, a legitimate concern in open collaborative learn-
ing; (3) It must enable users who have not contributed to
the model to use the classifier, but must dis-incentivizefree-
riderswho use classifiers directly obtained from other users.
Of these, addressing the privacy goal is most intellectually
challenging, since the construction of many popular classi-
fiers, like SVM or kNN, requires calculations using accurate
feature vectors which may reveal privacy (Section3).

Consideration of economic incentives for collaborative
learning is beyond the scope of this paper; we assume that
crowd sourcing frameworks like Amazon Mechanical Turk1

can be adapted to provide appropriate economic incentives.
Cloud-Enabled, Privacy-Preserving Classification. We
propose to use an approach in which mobile users submit
training samples (with associated labels) to a cloud, possibly
at different times over a period of hours or days; the cloud
computes the classifier; the classifier is then sent to mobile
phones and used for local classification tasks.

Using the cloud addresses the computational scaling chal-
lenge, since classifier construction can be parallelized totake
advantage of the cloud’s elastic computing capability. The
cloud provides a rendezvous point for convenient training
data collection from Internet-connected smartphones. Fi-
nally, the cloud provides a platform on which it is possible
to develop a service that provides collaborative learning of
different kinds of models (activity/context recognition,im-
age classification, etc.). Indeed, we can make the following

1https://www.mturk.com/mturk/welcome

claim: to conveniently scale open collaborative learning,an
Internet-connected cluster isnecessary, and the cloud infras-
tructure has the right pay-as-you-go economic model since
different collaborative learning tasks will have different com-
putational requirements.

However, using the cloud makes it harder to achieve an
important design goal discussed above,privacy.

Privacy and the Threat Model. In cloud-enabled open col-
laborative learning, users contribute several training samples
to the cloud. Each sample consists of a feature vectorxxx and
the associated labely. Both of these may potentially leak
private information to the cloud (as we discuss below, in our
approach we assume the cloud is untrusted), and we consider
each in turn. Before doing so, we note thatusingthe classi-
fier itself poses no privacy threat2, since smartphones have
enough compute power to perform the classification locally
(Section4.2).

Depending upon the kind of classifier that the user is con-
tributing to, the labely may leak information. For example,
if the model is being used for activity recognition, a label
may indicate that the user was walking or running at a given
time. In this paper, we do not consider label privacy because
the userwillingly contributes the labeled feature vectors and
should have no expectation of privacy with regard to labels.

However, users may (or should, for reasons discussed be-
low) have an expectation of privacy with respect to infor-
mation that may be leaked by the feature vectors. Feature
vectorsxxx often consist of a collection of statistical or spec-
tral features of a signal (e.g., the mean, standard deviation or
the fundamental frequency).

Some features can leak private information. Consider fea-
tures commonly used to distinguish speech from music or
noise [35]: the Energy Entropy, Zero-Crossing Rate, Spec-
tral Rolloff, or Spectral Centroid etc. These statistics ofthe
speech signals may, unintentionally, reveal information that
can be used to extract, for example, age, gender or speaker
identity. In experiments we have conducted on audio clips
from the TIMIT dataset [20] (details omitted for brevity),
female voices tend to have higher average spectral rolloff
and average spectral centroid than male voices, while voices
of younger individuals have higher average energy entropy
and lower average zero-crossing rate than voices of the aged.
Similar age-related differences in measures of repeated ac-
tivity have also been observed elsewhere [6].

Worse yet, a relatively recent finding has shown that,
in some cases, feature vectors can be used to reconstruct
the original raw sensor data. Specifically, a commonly
used feature vector in speech and music classification is
the Mel-frequency cepstrum coefficients (MFCC), which
are computed by a sequence of mathematical operations on
the frequency spectrum of the audio signals. A couple of
works [41, 18] have shown that it is possible to approxi-
mately reconstruct the original audio clips, given the MFCC
feature vectors. In Section4.1, we present the results of an
experiment that quantifies information leakage by MFCC re-
construction.

2Assuming the user can trust the phone software; methods for ensuring
this are beyond the scope of this paper.

https://www.mturk.com/mturk/welcome


In the context of collaborative learning, this is an alarming
finding. When a user submits a set of feature vectors and
labels them as being in a cafe (for example), the cloud may
be able to infer far more information than the user intended
to convey. When the original audio clips are reconstructed,
they may reveal background conversations, the identity of
patrons, and possibly even the location of the specific cafe.
A recent, equally alarming, finding is that original images
may be reconstructed from their feature vectors [54].

Given these findings, we believe it is prudent to ensure the
privacy of feature vectors. The alternative approach, avoid-
ing feature vectors that are known or might be suspected to
reveal private information, can affect classification accuracy
and may not therefore be desirable.

One way to preserve the privacy ofxxx is to generatẽxxx from
xxx and send onlỹxxx the cloud, with the property that, with high
likelihood, the cloud cannot reconstructxxx from x̃xx. Our ap-
proach randomly perturbs the feature vectors to generatex̃xx,
but is able to reconstruct some of the essential properties of
these feature vectors that are required for classifier construc-
tion, without significantly sacrificing classifier accuracy. As
we show later, approaches that use other methods like ho-
momorphic encryption, secure multi-party communication
or differential privacy make restrictive assumptions thatdo
not apply to our setting.

We make the following assumptions about the threat
model. The user trusts the software on the mobile device to
compute and perturb feature vectors correctly, and to trans-
mit only the perturbed feature vectors and the associated la-
bels. The user does not trust other users who participate in
the collaborative learning, nor does she trust any component
of the cloud (e.g., the infrastructure, platforms or services)
The cloud has probabilistic polynomial-time bounded com-
puting resources and may attempt to reconstruct the original
feature vectors. Servers on the cloud may collude with each
other, if necessary, to recontruct the original feature vectors.
Moreover, the cloud may collude with userA to attempt to re-
construct userB’s original feature vectors by directly sending
B’s perturbed feature vectors toA. Also, userB’s perturbed
feature vectors may be included in the classifiers sent toA,
andA may try to reconstructB’s original feature vectors.

Given that the cloud is untrusted, what incentive is there
for the cloud to build the classifier correctly (i.e., why should
users trust the cloud for developing accurate classifiers)?We
believe market pressures will force providers of the collab-
orative learning “service” to provide accurate results, espe-
cially if there is a revenue opportunity in collaborative learn-
ing. Exploring these revenue opportunities is beyond the
scope of this work, but we believe therewill be revenue op-
portunities, since a service provider can sell accurate clas-
sifers (of, for example, context) to a large population (e.g.,
all Facebook users who may be interested in automatically
updating their status based on context).

3 Privacy-Preserving Collaborative Learning
In this section, we discuss a novel approach to preserving

the privacy of collaborative learning, called Pickle.
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Figure 1—Illustrating Pickle.

3.1 Pickle Overview
In Pickle (Figure1), each user’s mobile phone takesN

training feature vectors, where each vector hasP elements,
and pre-multiplies the resultingP×N matrix by aprivate,
randommatrixRRR, whose dimensionality isQ×P. This mul-
tiplication randomly perturbsthe training feature vectors.
Moreover, we setQ < P, so thisreduces the dimensional-
ity of each feature vector. A dimensionality-reducing trans-
formation is more resilient to reconstruction attacks thana
dimensionality preserving one [32]. In Pickle,RRR is private to
a participant, so is not known to the cloud, nor to other par-
ticipants (each participant generates his/her own privateran-
dom matrix). This multiplicative perturbation by a private,
random matrix is the key to achieving privacy in Pickle.

A dimensionality-reducing transformation does not pre-
serve important relationships between the feature vectors,
such as Euclidean distances and inner products. For instance,
the inner product between two data pointsxxxi andxxx j now be-
comesxxxT

i RRRTRRRxxx j . This is not identical toxxxT
i xxx j unlessRRR is

an orthonormal matrix which necessarily preserves dimen-
sionality. A dimensionality-reducing transformation canap-
proximatelypreserve Euclidean distances [25], but even this
property is lost when different participants use differentpri-
vate random matrices; in this case, the Euclidean distances
and inner products for perturbed feature vectors fromdif-
ferent usersis no longer approximately preserved. Distor-
tion in these relationships can significantly degrade classi-
fication accuracy when used directly as inputs to classifiers
(Section4.3).

In this paper, our focus is on methods that maintain high
classification accuracy while preserving privacy. The central
contribution of this paper is the design of a novel approach to
approximately reconstruct those relationships using regres-
sion, without compromising the privacy of the original fea-
ture vectors, while still respecting the processing and com-
munication constraints of mobile devices.

To do this, Pickle learns a statistical model to compen-
sate for distortions in those relationships, then approximately
reconstructs distance or inner-product relationships between



the users’ perturbed feature vectors, before finally construct-
ing the classifier. Conceptually, here is how Pickle works.
1. Users generate labeled raw data at their convenience: for

example, Pickle software on the phone may collect audio
clips, then prompt the user to label the clips.

2. Once a piece of raw data is labeled, the software will ex-
tract feature vectors, perturb them usingRRR, and upload
them, along with the corresponding label, to the cloud;
as an optimization, the software may batch the extraction
and upload. (In what follows, we use the termuser, for
brevity, to mean the Pickle software running on a user’s
mobile device. Similarly, we use the termcloud to mean
the instance of Pickle software running on one or more
servers on a public cloud.)

3. When the cloud receives a sufficient number of labeled
perturbed feature vectors from contributors (the number
may depend on the classification task), it constructs the
classifier and sends a copy to each user.
Before the classifier is generated, the cloud learns a model

to compensate for the distortion introduced by perturbation.
Specifically, in thisregression phase:
1. The cloud sends to each participating user a collection of

public feature vectors.
2. The user perturbs the cloud-generated feature vectors us-

ing its private transformation matrix and returns the result
to the cloud.

3. The cloud employs regression methods to learn approx-
imate functions for computing the desired mathematical
relationships between feature vectors.

The key intuition behind our approach is as follows. Pat-
tern classifiers can effectivelydiscriminatebetween different
classes by leveraging the most important covariance struc-
tures in the underlying training data. Our regression phase
learns these structures from the transformed representations
on public data. However, our privacy transformation suffi-
ciently masks the less important components that would be
required togeneratethe original feature vectors. This is why
we are able to build accurate classifiers even without being
able to regenerate the original feature vectors.

3.2 The Regression Phase
Step 1: Randomly Generate Public Feature Vectors.In
this step, the cloud randomly generatesM (in our paper, we
setM to 3P) public feature vectors as aP×M matrixZZZ and
sends this matrix to each user. The random public feature
vectors have the same dimensionality as true feature vectors.
In Pickle, the cloud synthesizes random public feature vec-
tors using summary statistics provided byU users. In this
method, each user sends to the cloud the mean and the co-
variance matrix of its private training data, derived from a
fixed number (in our paper, 4P) of its feature vectors. The
cloud generates aZZZ thatapproximates the statistical charac-
teristics of the training feature vectors ofall theU users; this
matrix, generated using an equally-weighted Gaussian mix-
ture model that simulates the true distribution of user data, is
used in the next two steps to learn relationships between the
feature vectors and arenot used to build classifiers.

This method never transmits actual private feature vec-
tors to the cloud, so preserves our privacy goal. Moreover,

although the cloud knows the mean and the covariance, this
information is far from sufficient to generate accurate indi-
vidual samples since two random draws from the same con-
tinuous distribution have zero probability of being identical.
Despite this, it is possible that sample statistics of the fea-
ture vectors may leak some private information; to limit this,
Pickle generates sample statistics from a very small number
(4P) of data samples. Finally, in this step, the public feature
vectors need not be labeled.
Step 2: Perturb the Public Feature Vectors. The high-
level idea in this step is to perturbZZZ in exactly the same
way as users would perturb the actual training feature vec-
tors. Concretely, a userU generates a private random matrix
RRRu

3, computes the perturbed public feature vectorsRRRuZZZ, and
sendsRRRuZZZ to the cloud.

However, this approach has the following vulnerability. If
ZZZ is invertible, the privateRRRu can be recovered by the cloud
when it receives the perturbed vectorsRRRuZZZ: the cloud simply
computesRRRuZZZZZZ−1.

To raise the bar higher, Pickle computes and sendsRRRu(ZZZ+
εεεu) to the cloud, whereεεεu is an additive noise matrix. The
cloud would then need to knowRRRuεεεu in order to apply the
inversion to obtain an accurateRRRu. Unlike the public feature
vectorsZZZ, however,εεεu is private to the user. The elements
of RRRu are drawn randomly from either a Gaussian or a uni-
form distribution.εεεu has the distribution ofN (εεεu;000,αuΣΣΣZ),
whereΣΣΣZ is the (sample) covariance matrix ofZZZ. αu is tun-
able, controlling theintensityof the additive noise [11]. As
we show in Section4.3, higher privacy can be obtained by
using smaller values ofQ (i.e., greater reductions in dimen-
sionality) or bigger values ofαu.
Step 3: Regress. The regression step is executed on the
cloud. We describe it for two users; extending it to multiple
users is straightforward. Assume usersU andV have chosen
random matricesRRRu, εεεu andRRRv, εεεv respectively. The cloud
receivesZZZu = RRRu(ZZZ+ εεεu) and ZZZv = RRRv(ZZZ+ εεεv). The key
idea is to useZZZu andZZZv to approximate quantities which are
pertinent to classification.

Concretely, letµ and ν be two indicator variables that
µ,ν ∈ {u,v}. Also, let zzzi stand for thei-th public feature
vector andzzzµi the i-th transformed feature vector byRRRµ. In
other words,zzzi andzzzµi are thei-th columns ofZZZ andZZZµ.

Intuitively, we would like the cloud to be able to recover
the original relationships from the perturbed feature vectors.
For this, we learn four functions (fuu, fuv, fvu and fvv) in the
form of fµν(zzzµi,zzzν j ;θθθµν) that can approximate well a certain
function f (zzzi ,zzzj) of (particularly, the distances or the inner
products between)zzzi andzzzj . θθθµν is the parameter vector of
the function. Once these functions are learnt, they are ap-
plied to actual training data sent by users (Section3.3).

The parameter vectorsθθθµν are thus of critical importance.
To identify the optimal set of parameters, we have used lin-
ear regression (LR). We now show how to approximately re-
cover the concatenation of public feature vectorszzzi andzzzj

(i.e., f (zzzi ,zzzj) = [zzzT
i ,zzz

T
j ]

T) using LR. The models then can be

3The user can choose a task-specificRRRu. However, once chosen, the
matrix is fixed, though private to the user. A dynamically varying RRRu will
incur high computational cost, due to the Regress phase in the next step.



used to compute inner products and distancesapproximately
on transformed actual training feature vectors from users4.
The approximated quantities will then be supplied to learn-
ing algorithms to construct classifiers (Section3.3).

For each pair ofµ and ν, let QQQµν be the matrix whose
columns are concatenatedzzzµi andzzzν j with M2 columns (the
number of total possible concatenations isM2, since there
areM public feature vectors). Also, letZZZC denote the matrix
whose columns are concatenatedzzzi andzzzj . Note thatQQQµν has
2Q rows, whereQ is the row-dimensionality of each user’s
private transformation matrixRRRµ or RRRν (for simplicity of de-
scription, we assume the dimensionality is the same for the
two users; Pickle allows different users to choose different
Q). ZZZC has 2P rows, whereP is the row-dimensionality of
the public or original feature vectors.

For linear regression, we use this equation to obtainθθθµν
for fµν

ZZZC = θθθµνQQQµν (2)

where the parameterθθθµν is a matrix with the size of(2P×
2Q). The optimal parameter set is thus found in closed form
asθθθµν = ZZZCQQQ+

µν, where+ denotes the pseudo-inverse.
Our implementation of Pickle uses one optimization,

called iPoD. In iPoD, the cloud can avoid calculating the
regression functionsfuu and fvv (i.e., whenµ = ν) by ask-
ing users directly for the corresponding inner products cal-
culated from their own feature vectors. These inner products
do not reveal the individual feature vectors. This trades off a
little communication overhead (quantified in Section4.2) for
improved accuracy.

Instead of linear regression, we could have used Gaussian
Process Regression (GPR). We have found in preliminary ex-
periments that GPR marginally improves accuracy over LR
but is significantly more compute-intensive, so we omit a de-
tailed description of GPR.

Finally, all the schemes described above extend to mul-
tiple users naturally: Pickle simply computes 4 (or 2 when
usingiPoD) regression functions for every pair of users.
3.3 Model Generation and Return
Building the Classifier. After the cloud learns the functions
fµν with the procedure in the previous section, it is ready
to construct pattern classifiers using training samples con-
tributed by users. In this step of Pickle, each userU col-
lects its training feature vectorsXXXu (in which each column is
one feature vector), then perturbs these feature vectors with
its privateRRRu. Each perturbed feature vector, together with
its label, is then sent to the cloud. Using perturbed feature
vectors from each user, the cloud generates the classification
model.

Let xxxui denote the unperturbedi-th feature vector from
userU and likewisexxxv j for the userV . Moreover, let

x̃xxui = RRRuxxxui, x̃xxv j = RRRvxxxv j (3)

denote the perturbed feature vectors. Using the regression
parameters obtained from Equation (2), the cloud first at-

4It is also possible to directly regress inner products and distances us-
ing the functions but we have experimentally found that directly regressing
these quantities does not result in improved accuracy over the methods de-
scribed.

tempts to reconstruct the concatenation ofxxxui andxxxv j,
[

xxxui
xxxv j

]

≈ fuv(xxxui,xxxv j;θθθuv) = θθθuv

[

x̃xxui
x̃xxv j

]

,

[

rrru j
rrrv j

]

whererrru j andrrrv j areP-dimensional vectors. The cloud then
approximates the inner product with the reconstructed fea-
ture vectors,xxxT

uixxxv j ≈ rrrT
uirrrv j. Similarly, to approximate the

distance between two feature vectors, we use5

‖xxxui − xxxv j‖
2
2 ≈ rrrT

uirrrui −2rrrT
uirrrv j + rrrT

v jrrrv j (4)

Once inner products or distances are approximated, the
cloud can build SVM or kNN classifiers using the follow-
ing simple substitution: whenever these algorithms need the
distances or inner products of two feature vectors, the ap-
proximated values are used.

Model Return. In this step, the cloud returns the model to
users, so that classification may be performed on individual
phones; for the details of the classification algorithms, we
refer the interested reader to [16]. The information returned
depends upon the specific classifier (e.g., when using SVM,
the support vectors must be returned), but must include all
functionsfµν and associatedθθθµν parameters for every pair of
users. These are required because the classification step in
many classifiers also computes distances or inner products
between the test feature vectors and training feature vectors
presented in the model (e.g., the support vectors in SVM);
all of these vectors are perturbed so their distances and inner
products must be estimated using thefµν functions.

3.4 Privacy Analysis
Recall that the privacy goal in Pickle is to ensure the com-

putational hardness of de-noising user contributions by the
cloud (either by itself, or in collaboration with other users)
and thereby inferringXXX. We now show a userU who fol-
lows the steps of the protocol does not leak vital information
which can be used to de-noise user contributions. In the pro-
tocol,U sends data to the cloud in Steps 1, 2 and 4only.

In Step 1,U sends the mean and covariance matrix of a
small number of its private training samples. Using this, the
cloud can construct synthetic vectors whose first and second-
order statistics match that ofU’s private data, but clearly
cannot reconstructXXXuuu.

In Step 2,U sendsRRR(ZZZ+ εεε) to the cloud. One might as-
sume that the cloud can filter out the additive noiseRRRεεε and
then recoverRRR by using the knownZZZ−1. However, exist-
ing additive noise filtering techniques (such as spectral anal-
ysis [26], principal component analysis, and Bayes estima-
tion [22]) need to know at least the approximate mean and
the approximate covariance of the additive noise. In Pickle,
the cloud cannot know, or estimate with any accuracy, the co-
variance ofRRRεεε, since that depends uponRRR, a quantity private
to the user.

Finally, in Step 4,U sendsRRRXXX to the cloud. The pri-
vacy properties of this dimensionality-reducing transform
are proven in [32], which shows thatXXX cannot be recovered

5 In the iPoD optimization, the first and last terms of the RHS in (4) can
be obtained directly from the users.



without knowingRRR — that is because there are infinite fac-
torizations ofX̃XX in the form of RRRXXX. In fact, even ifRRR is
known, because the resulting system of equations is under-
determined, we can only reconstructXXX in the sense of mini-
mum norm.

Given this, usingεεεu provides an additional layer of pri-
vacy. εεεu is a random matrix with real-valued elements, so
it is highly infeasible for an adversary to guess its values
successfully using brute force. The adversary may attempt
to find approximate values forεεεu, but would still be faced
with the challenge of determining whether the resulting ap-
proximate value forRRRu is correct; the only way to do this is
to attempt to reconstruct the original feature vectors and see
if they reveal (say) meaningful human speech or other rec-
ognizable sounds, and this is also computationally hard, as
described above.

However, it may be possible for an attacker toapproxi-
mate XXX using areconstruction attacks. In Section4.3, we
show that Pickle is robust to these attacks as well.

Finally, Pickle is robust to collusion between the cloud
and users. Since each userU independentlyselects a secret
RRR, and since its feature vectors are encoded using this secret,
another user cannot directly compute any ofU’s original fea-
ture vectors from perturbed feature vectors it receives from
the cloud (for the same reason that the cloud itself cannot
compute these). A similar robustness claim holds for collu-
sion between cloud servers.

3.5 Other Properties of Pickle
Besides ensuring the privacy of its training feature vec-

tors, Pickle has several other properties.
Pickle iscomputationally-efficienton mobile devices, and

incurs minimal communication cost. It requires two matrix
multiplications (one for the regression stage and the other
during training); classification steps require computing dis-
tances or inner products. It transmits a few matrices, and a
classification model over the network. All of these, as we
shall validate, require minimal resources on modern phones,
and modest resources on the cloud infrastructure.

Pickle requires no coordinationamong participants and
provides flexible levels of privacy. Each user can indepen-
dently choose the privacy transformation matrixRRR, and com-
municates only with the cloud. Users can also independently
set the level of desired privacy by selecting the dimensions
of RRR or the intensity of the additive noise matrixεεε. In Sec-
tion 4.3, we explore the implications of these choices.

Pickledisincentivizes free-riding. A userU who does not
contribute training samples, can get the model from other
users, but, to use it, must also participate in at least the re-
gression phase so that the cloud can computefuv and fvu for
all other usersV whose vectors are included in the classifier.

Although we have discussed Pickle in the context of clas-
sification, it extends easily to other tasks like non-linearre-
gression and estimating distributions; these tasks arise in the
context of participatory sensing [1, 12, 23, 17, 5, 46].

Beyond SVM and kNN, Pickle can be applied to all ker-
nel based classification and regression methods that use dis-
tances or inner-products to establish relationships between
training samples. One can simply replace these distances

or inner products with approximations derived by applying
Pickle’s regression functions.

Finally, Pickle can bemade robust to poisoning attacks
in which a fewmalicious users attempt to inject bogus data
in order to render the model unusable.6 For classification
algorithms which build robust statistical models, attackers
must inject distributionally different feature vectors inorder
to succeed. Prior work has examined these kinds of attacks
and have proposed a distance-based approach, called Orca,
to detecting poisoning attacks [9]. Because Pickle can ap-
proximately preserve distances, the cloud can run Orca even
though it receives only perturbed data, as shown in Sec-
tion 4.3.

4 Evaluation of Pickle
In this section, we perform three qualitatively different

kinds of evaluation: auser-studywhich brings out the bene-
fits of Pickle, especially for applications like speaker recog-
nition where the un-perturbed feature vectors are known to
leak privacy;measurements on a prototypethat quantify the
resource cost of Pickle; and an extensive characterization
of the privacy-accuracy tradeoffs in Pickle, together witha
comparison of alternatives, using anevaluation on public
data-sets.

4.1 Pickle Privacy: A User Study
In a previous section, we asserted that a commonly used

feature vector for acoustic applications, MFCC, could be
used to approximately reconstruct original audio clips. In
this section, we demonstrate this using a small-scale user-
study on acoustic data, and show that: a) a scheme like Pickle
is necessary, since without it, almost the entire audio clip
can be reverse-engineered from unperturbed MFCC feature
vectors; b) Pickle can mitigate this privacy leakage without
significant loss in classification accuracy.

MFCC is widely used in acoustic mobile applications,
like [35, 8, 34, 36, 42]. In particular, MFCC can be used
to recognize speakers [42, 34] or their genders [36]; collab-
orative learning can be used to build models for both these
applications. To quantify the efficacy of Pickle in MFCC
for speaker recognition, we used spoken sentences from four
volunteers (two men and two women) in the TIMIT dataset
[20], and trained SVM (with RBF) models by extracting the
standard 13-dimensional MFCC feature vectors from the au-
dio clips, with and without Pickle. For Pickle feature vectors
with a 50% dimensionality reduction and a 0.3 intensity of
additive noise (denoted by(50%,0.3)), recognition accuracy
is degraded only by 4.32%! We leave a more detailed discus-
sion of Pickle’s impact on accuracy for a later section, but
now demonstrate how, with minimal accuracy loss, Pickle
can greatly reduce privacy leakage.

To this end, we conducted a user study which used eight
testing sentences (81 words) from the training set used to
construct the classifier. For each sentence, users were asked

6 Attacks in which a majority of contributors poison the modelrequire
other mechanisms. Such attacks can render a model completely useless for
the corresponding classification task. In that case, a company that sells these
collaboratively-designed models may offer monetary incentives to contrib-
utors, but only if the resulting model is shown to be accurate. Discussion of
such mechanisms is beyond the scope of the paper.



to listen to three versions of this sentence in the followingor-
der: (i) aPickle-MFCCaudio clip generated by first applying
a reconstruction attack (Section4.3.3) to (50%,0.3) Pickle-
transformed MFCC feature vectors7, and then applying [18]
to reverse-engineer the audio clip from the estimated feature
vector; (ii) anMFCC audio clip generated directly from the
MFCC feature vectors using the method described in [18];
and (iii) theoriginal audio clip. Users were asked to write
down all the words they recognized in each of the clips. Sev-
enteen users participated in the study, having varying levels
of proficiency in English.

For each participant, we calculated twoRecognition Ra-
tios (RRs)for each sentence: Pickle-MFCC RR, is the ratio
of the number of words recognized from thePickle-MFCC
clip divided by the number of words recognized in the origi-
nal clip; and MFCC RR, is the ratio of the number of words
recognized in theMFCC clip to that recognized in the orig-
inal clip. As Figure4.1 shows, Pickle offers very good pri-
vacy protection; averaged across all sentences, Pickle has
an RR of only 1.75%, while the MFCC-reconstructed clips
have an RR of 73.88%. Of the words recognized in Pickle-
ed clips, most were articles, prepositions or linking verbs,
but three users recognized the phrase “below expectations”
in one sentence, and one user recognized the words “infor-
mative prospective buyer” in another sentence. These words
provide minimal information about the original sentences,
since they lack vital context information.

While a more extensive user study is the subject of future
work, our study shows that, without Pickle, a collaborative
learning task for speaker recognition can leak a majority of
words in audio clips when MFCC is used as a feature vector;
using Pickle, a negligible minority is leaked.
4.2 Pickle Resource Costs: Prototype Evalua-

tion
Prototype System. We have implemented a prototype of
Pickle (Figure4) which consists of two components: soft-
ware forAndroid 2.3.4(about 8K lines of Java code, about
half of which is the Pickle-SVM engine) andWindows Mo-
bile 6.5(about 11K lines of C# code, about 40% of which is
the Pickle-SVM engine), and software forthe cloud, writ-
ten with .Net 4.0 framework (about 8K lines of code in
C#, of which the Pickle-SVM engine is shared with the
phone code). The prototype supports all functions required
by Pickle, including regression parameter construction and
interaction, raw data collection, feature vector generation,
transformation, upload and classification, user labeling,out-
lier detection, model training, and model return. The phone
software supports the collection and processing of acceler-
ation and acoustic data, and the cloud component builds a
Pickle-SVM classifier with four optional kernels. Support
for other sensors and other classifiers is left to future work.
Experimental Methodology.Using this prototype, we have
collected 16,000 accelerometer-based feature vectors, col-
lected using smartphones, for the purpose of evaluating the
resource costs for collaborative learning. For evaluatingcol-
laborative training, we cluster these feature vectors among

7The MFCC feature vectors were generated using 25ms overlapping
frames with an inter-frame “hop” length of 10ms
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160 users each of whom submits, on average, 100 training
samples. As shown in Figure3, when each feature vec-
tor has 16 dimensions, the resulting classifier has an accu-
racy of over 97% even when feature vectors are perturbed by
(50%,0.3). A more detailed analysis of classifier accuracy
is discussed in Section4.3. Our data set is adversarially
chosen; prior work on mobile-phone based sound classifi-
cation [35] has used half the number of dimensions and an
order of magnitude smaller training data set. Thus, from our
experiments, we hope to understand how high Pickle’s re-
source costs can be in practice.

We report on experiments conducted on both a Nexus One
and an HTC Pure phone and our “cloud” is emulated by a
cluster of four Intel(R) Core(TM)2 Duo 2.53 GHz PCs, with
3GB RAM, running Windows 7.
Communication Overhead. In Pickle, each user needs to
send the perturbed data,RRRuXXXu, and inner products calculated
from her own feature vectors,XXXT

u XXXu to the cloud, which
incurs communication overhead. (The overhead of send-
ing the public feature vectorsZZZ and having each user return
RRRu(ZZZ+ εεεu) to the cloud is relatively small since the num-
ber of feature vectors is small (Section3.2), so we do not
report the cost of this operation). Since our privacy transfor-
mation reduces dimensionality, the communication cost of
sending the perturbed data is actually lower than the cost of
the original data. In our experiment, we use a privacy trans-
formation, with relatively higher communication cost, which
reduces dimensionality by only 25%, and adds 0.3 intensity
additive noise. In our implementation, each user’s perturbed
training samples only requires 15KB for the transformed fea-
ture vectors with labels and 94KB for the inner products. For
comparison, the original training samples without perturba-
tion require 21KB.

The final component of the communication cost is the
size of the returned model. This cost has two components
for Pickle-SVM: the set of model parameters and perturbed
support vectors, and the collection of regression coefficients
(each user needs to download only her own regression coef-
ficients, not the entire set of coefficients). For 160 users, the
former is 222 KB (Figure5(a)), and the latter is 585 KB per
user. For comparison, the model size for 160 users without
Pickle is 264 KB. Pickle’s dimensionality-reduction results
in a smaller model size.

Overall, these numbers are well within the realm of practi-
cality, especially because our evaluation setting is adversarial
and our implementation is un-optimized. For example, sim-
ply compressing the data, a factor of 2-3 reduction in transfer
overhead can be obtained.
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Computational Cost. On the mobile phone, it takes on av-
erage (over 50 runs) of less than 1 ms on both the Nexus
One and the HTC Pure to multiplicatively transform a feature
vector. Classifying a test vector on large model constructed
from 160 users takes on average 266.7 ms and 477.6 ms on
the two phones respectively. For comparison, classifying on
a model generated from pure SVM (without perturbation)
takes on average 128.1 ms and 231.6 ms on the two phones.
The main overhead of Pickle comes from using the regres-
sion coefficients to estimate distances from the vector to be
classified to the support vectors. Both of these numbers are
reasonable, especially since our dataset is large.

On the cloud, the processing of outlier detection is very
fast – only 10.55 ms on average (all numbers averaged over
10 runs). Computing regression coefficients for pairs of
users is shown in Figure5(b), the average cost increasing
from 0.55 s to 723s as the number of users increases from 5
to 160. However, the cost of model generation on the cloud
is significantly higher, on average about 2.13 hours on a sin-
gle core. Without Pickle, model generation is a factor of 2
faster (Figure5(b)). Again, Pickle’s overhead mainly comes
from the regression calculations.

However, a major component of model generation, per-
forming a grid search to estimate optimal parameters for
Pickle-SVM, can be parallelized, and we have implemented
this. As shown in Figure5(b), as the number of cores in-
creases, an almost linear speed-up can be obtained; with 8
cores, model generation time was reduced to 0.26 hours. De-
vising more efficient parallel algorithms for model genera-
tion is left to future work.

Finally, as discussed in Section3, a user who has not con-
tributed feature vectors can use the generated model, but the
cloud needs to compute regression coefficients for this new
user, relative to other users whose vectors are included in the
classifier model. This computation can be performed incre-
mentally, requiring only 8.71s in our 160 users experiment,
and adding 160 regression coefficient entries (222 KB) that
need to be downloaded only by the new user.

4.3 Accuracy/Privacy Tradeoffs and Compar-
isons: Dataset Evaluation

In this section, we evaluate Pickle’s ability to preserve pri-
vacy without sacrificing classification accuracy by analyzing
public datasets. We also explore the sensitivity of our results
to the different design choices presented in Section3.

4.3.1 Methodology
Data Sets. We use four datasets to validate Pickle:Iris,
Pima Indians Diabetes, Wine, andVehicle Silhouettes. The
datasets are from the UCI Machine Learning Repository8,
and are some of the most widely-used datasets in the
machine-learning community. All the feature values in each
dataset are scaled between 0 and 1.

Users.We partition each data set into several parts to simu-
late multiple users with private data. To do this, we clustered
the feature vectors in each data set using the standard K-
means clustering algorithm and assigned each cluster to one
“user”. (Random partitions would not have been adversarial
enough as our main goal is to collaboratively learn from data
with disparatestatistics.) Using this method, the number of
users is 2, 5, 2, 5 for the four datasets respectively.

Although these numbers of users are small relative to our
targeted scale, we note that the level of privacy and the clas-
sification accuracy arenot likely to become worse with more
users. If anything, classification accuracy will improve with
more users since one has more and diverse training data.

In our experiments, we use all four datasets to evaluate
the performance with 2 users, and also use the Diabetes and
Vehicle datasets to test the performance with 5 users. After
partitioning the data across users, we randomly select 80%
of the labeled feature vectors from each user as thetraining
data, and use the remaining fortesting.

Classifiers. We evaluate the effectiveness of Pickle using
two common pattern classifiers: Support Vector Machine
(SVM) and k-Nearest Neighbor (kNN). We experiment SVM
with the most widely-used RBF kernel as well as the Lin-
ear kernel and tune SVM parameters using standard tech-
niques like cross-validation and grid-search. We use a more
accurate variant of kNN called LMNN [53] which uses Ma-
halonobis distances instead of Euclidean distances.

4.3.2 Evaluation Metrics
We use two metrics to evaluate the effectiveness of Pickle.

The first assesses how much privacy is preserved and how
likely users’ private data are to be compromised. The sec-
ond measures how much Pickle’s accuracy is affected by its
privacy transformations.

The Privacy Metric. Pickle distorts feature vectors to
“hide” them. One way to measure privacy is to quantify the
extent of this distortion. We use a slightly more adversar-
ial privacy metric from prior work [2, 49], which measures

8http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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the “distance” between the original feature vector and an es-
timate for that vector derived by mounting areconstruction
attack. Specifically, letxxxd

u stand for thed-th dimension of
the feature vectorxxxu, andhhhd

u be the corresponding dimen-
sion in the reconstructed vector. Then, we can defineℓud
(0≤ ℓud ≤ 1) to be the difference in thedistributionsof these
two quantities, and the privacy metricℓ (0≤ ℓ≤ 1) asℓud av-
eraged over all users and dimensions.

Intuitively, the larger theℓ, the more confident we are that
privacy is preserved. Whenℓ is zero, we are less confident.
Note that we cannot infer directly that privacy is violated
when ℓ = 0, as the metric only measuresdifferencein ex-
pectation. Furthermore, the metric is not perfect, since ifthe
original and reconstructed vectors are distributionally differ-
ent then, regardless of the magnitude of this difference,ℓ is
1. Finally, we emphasize thatℓ is defined with respect to a
specific attack on the perturbed feature vectors.
Classification Accuracy. A privacy transformation can ad-
versely affect the classification accuracy, so we are interested
in measuring classification accuracy under different privacy
levels. We compute the accuracy in a standard way, as the
percentage of correctly classified test feature vectors among
all test feature vectors. All reported results are averagedover
20 random splits of training, validation and testing data sets.
4.3.3 Attack models and Privacy

In Section3, we had already discussed a few attack strate-
gies, to which Pickle is resilient. We now discuss some-
what more sophisticated attacks that are based on an intimate
knowledge of how Pickle works.
The Reconstruction Attack. Dimensionality-reduction
techniques can be attacked byapproximatereconstruction.
By reconstructing original data to the extent possible, these
attacks function as a preprocessing step to other types of at-
tacks. In Pickle, the cloud sends the public dataZZZ to a user
U and receives transformed onesZZZu = RRRu(ZZZ+ εεεu). While
the cloud cannot decipherRRRu andεεεu, can the cloud use its
knowledge to infer important statistical properties of these
variables to approximatelyreconstructthe user’s data when
she sends actual training vectors for building classifiers?One
possible approach is to build a regression model such that
ZZZ ≈ hu(ZZZu;βββ). When the user sendsRRRuXXXu, the cloud applies
the regression model and tries to recoverHHHu ≈ hu(RRRuXXXu;βββ).

Figure6 shows that, even when this attack uses Gaussian
Process Regression, Pickle still provides significant privacy.
To generate the plot, we computeℓ for this attack, for various
combinations of multiplicative and additive transformations:
reducing the dimensionality for the multiplicative transform
by 25%, 50% and 75% of the original dimensionality, and

adding noise with intensities (Section3.2) ranging from 0.1
to 0.5 in steps of 0.1. The figure shows the resulting privacy-
level metric for each combination of additive and multiplica-
tive transforms under the attack; the resulting privacy levels
range from 0.1-0.7. Thus, depending on the degree to which
the training data have been transformed, Pickle can be sig-
nificantly robust to this attack.

The intuition for why Pickle is robust to this reconstruc-
tion attack is as follows. Pickle’s regression phase learns
about relationships between users enough todiscriminate
amongst them. However, the regression is not powerful
enough togeneratethe original samples; intuitively, much
more information is necessary for generation than for dis-
crimination.
Followup ICA Attack. The cloud can also improve its es-
timateHHHu with a followup strategy. For example, ICA can
be used for this purpose [32, 15]. However, we have ex-
perimentally verified that this strategy is unsuccessful with
Pickle – the ICA algorithm fails to converge to meaningful
solutions.
4.3.4 Classifier Accuracy

In this section, we discuss results for the classification ac-
curacy of SVM (with RBF and Linear kernels) and LMNN,
using Pickle for 2 users from each dataset. Results for Di-
abetes and Vehicle with 5 users are omitted but are qual-
itatively similar except that they have higher classification
accuracy because they have a larger training set. These ex-
periments on each of our four data sets use abaseline con-
figurationwhich uses synthesized public feature vectors and
iPoD. In subsequent sections, we deviate from this baseline
configuration to examine different design choices.

Figure 7 plots the classification accuracy for each data
set as a function of the privacy-level, for the SVM classifier
with the RBF kernel. In this plot, the horizontal line shows
the classification accuracy without Pickle. For this classifier,
across all four data sets, the loss in classification accuracy is
less than 6% for privacy levels up to 0.5; in the worst case
(Wine) classification accuracy drops by 15% for a privacy-
level of 0.65. This is an important result of the paper:even
when Pickle transforms data so that reconstructed feature
vectors are distributionally different from the original ones,
classification accuracy is only modestly affected.

Other features are evident from this figure. In general,
classification accuracy drops with privacy-level, but the re-
lationship is non-monotonic: for example, for the Diabetes
dataset, 50% reduction with 0.1 intensity of additive noise
has higher privacy, but also higher accuracy than 25% with
0.5 intensity. Second, the RBF kernel outperforms the Lin-
ear kernel (graphs are omitted to save space) for which a 0.5
privacy-level results in a 10% reduction in classification ac-
curacy over all datasets, and nearly 20% in the worst case.

Finally, Pickle performs well even for nearest neighbor
classification (figures omitted for space reasons). For LMNN
with k = 5, Pickle is within 5% of the actual classification
accuracy for each data set for privacy levels to 0.5, and in
the worst case incurs a degradation of about 15%. Moreover,
for LMNN, in some cases Pickle is even more accurate than
without any privacy transformations. This is likely due to
the regularization effect caused by noise (either additiveor
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Figure 7—Accuracy-Privacy tradeoff of SVM with RBF Kernel

as a result of regression), which prevents overfitting of the
models.

4.3.5 Comparison
In this section, we compare Pickle for SVM (with RBF

kernel9), using the baseline configuration discussed above,
against three previously-proposed approaches for preserving
the privacy of feature vectors. As we show below, compared
to Pickle, these approaches either do not preserve privacy
adequately, or are significantly inaccurate.

The first algorithm only adds additive noise [11] and uses
Bayes estimation [22] to attack the perturbed feature vectors.
For this alternative, we compute the privacy-level based on
the Bayesian reconstruction. This alternative is chosen toun-
derstand the performance of a simpler additive perturbation.
The second algorithm uses the Random Projection (RP) [32]
in which each user transforms feature vectors using the same
multiplicative noise matrixR. To be robust to inversion, the
dimensionality ofR is reduced by more than 50% relative to
the dimensions of the original feature vectors. For this case,
we derive the privacy-levels by using a pseudo-inverse based
attack [32]. Our third algorithm is a KDE-based method
([49]), in which users never send true data, but only send
synthetic data drawn from the estimated feature vector dis-
tributions. For this case, we compute the privacy-levels using
the transformed feature vectors.

As Figure8 shows, on the Diabetes and Vehicle datasets
with 5 users, Pickle outperforms all alternatives. The addi-
tive noise based approach10 produces acceptable accuracy,
but almost no privacy. The KDE-based method offers a little
bit more privacy than the additive noise method, but with a
significantly degraded accuracy. Finally, the RP method pro-
vides, in general, lower privacy than Pickle, and also lower
accuracy for data points with comparable privacy. The same
results are true for all the four datasets with 2 users, so we
have omitted these for lack of space.

4.3.6 Impact of Design Choices
Is Regression Necessary?Our main contribution is the use
of regression to learn function relationships. For all our
datasets and classifiers, turning off regression and using the
transformed feature vectors directly for computing distances
and inner products, leads to 15-35% accuracy degradations
compared to Pickle (graphs are omitted for space reasons).

9Results for Linear kernel and LMNN are omitted but are qualitatively
similar

10For this approach and each dimensionality setting of Pickle, we changes
the additive noise intensity from 0.1 to 0.5 in steps of 0.2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.6

0.65

0.7

0.75

0.8

0.85

Privacy

A
cc

ur
ac

y

 

 

25% − Pickle
50% − Pickle
75% − Pickle
50% − RP
75% − RP
KDE
Add
real

(a) Diabetes dataset

0.06 0.17 0.28 0.39 0.5 0.61 0.72
0.22

0.31

0.4

0.49

0.58

0.67

0.76

0.85

Privacy

A
cc

ur
ac

y

 

 

25% − Pickle
50% − Pickle
75% − Pickle
50% − RP
75% − RP
KDE
Add
real

(b) Vehicle dataset

Figure 8—Comparison of Pickle to several alternatives

This drop is unacceptable for most applications, and moti-
vates the importance of our approach.

Other Design Choices. Disabling theiPoD extension can
reduce accuracy up to 7% for SVM and up to 6% for LMNN,
so it is beneficial for Pickle to useiPoD. As we have dis-
cussed, the bandwidth cost of transmitting this matrix is very
small. We have also experimented with other public feature
vector generation methods: aDIRECTmethod in which the
cloud obtains a few unperturbed feature vectors from users;
a NOISYmethod which adds additive noise to the vectors of
theDIRECTmethod; and anARBITRARYmethod in which
the cloud arbitrarily generates public vectors. We find that
our SYNTHESISmethod occupies a sweet spot: it is signif-
icantly more accurate, but not much less private, thanAR-
BITRARY, and provides higher privacy, without sacrificing
accuracy, than the other two methods.

4.3.7 Illustrating Other Features of Pickle
User Diversity. Pickle allows users to independently tune
their own privacy transformations. Using SVM with RBF
kernel (results for Linear kernel and LMNN are omitted but
are qualitatively similar), Figure9 considers the case of two
different privacy settings: a 25% dimensionality reduction
with 0.1 intensity additive noise and a 75% dimensionality
reduction with 0.5 intensity additive noise. It plots the clas-
sification accuracy for three cases: when all users use the first
setting, when all users use the second setting, and when users
use a mixture of those two settings. The resulting classifica-
tion accuracy is intermediate for the mixture setting, relative
to the other settings. This is encouraging: a less encouraging
outcome would have been if the accuracy of the mixture set-
ting was closer to the second setting, since this would mean
that users with high privacy requirements could dictate the
performance of Pickle.

Robustness to Poisoning. We have implemented the
Orca [9] outlier (malicious user) detection algorithm as dis-
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Figure 10—Outlier detection against model poisoning

cussed in Section3.5), and use our estimates of Euclidean
distance in that algorithm. Orca essentially ranks suspicious
feature vectors, so we conduct three experiments in which
there are 5 users and 0, 1 and 2 of them (respectively) at-
tempt to poison the model generation process by injecting
completely random data. In Figure10, we plot the fraction
of the top-100 suspicious feature vectors that belong to each
user. When there are no outliers, the distribution is uniform
across all five users. However, in the presence of outliers,
their feature vectors occupy a disproportionate number of
the top hundred suspicious feature vectors. This experiment
shows that Pickle can be easily retrofitted into an existing
poisoning detector.

In our experiments, we simply discard all outliers be-
fore building the classifier. However, it is also possible
that a small amount of noisy data (e.g., mislabeled training
samples) is contained in the user’s training data, but does
not affect the data’s overall distribution. In this case, the
classifier construction process can finally filter these non-
representative samples by only selecting the most useful fea-
ture vectors for classification.

5 Related Work
Privacy-preserving SVM. There have been several pieces
of work on privacy-preserving SVM classifier construction,
but each lacks support for a design dimension that is crucial
for collaborative SVM classifier construction using mobile
sensing.
Feature-perturbation:Closest to our work is the body of
work that perturbs feature vectors before transmitting them
to a server/cloud. The work of Lin and Chen [30, 29, 31] only
considers privacy-preserving classifier training for a single
user, but Pickle explicitly supports multiple users. Some ap-
proaches require that all participants share a common per-
turbation matrix [38, 47], while Pickle does not. Other ap-
proaches [57, 39, 21] focus on vertically partitioned data,
where elements of the feature vector are spread among par-
ticipants; by contrast, in our setting, the data is horizontally
partitioned. An approach that could have been plausibly
used for collaborative learning [49] generates synthetic fea-

ture vectors whose statistics match the original feature vec-
tors [49]; we have compared Pickle against this and shown
that it can result in poor accuracy.

Differential Privacy: Beyond perturbing the input feature
vectors, some approaches have explored the use of the differ-
ential privacy framework for privacy-preserving SVM con-
struction. In these approaches [48, 13], the classifier con-
struction assumes all theoriginal feature vectors are avail-
able (unlike Pickle, which perturbs the original feature vec-
tors) and the outputs of the classifiers are perturbed such that
individual features are not exposed as a result of small dif-
ferences in two databases (such as two different versions of
training samples). This is achieved by adding noise either
to the classifier’s parameter vector after optimization or to
the objective function itself, thus prior to optimization.In-
tuitively, these approaches attempt to make it difficult to in-
fer who might have contributed feature vectors, while Pickle
hides the content of the feature vector itself. Thus, the two
approaches are complementary, and exploring a combination
of these two methods is left to future work.

Other Cryptographic Methods:Other methods have at-
tempted to use cryptographic techniques to preserve pri-
vacy in SVM construction. A few use homomorphic en-
cryption, but either discuss only SVM construction for two
participants [28] or would require peer-to-peer communica-
tion [59, 37], whereas Pickle permits multiple users and does
not require them to communicate with each other. Finally,
several pieces of work [58, 27, 51] use a form of secure
multiparty communication, but assume that participants do
not collude, an assumption that Pickle does not make. (Of
course, not all secure multi-party communication methods
assume participants do not collude, but, when applied to the
Pickle setting, these methods have the drawback that all par-
ticipants must be online whenanyparticipant wishes touse
the classifier, an unwieldy assumption at best.)

In summary, in the space of prior work on privacy-
preserving SVM, Pickle occupies a unique niche largely
driven by the requirements and constraints of collaborative
learning using sensor data generated from mobile phones.

Other Related Work. Navia-Vasquez et al. [45] consider
distributed SVM classifier construction, but do not consider
privacy. Many pieces of research in the mobile sensing liter-
ature have used machine-learning classifiers for various ap-
plications (e.g., [35, 8, 10, 43, 4], and SVM is often a pop-
ular choice. A few have examined collaborative learning.
Closest to our work is that of Ahmadiet al. [5] who con-
sider the problem of accurately estimating a linear regres-
sion model from user contributed sensor data, while still en-
suring the privacy of the contributions. While this is an in-
stance of privacy-preserving collaborative learning, it is un-
clear how to extend the approach to nonlinear classifiers; as
we have discussed above, for such classifiers it is necessary
to carefully design privacy transforms that preserve certain
relationships between contributed feature vectors. MoVi [8]
is an application in which users within a social group col-
laboratively, using the cloud, sense their environment and
recognize interesting events. However, MoVi assumes that
users within a group trust each other, and that the cloud can



be trusted not to reveal data from one group to third parties.
Finally, Darwin [42] directly addresses collaborative learn-
ing, but does not address privacy and assumes a trustworthy
cloud.

Privacy-preservation has, in general, received much more
attention in the data mining community which has consid-
ered cryptographic methods (e.g., [50, 24]) for clustering
and other mining operations. In general, these methods
do not scale to many users and require computationally-
intensive encoding and decoding operations. That commu-
nity has also considered anonymization of structured data
(such as relational tables) to ensure privacy of individualen-
tries without significantly compromising query results. By
now, it is well known that anonymization is vulnerable to
composition attacks using side information [19].

Preserving privacy throughperturbationor randomiza-
tion is most relevant to our work. One body of work has con-
sidered data perturbation techniques for datasets using vari-
ous methods [56, 52, 55, 33] for dataset exchange between
two parties; it is unclear how to extend this body of work to
Pickle’s multi-party setting where the parties are assumedto
be able to collude. Additive-noise based randomization per-
turbs the original data with additive noise (e.g., [3, 2]), but
is susceptible toreconstruction attacks, in which the spec-
tral properties of the perturbed data can be used to filter the
additive noise and recover the original data [26]. Multiplica-
tive noise based perturbation (e.g., [14, 32]) can be robust
to these reconstruction attacks. In some approaches (e.g.,
[14]), the multiplicative noise is dimensionality-preserving
while in others [32], it is not. Dimensionality-preserving
transformations can preserve inner products and Euclidean
distances. Unfortunately, a dimensionality-preserving mul-
tiplicative transformation is susceptible toapproximate re-
construction[32]. Furthermore, if this method is applied to
collaborative learning, then participants must agree uponthe
matrix RRR, and collusion attacks may succeed. It is for this
reason that Pickle uses a dimensionality-reducing transfor-
mation using per-user private matrices, and then uses a re-
gression phase to recover inter-user relationships so thatit
can approximately infer Euclidean distances and inner prod-
ucts.

6 Conclusions
In this paper, we have described Pickle, an approach to

preserving privacy in mobile collaborative learning. Pickle
perturbs training feature vectors submitted by users, but uses
a novel regression technique to learn relationships between
training data that are required to maintain classifier accuracy.
Pickle is robust, by design, to many kinds of attacks includ-
ing direct inversion, collusion, reconstruction, and poison-
ing. Despite this, Pickle shows remarkable classification ac-
curacy for the most commonly used classifiers, SVM and
kNN. Finally, Pickle requires minimal computing resources
on the mobile device, and modest resources on the cloud.
Many avenues for future work remain, including an explo-
ration of more sophisticated regression methods and other
classifiers, an extension of applying Pickle to participatory

sensing, a more extensive and refined design of user study,
and a cryptanalysis of our dimensionality-reduction.
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