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Abstract
Many participatory sensing applications use data col-

lected by participants to construct a public model of a system
or phenomenon. For example, a health application might
compute a model relating exercise and diet to amount of
weight loss. While the ultimately computed model could be
public, the individual input and output data traces used to
construct it may be private data of participants (e.g., their in-
dividual food intake, lifestyle choices, and resulting weight).
This paper proposes and experimentally studies a technique
that attempts to keep such input and output data traces pri-
vate, while allowing accurate model construction. This is
significantly different from perturbation-based techniques in
that no noise is added. The main contribution of the paper is
to show a certain data transformation at the client side that
helps keeping the client data private while not introducing
any additional error to model construction. We particularly
focus on linear regression models which are widely used in
participatory sensing applications. We use the data set from
a map-based participatory sensing service to evaluate our
scheme. The service in question is a green navigation ser-
vice that constructs regression models from participant data
to predict the fuel consumption of vehicles on road segments.
We evaluate our proposed mechanism by providing empir-
ical evidence that: i) an individual data trace is generally
hard to reconstruct with any reasonable accuracy, and ii) the
regression model constructed using the transformed traces
has a much smaller error than one based on additive data-
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perturbation schemes.
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1 Introduction
This paper develops a privacy-aware scheme for sharing

participatory sensing data towards the computation of gener-
alizable models from the data pool. We consider applications
where construction of such models requires data that are pri-
vate, whereas the models themselves are not. For example,
individuals might not want to share their weight, food intake,
and exercise habits on daily basis, yet a quantitative model
on how food intake, weight loss, exercise, and other lifestyle
choices are generally related could be of interest to many.

Participatory sensing applications have recently become
a popular trend in providing community-wide services that
“crowdsource” the task of data sensing [1, 7, 16, 23]. One
can generally distinguish between at least two types of ser-
vices from the perspective of the end-result computed by the
service. The first type represents services where some statis-
tic is computed from input data. For example, the service
might compute the quality of air, speed, potholes, or pollen
levels on city streets. These statistics pertain only to the
neighborhoods where data was collected. It is not the pur-
pose of the service to generalize; the existence of potholes
or pollution in one neighborhood does not necessarily entail
their existence in a different neighborhood.

In this paper, we consider a different type of participatory
sensing applications; one where the collected data are multi-
dimensional and sparse. Hence, the objective is to generalize
from data we collected to extrapolate and predict data we do
not have. An example might be to collect, in addition to pol-
lution data, some context information as well, such as pop-
ulation density and eco-friendly behaviors of the population.
This can then be used to build a model relating these factors
to pollution levels and use it to predict pollution elsewhere,
where we do not have measured pollution data. We particu-
larly consider linear regression modeling since it has already
been employed for similar purposes in participatory sensing



applications (e.g., [19]). It is often the case, that the general
models thus computed are themselves not private, but some
or all inputs of those models are private data.

Many prospective applications fall into this category. For
example, consider a participatory sensing service that mod-
els the energy consumption of a household based on the us-
age of various appliances and the time of year in order to help
users save on the energy costs. Although the constructed
model (for energy consumption) is public, the input and out-
put values contain users’ private information that cannot be
easily shared; a user may not wish to reveal the usage of
the appliances at specific times. This paper focuses on in-
creasing the privacy of individual user data while enabling
community-wide datamodelingfor prediction and extrapo-
lation purposes.

Several options exist for sharing private data. The most
popular include ensuring anonymity of the data source. To
make service architecture simple and boost trust, we instead
allow users to share their identities with the aggregation
server openly but give them means to alter their data in a way
that makes the original values hard to recover. It remains
an open issue whether the average user will be more trust-
ing of security mechanisms that promise to fully anonymise
their identity or data alteration mechanisms that promise to
irrecoverably alter their data. One advantage of the latter
is that it can be entirely implemented on the client side,
whereas some of the former need support from other nodes
as well. Whether the perceived difference in the needed trust
base is of consequence to the average user remains to be
seen, which is an argument for exploring both types of ap-
proaches and letting deployment experience decide on their
relative usability advantages. This paper investigates the data
alteration approach.

Additive data perturbation (noise) is the most common
way to alter data for privacy [4, 17, 20, 34]. The main idea
behind the perturbation is to mask each individual user data
with noise in such a way that the noise cancels out or can
be decomposed in aggregate calculations. However, error
is always introduced to the modeling process depending on
the number of data streams and type of the application. Our
approach is different in that it aims to introduce no additional
error in modeling, regardless of the number of users or data
streams in the system. We should note that the perturbation
schemes apply to a more general class of models than linear
regression models, as long as the noise distribution follows
closely the user data distribution.

We transform the sensitive data at the client side to a set
of aggregate features that usually do not reveal much infor-
mation on original data. Community-wide models that are
computed from these features are exactly the same as the
models computed from the original community data. Users
can control their degree of privacy by controlling the amount
of aggregation involved in feature computation. To compute
the features, time-series data are first segmented based on
some prior knowledge about the system. The segmentation
is on intervals long-enough to eliminate short-scale dynam-
ics of the system. This way, the system can be represented as
an approximately static (time-independent) relation between
various attributes of a data segment. Next, specific feature

Privacy Firewall Regression Modeling 

Features

Participating Client
Modeling Server

Sensing 
Data 

Traces

High Reconstruction 
Error Low Modeling Error

Figure 1. A privacy-aware participatory sensing model.

matrices are extracted from the data segments. They repre-
sent the information shared by each user with the commu-
nity. Although our paper lacks formal proofs of its privacy
properties, it presents intuitions and empirical evidenceon
why it is often hard to reverse the process and recover pri-
vate user data based on the information shared.

We evaluate our technique using a sensory data set [21]
collected for a green navigation service from current litera-
ture [19]. This map-based service enables finding the most
fuel efficient path between two points for a specific car. The
service relies on data collected from vehicles equipped with
a diagnostic fuel-efficiency scanner device. Results suggest
that in most cases user data cannot be recovered without sig-
nificant error, while model reconstruction is always correct.

The rest of this paper is organized as follows: We present
the motivation and the exact definition of the problem in Sec-
tion 2. Section 3 describes the detailed steps involved in the
privacy framework. In Section 4, we present the computation
of a linear regression model using the data shared by users.
We show that our proposed scheme does not change model-
ing error compared to model construction from the original
raw private data. We discuss the privacy protection of such
transformations in Section 5. In Section 6, we evaluate the
privacy achieved by our technique using a case study based
on the data set from a green navigation service. Section 7
discusses the potential cases leading to privacy breaches and
open questions regarding the approach. We discuss related
work on privacy in participatory sensing applications in Sec-
tion 8. Finally, the paper concludes with Section 9.

2 Problem Formulation
Many participatory sensing applications calculate com-

munity statistics using data shared by the community [7].
Previous privacy-preserving approaches mostly focused on
deriving community statistics while keeping individual data
traces private [20, 34]. This paper considers a different cate-
gory of participatory sensing applications where the applica-
tion extrapolates and predicts unavailable data using models
of the system.

Given the nature of applications we target, the follow-
ing summarizes the assumptions and requirements of our
scheme:
• The model relating user inputs to the outputs is public.

• Each data sample collected by an individual is private
and may not be revealed.

• The models used in the service are linear in coefficients.

• The time-series data can be packed into uncorrelated



data samples by aggregation (over time for example).
2.1 Modeling in Participatory Sensing Appli-

cations
Consider an example participatory sensing service aimed

to reduce household energy consumption. Each user collects
the following data traces daily: i) the total time that various
appliances are in use (e.g., TV), ii) the temperature insidethe
house, and iii) the outside temperature. By sharing the data,
a regression model can be constructed and used to predict
the energy consumption for a given usage pattern and sea-
son. Eventually, the service helps other residents to save on
energy costs by adapting their appliance usage.

Figure 1 illustrates our model of privacy-aware participa-
tory sensing applications that construct a model of user data.
In our architecture, data traces collected by participantsare
transformed on the client side toneutral features. The data
can typically be divided into a variable we are interested in
(e.g., household energy consumption) and other variables we
believe are good predictors of the former. The objective is
to compute a model relating the predictors (model input) to
the variable of interest (model output). The neutral features
computed from user data do not easily reveal user data and
can thus be made available to any entity that needs them.

The process of attempting to compute the private data
from the features is calledreconstruction. An important
question is: given the information that each user sends to
the service, how accurately it is possible to reconstruct the
values in the original data traces? To measure privacy, we
calculate the sum of squared difference between each value
in the original trace and the corresponding value in the recon-
structed trace. A lower value means that the reconstructed
trace is more similar to the original one and reveals more
private information about the user.

The participatory sensing service includes a server that
collects the neutral features of all participants to compute the
regression model of the underlying measured phenomenon.
The model has a predictive property and can thus be of inter-
est to a broad population besides the participants who con-
tributed data to its construction.
2.2 Design Goals and Metrics

There are two challenges in designing a system according
to our model. First, we need a scheme that converts the data
traces to features that reduces reconstruction accuracy ofthe
data traces. Second, we need to perform the modeling us-
ing the shared features instead of the data traces themselves.
This immediately leads to the two objectives for the system:
• Minimize the modeling error: It is desirable to reach

the same level of modeling accuracy as one attained in
a system not employing any data alterations.

• Maximize the reconstruction (breach) error: The
higher the error in reconstruction of individual user
data, the more it is ensured that the privacy of the user
is not breached.

We define aperfectprivacy-enabling data sharing scheme
in participatory sensing applications to be a scheme that sat-
isfies two conditions:

• Perfect modeling:Model construction from shared data
produces exactly the same model as if the original pri-

vate data traces were used.

• Perfect neutrality:Reconstruction of private user data
from shared data yields the same error as if no addi-
tional information was available to the outside world
(i.e., to an attacker) besides the computed public phe-
nomenon model. Note, however, that the neutrality
condition does not exclude information leaks that result
from computing the public model itself. For example,
if the model suggests that all adults in some popula-
tion are between 5 and 6 feet high, then something is
leaked about individual user data in that population. A
perfectly neutral scheme should not introduce anyad-
ditional leaks.

This paper presents and empirically evaluates a privacy-
aware scheme for applications that aim to compute a lin-
ear regression model of some measured phenomenon. Our
scheme satisfies the perfect modeling condition while empir-
ical evidence suggests that it is also neutral in many cases.

3 Privacy Filter
A participant in a participatory-sensing application uses

various sensing devices to collect data samples about a phe-
nomenon (e.g., a thermometer to measure temperature inside
a house, a GPS device to measure location, or an OBD-II
port to measure vehicular fuel consumption). A privacy fil-
ter converts such data to features to be used for phenomenon
modeling. In order to attain the goals of a perfect privacy-
enabling scheme, our approach is first to convert the traces
into a set of uncorrelated samples, we call segments. This
is to foil correlation-based attacks. Clients then report neu-
tral features computed over a set of segments. They are used
later for model construction.

This section details the various algorithmic steps involved
on the client side and presents the structure of the features
which are sent to the server. Later in Section 4, we describe
how our scheme achieves the perfect modeling property. In
Section 5, we present empirical evidence to support some
level of neutrality for our scheme and describe how it can be
used to personalize the level of privacy provided.

The data collected by a user is usually in form of time-
series. For example, a sensing device might record the value
of temperature every second. However, the phenomenon
model is typically concerned with predicting quantities at
longer time-scales. For example, how much gas a vehicle
will spend on a given route? How much energy a household
will save if they installed motion-activated light controls?
How much weight a 300lb person might lose if engaged in
a particular diet and exercise routine? At those time-scales,
fast system dynamics are averaged out. The aggregate output
of a system in a sufficiently large time-interval is more cor-
related with the aggregate input in that interval and not what
happens in other intervals. For example, one’s weight loss
in one month might be more correlated with food intake in
that month, rather than the month before. This is not neces-
sarily true of fluctuations at shorter timescales. This process
of aggregation over appropriate timescales is the first stepin
our client-side data alteration. It is calleddata segmentation.
The segment aggregate can be the sum (e.g. of consumed
energy) or in some cases the average. The main reason to do



the segmentation is to eliminate correlations between sam-
ples taken at different times.

This section first describes how the segmentation is done
and why the segmented data cannot be shared without possi-
bly violating privacy of the individual. The next step in our
scheme is to convert the segmented data into neutral features
that are less of a threat to users’ privacy.
3.1 Data Segmentation

In order to perform segmentation on raw data traces, we
first need to decide on the time interval to use. This often
requires application specific knowledge. There are three cri-
teria involved: i) a large enough time interval ensures that
the system can be described using a static model and hence
remove correlations among samples, ii) the time interval
should result in an accurate prediction, and iii) the time in-
terval should be usable by the participatory-sensing service.

In our household energy consumption example, various
time intervals such as a day, a month, or a year ensure a
static description of the system and so the first property is
achieved. Very small time intervals like daily energy con-
sumption usually highlight the effect of modeling noise and
therefore fail to achieve the second property. On the other
hand, the energy consumption over a year may not be as use-
ful since laws of large numbers may make such averages con-
verge, resulting in ill-condition matrices. Hence, considering
the data collected by each user in a given application, as illus-
trated in the previous example, the data might be segmented
into one-month intervals before being shared with the com-
munity. Table 1 presents sample values for such segmenta-
tion. The above discussion is to present general guidelines.
Actual segmentation period will vary substantially from one
application to the next.

The result of the segmentation is a set ofn data points.
Each data point consists ofd input values corresponding to
model inputs (input dimensions) and a single output value.
Note that, by doing the segmentation, we actually remove
the time attribute from all of the data and make each data
point time-independent. In particular, there is no particular
order maintained for the segmented data. We useyi to de-
note the value of the output attribute in theith segment (e.g.,
energy consumption) andxi j to denote the value ofj-th in-
put of segmenti. Formally, an appropriate time interval for
the segmentation ensures thatyi can be estimated accurately
using:

ŷi = f (xi1, . . . ,xid)

Although the data segmentation performs aggregation on
the original data trace, sharing raw segments can result in a
breach of privacy. For example, Table 1 shows appliance us-
age and temperature inside a house each month. Now, these
values can easily show whether a residence is occupied or
not in a particular month. Therefore, we need to take another
step and only share some features of the segmented data that
are less likely to threaten privacy. This is presented next.
3.2 Neutral Features

A multi-dimensional linear regression model relates an
output variable to several predictor variables or simply in-
puts. Consider the segmented data from above and the no-

tation used to represent input and output values in each data
point. LetY = {yi : 1≤ i ≤ n} andX = {xi j |1≤ i ≤ n,1≤
j ≤ d}. We should note that a linear regression model is
only linear with respect to the regression coefficients. The
predictor variables can be any arbitrary function of the input
attributes. Several general purpose regression techniques ex-
plore a range of feature spaces (e.g., quadratic features where
the predictors are product of two input attributes). To gener-
alize, we usewi j = g j(xi1, . . . ,xid) and denoteW = {wi j |1≤
i ≤ n,1≤ j ≤ k }. A linear regression model of this system
describes the system using:

Y = Wη+ ε

whereε is assumed to be a zero-mean error term with a con-
stant varianceσ2. η is the model coefficient matrix and can
be estimated by various regression techniques [29]. Conse-
quently, the output estimate,Ŷ, is given using:

Ŷ = Wη

In our household energy consumption example,g j is sim-
ply an identity function (i.e.W = X). In many cases, sharing
W instead ofX does not resolve the issue of privacy since
g j ’s are simple reversible functions makingX discoverable
from any givenW.

Since the goal of our system is to calculateη for the whole
community, a simple idea is that each user computes theη
using its local information and only shares the regression co-
efficients. There is no way of reconstructing the values of
X andY only by knowing the function relating them. How-
ever, it is also impossible to combine the partially-calculated
models (η’s) and obtain the global model without extra in-
formation.

What is needed are the features that represent correlations
between different attributes. Our idea is that a correlation
matrix reveals very limited information about the data trace
but has enough information to be used for regression model-
ing. Let Xu andYu represent the data corresponding to each
useru. LetWu be the predictor matrix corresponding to user
u. We define theneutral feature matricesof the data col-
lected by useru as follows:

• ρu = YT
u Yu

• νu = WT
u Yu

• Θu = WT
u Wu

We first observe that none of the matrices used in the
above definition depends on the number of samples collected
by the user. In other words,regardless of the number of sam-
ples the user has collected, the same amount of data is sent
to the server for modeling. As we see later in Section 5, this
property helps enabling users’ privacy. Moreover, this sim-
ple property enables users to achieve a personalized level of
privacy. A user who shares more data samples in a single
transaction achieves a higher level of privacy.

The computational cost associated with extracting the fea-
ture matrices is proportional to the square of the number of
samples and number of variables,n2 andk2. Note that the
number of samples shared by a user can be as large asn in the



Table 1. A sample segmented data set.
Month Elec. Cons. (MWh) Avg. Appliance Usage (hours) Avg. Inside Temp. Avg. Outside Temp.

Jul. 1.230 2.5 74 79
Aug. 0.870 3.9 72 73
Sept. 1.00 1.5 72 70
Oct. 1.45 1.2 71 56
Nov. 2.1 3.4 70 44
Dec. 2.75 2.3 70 26

worst-case computation analysis. CalculatingΘu is the most
computationally expensive transformation requiringO(k2n2)
operations. Calculatingρu andnu requiresO(n2) andO(kn2)
operations respectively. The data segmentation is linear in
terms of the number of segments (n) and therefore is domi-
nated by feature extraction process.

The following example illustrates how the feature matri-
ces are obtained from the data and shared.
EXAMPLE 1 (FEATURES). Given the segmented data in
Table 1, the client calculates the following feature matrices:

ρu = [1.23 0.87 1.00 1.45 2.10 2.75]

[1.23 0.87 1.00 1.45 2.10 2.75]T = 17.3448

νu =















2.5 74.0 79.0
3.9 72.0 73.0
1.5 72.0 70.0
1.2 71.0 56.0
3.4 70.0 44.0
2.3 70.0 26.0















T 













1.23
0.87
1.00
1.45
2.10
2.75















=

[

23.173
668.11
475.78

]

Θu =















2.5 74.0 79.0
3.9 72.0 73.0
1.5 72.0 70.0
1.2 71.0 56.0
3.4 70.0 44.0
2.3 70.0 26.0















T 













2.5 74.0 79.0
3.9 72.0 73.0
1.5 72.0 70.0
1.2 71.0 56.0
3.4 70.0 44.0
2.3 70.0 26.0















=

[

42 1058 863.8
1058 30685 25018
863.8 25018 22218

]

4 The Application Server
Given the feature matrices sent by the client, this section

describes how the application server constructs a regression
model. Also, we discuss how the first objective in designing
a privacy-enabling scheme is achieved. Assuming that all the
segmented data, (Y andW) are available to the server, several
regression techniques can be used to obtain the regression
coefficients [29]. Again, consider the regression modelY =
Wη+ ε. Assuming thatε follows an unknown distribution, a
Least Squared Estimator (LSE) is the best linear estimator of
Y. LSE is an unbiased estimator [29] meaning that it has the
same mean as the true regression coefficients. In this setting,

the LSE is obtained using:

η = (WTW)−1WTY (1)

Since the segmented data are not available to the server,
we need an alternative approach to deriveη only using the
shared features. An important characteristic of the fea-
ture matrices is that they aredistributive. One can ob-
tain the feature matrices of a community simply by adding
the feature matrices of sub-communities. Letu1, . . . ,um be
the m users of the participatory sensing application. Each
user contributes matricesρui , νui , and Θui to the commu-
nity based on its private dataWui , andYui . We can write
W = [Wu1

9
9
9 · · ·

9
9
9Wum]T andY = [Yu1

9
9
9 · · ·

9
9
9Yum]T . These are the

complete set of sensing values collected by the users, which
indeed are not available to the server. We defineρ, ν, andΘ
as follows:

ρ = YTY = [YT
u1 9

9
9 · · ·

9
9
9YT

um
]







Yu1
999...
999

Yum






=

m

∑
i=1

YT
ui

Yui =
m

∑
i=1

ρui

ν = WTY = [WT
u1 9

9
9 · · ·

9
9
9WT

um
]







Yu1
999...
999

Yum






=

m

∑
i=1

WT
ui

Yui =
m

∑
i=1

νui

Θ = WTW = [WT
u1 9

9
9 · · ·

9
9
9WT

um
]







Wu1
999...
999

Wum






=

m

∑
i=1

WT
ui

Wui =
m

∑
i=1

Θui

Here,ρ, ν, andΘ are calculated from the shared features.
These are the only information that the server use to con-
struct a model. To do that, we can rewrite (1) and make the
coefficients only depending on the feature matrices:

η = (WTW)−1WTY = Θ−1ν (2)

The above equation enables the server to calculate the re-
gression coefficient only using the shared features byη =
Θ−1ν. In many cases, the server also needs to calculate
the regression error. Again, assuming to have access to the
whole data set, the error can be derived as follows:

Err = (Y−Wη̂)T(Y−Wη̂)



Similar to the derivation ofη, we need to rewrite this
equation so thatErr can be calculated only usingρ, ν, and
Θ:

Err =

YTY− (Xη̂)TY−YTXη̂+(Xη̂)TXη̂ =

ρ− η̂Tν−νTη̂+ η̂TΘη̂ (3)

The above process derives the values ofη andErr with-
out requiring access to the users’ data and by only using the
shared features. Meanwhile, the derivation produces exactly
the same results as if having access to the raw data. There-
fore, our scheme successfully achieves the first design objec-
tive that is not to impose any additional modeling error.

We can observe that the modeling process employed at
the server is computationally efficient. Specifically, comput-
ing ρ, ν, andΘ needO(nk2) operations. The reason being
that each matrix addition takes at mostO(k2) time (size of
the largest matrix,Θ) and we can have at mostn users in the
system hencen additions. Calculating the regression coef-
ficients needs matrix inversion of ak× k matrix leading to
an O(k3) computation time. Error calculation takesO(k3)
to complete as well. Sincen is much larger thank in most
cases, the total computation time is dominated byO(nk2).
The server-side computation is significantly more efficient
than modeling the whole raw data set where users do not use
a privacy firewall (which isO(n3)).

5 Privacy Analysis
Our approach to study how the method presented in Sec-

tion 3 helps enabling privacy is to show that is not likely
to reconstruct user data accurately and efficiently. We first
formulate our measure of privacy as the amount of error
incurred while the best reconstruction of the data is done.
In particular, letyi and wi1, . . . ,wik be the segmented data
that are transformed into the feature matrices. Let ˜yi and
w̃i1, . . . ,w̃ik be the values in the reconstructed set. We define
the reconstruction error for each attributej to be
DEFINITION 1 (RECONSTRUCTIONERROR). The recon-
struction error ofwj is the normalized sum of squared differ-
ence between the data set and the reconstructed trace:

RE(wj) =
∑n

i=1(w̃i j −wi j )
2

σ2
j

whereσ2
j is the variance of the variablewj.

In order to measure the privacy, consider the case that no
information is shared by the user. The mean of the variables
(i.e. ỹi = E[y],w̃i1 = E[w1], . . . ,w̃ik = E[wk]) are the best
estimators when no observations are available. The resulting
reconstruction error is simply:

RE(wj) =
∑n

i=1(E[wj]−wi j )
2

σ2
j

=
σ2

j

σ2
j

= 1 (4)

A reconstruction is effective if the reconstruction error for
some variable is less than the error resulted from using the

mean value. In other words, if the reconstruction error is
greater than or equal to 1, it means that the transformed ma-
trices have almost no useful information:
DEFINITION 2 (PRIVACY-ENABLING TRANSFORMATION).
A transformation is called privacy-enabling if the recon-
struction error is always greater than or equal to1.

In this section, we study the privacy-enabling properties
of the scheme proposed in Section 3. Our approach is to
first discover how an attacker can infer information about
the private data traces based on the features. We formal-
ize this problem and call it optimal reconstruction. We dis-
cuss the accuracy and complexity of an optimal reconstruc-
tion scheme. Next, we use empirical evidence to support our
heuristics about the conditions under which the privacy is
most likely preserved.

5.1 Privacy-Enabling Properties
In order to study how our approach tries to preserve users’

privacy, we show that it is hard to accurately reconstruct the
private data for useru (i.e.,Yu andWu) from ρu, νu, andθu.
Given the transformed matrices and their relation to the user
data, there are a set of values (or a subspace) that satisfies
the relation and produces the same matrices. Since the only
information available from the user are the transformed ma-
trices, an optimal reconstruction should pick the most likely
values among those which satisfy the transformation. For ex-
ample, it is much more probable for a user to drive a 3000lbs
vehicle rather than a 500lbs vehicle. Therefore, when both
values satisfy the transformation, 3000lbs is more likely to
be the accurate reconstruction. We formally define the opti-
mal reconstruction as follows:
DEFINITION 3 (OPTIMAL RECONSTRUCTION). An Op-
timal Reconstructionis to find the values̃Yu andW̃u that pro-
duce the given transformed matricesρu, νu, Θu while maxi-
mizing the joint probability of observing such values.

We assume that distribution information is available to the
attacker. This usually comes from publicly available knowl-
edge about the measured variable. For example, the weight
distribution of vehicles sold in the US may be a public piece
of information available to the attacker. The optimal recon-
struction can be formulated as the solution to the following
optimization problem:

max Πn
i=1p(yi ,wi1, . . . ,wik) (5)

n

∑
i=1

y2
i = ρu

n

∑
i=1

yiwji = νu( j) : ∀1≤ j ≤ k

n

∑
i=1

wj1iwj2i = Θu( j1, j2) : ∀1≤ j1, j2 ≤ k

wherep(y,w1, . . . ,wk) is the probability of observing values
y,w1, . . . ,wk which may be known to the attacker as prior
knowledge. We emphasize that likelihood maximization is
a key to the reconstruction. Here, we assume that data from
any two segments shared by the user are independent. This
is the case because each segment can belong to an arbitrary



time and location and is uncorrelated to others due to seg-
mentation. Note that the optimal reconstruction does not di-
rectly calculate values of model inputs,X, but rather the val-
ues of matrixW. However, in many applications the exact
values ofX can be derived fromW. In Section 6, we discuss
the details of such derivation when doing a case study.

Another important point here is that the value ofn and
consequently the number of variables to be reconstructed is
not available to the attacker in most of the cases. To over-
come this, one may try several guesses ofn and choose the
reconstruction with the maximum likelihood. Perhaps, start-
ing with a value ofn that makes the number of constraints
and variables equal (i.e.n= k

2 +1) and increasingn until the
value of the objective function is minimized.

Next in this section, we discuss why one cannot easily
reconstruct the original values from the transformed matri-
ces. We first describe why given a large enoughn, the recon-
struction accuracy is expected to be low. Then, we argue that
finding an accurate reconstruction becomes computationally
expensive for large values ofn.

5.1.1 Inaccuracy of Reconstruction
We first discuss the following question: If someone suc-

ceeds at finding an optimal reconstruction, how close are
the reconstructed data points to the actual data trace? In-
tuitions to answer this question are presented below. Later,
we demonstrate an example answer for a specific empirical
study.

First observe that the number of constraints in the opti-
mal reconstruction problem isk

2+3k
2 + 1. When the num-

ber of data pointsn(k+ 1) is less than the number of con-
straints, only a single feasible assignment exits. Hence,
the reconstruction may be performed with 100% accuracy
and no privacy is preserved. On the other hand, when
n tends to infinity, the feasible solution space becomes
more and more relaxed as the number of constraints remain
constant. In this case, the optimal solution converges to
(E[y],E[w1], . . . ,E[wk]). The reconstruction error tends to
1, using a derivation similar to (4). This means that for large
enoughn, it becomes unlikely to reconstruct the private data.

5.1.2 Inefficiency of Reconstruction
Next, we give intuitions on why optimally reconstructing

data as in (5) becomes computationally expensive for large
values ofn andk. We emphasize that our discussion is the
worst-case complexity analysis for finding the optimal so-
lution and merely gives a hint regarding the complexity of
reconstruction in general. The analysis does not hold for the
cases where a non-optimal solution can still be a threat to
privacy, where the particular form of features allows for fast
computation, or where the values ofn andk are always small.

It is obvious that the objective probability distribution
should be approximated by a well defined smooth function.
Otherwise, the optimal solution cannot be obtained in less
than an exponential time even without any constraints. Let
us assume that the objective function has a very simple form
(e.g., linear or convex quadratic). Still, the constraint space
is not convex since the equality constraints are not affine [5].
This means that there is no hope to solve such a problem
through convex optimization methods. On the other hand,
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Figure 2. The number of iterations needed for the recon-
struction.

any general non-convex quadratically constrained program
is shown to be NP-Hard [37]. In fact, any integer linear pro-
gram can be written as a quadratically constrained optimiza-
tion problem. Therefore, an optimal reconstruction of the
user data trace takes an exponential amount of time with re-
spect to the number of variables,n(k+1), unlessP = NP.
5.2 Conditions to Protect Privacy

It is important for the privacy firewall to identify the con-
ditions where the privacy of the user data is not protected at
all. In particular, this happens when the number of segments
used to create features is small. Here, we experimentally
study the privacy-enabling properties of feature matricesto
derive a heuristic lower bound on the number of segments to
be used in the client. The client application simply warns the
user if the number of samples used for the transformation is
less than the threshold.

Our first step in order to evaluate privacy is to approxi-
mate the reconstruction process by using a heuristic model
of the objective function. Our heuristic is to assume that the
maximum likelihood is obtained when the solution is close to
the expected value of each parameter’s marginal distribution.
Therefore, we minimize the distance of each variable from
the expected value of its corresponding distribution. Lety
andwi be the random variables corresponding to the output
attribute and the predictor variables respectively.

min
n

∑
i=1

[(yi −E[y])2+(wi1−E[w1])
2 + . . .+(wik −E[wk])

2]

n

∑
i=1

y2
i = ρu

n

∑
i=1

yiwji = νu( j) : ∀1≤ j ≤ k

n

∑
i=1

wj1iwj2i = Θu( j1, j2) : ∀1≤ j1, j2 ≤ k

There are two methods to approximate the above opti-
mization problem. First, the problem can be relaxed into
a semi-definite program (SDP) and then the solution of the
SDP converted to a feasible solution for our quadratically
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Figure 3. The average reconstruction error of all param-
eters for different vertical correlations.

constrained program. However, in most cases, SDP relax-
ations needs a specific form of constraints. The second ap-
proach is to use a non-linear optimizer based on interior-
point barrier or sequential quadratic programming. We use
KNITRO [28] non-linear solver package in our implementa-
tion. This package can be linked to a MATLAB code.

Using our MATLAB implementation, we evaluate the
time efficiency of this non-linear solver with respect to the
number of samples used for the transformation. Here, we
simply assume that we know the value ofn for the recon-
struction. We experiment with various number of predictors
(model inputs),k, ranging between 3 to 5. For any givenn
andk, we divide the whole data set into groups ofn sam-
ples. For each group, we perform the transformation and
reconstruction. At the end, we report the average number of
iterations over all of the groups.

As Figure 2 suggests, there is a peak in the reconstruction
time for any given value ofk. This is the situation where
the number of variables,n(k+1), is closest to the number of

constraints,k
2+3k

2 +1. For smaller values ofn, the number of
constraints is more than the free variables. A single feasible
solution in this case may be the reconstruction result. On
the other hand, for larger values ofn, the number of free
variables is more than the constraints. It is easier then to
find a point closer to the mean to maximize the objective
function. Based on this we expect the reconstruction error to
be very high aftern = k.

We should note that since the rows ofW andY are not
ordered, the order of the reconstructed matricesỸ andW̃ may
be different from the original data. In our implementation,
we try all permutations of the rows to find the best match.
This, of course, is only feasible for small values ofn, and is
just to show that even the best possible reconstruction will
not be accurate against the feature matrices.

To empirically demonstrate that accurate reconstruction is
unlikely for whenn is larger than a threshold and to find that
threshold, we generate random input and output values with
various correlations. In particular, when no correlation is
present, we generate 1000 different data segments withk= 4
using independent random values distributed with a normal
distribution. We call this distribution the case of no corre-
lation. When correlations are present, they can be classified
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Figure 4. The average reconstruction error of all param-
eters for different horizontal correlations.

into two classes: i) the vertical correlation is the correlation
among different attributes, and ii) the horizontal correlation
is the correlation within a single attribute. To generate anin-
put with some vertical correlation, we multiply our random
matrix by a matrixU such thatUTU = C, whereC is the
correlation matrix. In particular, letR be the independent
random input:

W = RU

WTW = UTRTRU = UTU = C

The last equation comes from the fact thatR is a matrix of
independent variables andRTR= I . We simply use several
correlation matrices and deriveU using a Cholesky decom-
position. This is an established method of adding correlation
to independent random variables. Finally, we create the high-
est possible vertical correlation by making each attributewi
to bew1 +c wherec is a constant offset.

In the first experiment, we change the value ofn used
to create the feature matrices and derive the average recon-
struction error for 10 different input matrices with various
correlations. As Figure 3 suggests, even in the extreme case
of the highest vertical correlation, the reconstruction error is
close to 1 whenn > 2k.

In the next experiment, we try various horizontal correla-
tions while employing a medium vertical correlation. Sim-
ilarly the highest correlation is obtained when the segments
are just a shifted version of each other by a constant offset.
We should emphasize that our data segmentation is required
to remove any significant horizontal correlation. This exper-
iment is to show what happens if residual temporal correla-
tions exist between segments. Results in Figure 4 show that
for n > 2k, the error approaches 1 indicating privacy protec-
tion against this particular reconstruction.

Figures 3 and 4 suggest that the user can personalize the
amount of privacy that is guaranteed based on the number
of segments shared. One simple way to implement this is
to have multiple threshold values on the number of samples
being shared. Each threshold guarantees a higher degree of
privacy (a higher minimum reconstruction error).

To derive the relation between a safe value ofn andk, in
the last experiment we change the value ofk and create cor-
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Figure 5. The number of samples required to minimize
the change of a privacy breach.

related input samples. Figure 5 plots the minimum number
of samples required to guarantee a reconstruction error of at
least 0.9. Observe thatn= 2k is always a safe bet. The curve
suggests that the client-side software should compute neutral
features based on a number of segments that is at least twice
the number of model inputs.

The authors admit that this rule of thumb is not supported
by rigorous theoretical analysis. A formal investigation is be-
yond the scope of this paper. Here, the conjecture is merely
observed without formal proof. In general, however, the
client-side software, when asked to share data, can compute
the neutral features given the currently available segments
then perform the reconstruction itself and estimate recon-
struction error. If the error is significantly less than 1, the
software may warn the user that privacy may be breached.

6 A Case Study
In this section, we implement our proposed scheme and

evaluate it on a participatory sensing data set used for green
navigation [21]. In that service, individual drivers install
OBD-II scanners in their cars which record the engine sen-
sor parameters along with GPS location information on SD
cards. Their service then uses regression modeling to to sug-
gest the most fuel-efficient routes between arbitrary source
destination pairs [19] by using a prediction model to estimate
the car’s expected fuel consumption on each road segment.

There are several privacy-preserving techniques proposed
for participatory sensing applications that can are compara-
ble in that they rely on data alteration. Mostly they propose
specific noise models to overcome correlations in the data
set [22, 17, 34, 20]. Since we have already removed the cor-
relations between data points during segmentation, we com-
pare our technique to one that shares raw segments perturbed
by white noise. This simple technique in fact outperforms
more complex correlated noise schemes in terms of impact
on the final model. We first present the details of our imple-
mented client and modeling server. Next, we compare the
level of privacy achieved by our approach to perturbation-
based techniques. Finally, we compare the accuracy of mod-
eling of our approach and perturbation-based approaches.
6.1 Implementation

We implemented a desktop client and server as C++ li-
braries. The client program takes the data trace file and a

configuration file as input. Each measurement attribute is a
column in the trace file. The configuration file stores the set-
tings of the application: i) A unique application id, ii) the
segmentation interval, iii) the segmentation attributes (e.g.
time), and iv) predictor functions that mapX to W (g j ).

The application id is used for later correspondence with
the server to make sure that the feature matrices are used for
the correct model. The segmentation interval and segmenta-
tion attribute are used by the client to segment the input trace.
In particular, the client reads the input trace file row by row
and groups the samples based on the segmentation attributes.
There can be multiple attributes that are used as the segmen-
tation attribute. For example, location traces from a GPS
receiver consists of a longitude and a latitude. The segmen-
tation process simply takes the euclidean distance between
the segmentation attributes of two consecutive samples. The
increments are then added and when the sum reaches the seg-
mentation interval, this batch of samples are used to produce
one segment. All samples for each attribute are added and
divided by the segmentation interval to get the average value
to be used in the segmented data. These values correspond
to xi in our notation.

Next, the client checks for the privacy condition and if
n < 2k, warns the user to use a larger input. The next step in
the client is to derive the values ofwi from xi. This is done
using the configuration file settings. The client calculates
ρu, νu, andθu. The feature matrices are transferred over a
TCP connection using XML. The XML message contains an
application id and the values of matricesρu, Θu, νu.

The server program maintains a list of models mapped
to the application ids. Each model consists of the aggregate
values ofρ, ν, andΘ. When an XML message is received
from a client, the application id is looked up to find the cor-
responding model. The feature matrices in the XML are sim-
ply added to the aggregate matrices. The client configuration
file ensures the same ordering of columns when calculating
the matrices. The server derives the model coefficients using
Equation (2) and writes them to a file.
6.2 Experimental Setup and Data Set

To evaluate our privacy-aware mechanism, we utilize data
from the experimental deployment of a green navigation sys-
tem. This data consists of geo-tagged engine sensor mea-
surements for a range of vehicles and constitutes a total of
over 1000 miles of driving. A total of sixteen users (with
different cars) drive over the course of three months [21].

After segmentation, the total number of data segments in
the data set are 650. Each segment represents a approxi-
mately 2 miles of driving data, although shorter segments
are present when routes where shorter than 2 miles or were
not a multiple of that distance. There are 5 parameters for
each segment, which are inputs to (and output of) a model
of vehicular fuel consumption. These are: i) fuel consump-
tion over the segment,y = f , ii) w1 = m(ST+ vTL) where
mandv are the mass and the average velocity of the vehicle,
STandTL are the number of stop signs and traffic lights en-
countered, iii)w2 = mv2, iv) w3 = m, and v)w4 = Av2 where
A is the frontal area of the car. Using our notation, we can
write x1 = m, x2 = v, x3 = A, x4 = ST, x5 = TL. Therefore,
we havek = 4 andd = 5.
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Figure 6. Distribution of various parameters in the green navigation data set.
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Figure 7. Comparing our approach against data pertur-
bation in terms of the average reconstruction error of all
parameters for different values of k.

The values ofm, v, A, can easily be obtained by knowing
parametersw2, w3, andw4. The values ofST andTL can
also be determined since they are integers and the number
of their value combinations are less than 20. Using a brute
force approach the values ofSTandTL are derived fromw1.
In our experiments, we use all the five parameters by default.
This makes 1 output attribute and 4 predictors, hencek = 4.
In some experiments, we drop the last parameter from the
data set and denote it byk = 3. In this case, we only obtain
the values forf m, v, andA.

The attacker (reconstruction algorithm) is implemented as
a MATLAB code as presented in Section 5. Again, to elim-
inate differences in the order of reconstructed segments, all
permutations of the segments are compared against the orig-
inal set and the minimum is reported as the reconstruction
error. In order to derive the objective function in our non-
linear reconstruction, we use the sample mean and variance
from the data set. Figure 6 shows the distribution of three
parameters collected by the users of the system. Until oth-
erwise specified, we use the same noise variance as the vari-
ance of each parameter.

6.3 Privacy Evaluation
Our evaluation of privacy uses the definition of privacy

presented in Section 5. In the first experiment, we com-
pare the reconstruction error resulting from using the two ap-
proaches when the number of samples shared by each user,

n, varies. The total number of segments are the constant,
650. This divided byn is the number of users who share the
data. For everyn, we average the resulting reconstruction
over all users data and report the results in Figure 7. We do
this for bothk= 3 andk= 4. The result from the perturbation
scheme does neither change withk nor withn. Therefore, we
only present a single line.

Next, we repeat the same experiment while studying the
reconstruction error of each individual parameterxi. Using
all of the predictor variables we report the average recon-
struction error of each parameter in Figure 8(a). The results
show that reconstruction errors of 0.8 and 1.0 are achieved
for all parameters whenn = k = 4 andn ≥ 2k = 8 respec-
tively. Figure 8(b) repeats the same experiment and reports
the error corresponding to the most accurate reconstruction
among different samples instead of the average. This is the
worst case privacy for in a particular set of data points. The
results still show the complete privacy protection forn≥ 2k.

In order to evaluate the effect of the number of predictors
on privacy, we also evaluate individual parameter reconstruc-
tion errors fork = 3, by dropping the last predictor variable
from the data set. Figures 9(a) and 9(b) shows the average
and worst-case privacy obtained by using our approach. The
result verifies that a privacy-breach is unlikely if the number
of samples is larger than the heuristic threshold.

6.4 Prediction Accuracy
In this set of experiments, we evaluate the prediction ac-

curacy of the constructed model at the server and compare
it against a perturbation scheme. To this end, we perform
a cross validation by leaving out a single segment from the
data set and use the rest to construct the model which is then
used to predict fuel consumption of the segment in question.
To emulate multiple users, we divide (the rest of) the data set
into groups of 10 segments and share them using our privacy-
aware client firewalls. The regression coefficients computed
on the server are then used to estimate the fuel consumption
on the single segment that was left out. We add the esti-
mated fuel consumption values on all segments to obtain a
total fuel estimate. We calculate the relative error (in per-
cents) between this estimated value and the sum of actual
fuel consumption values. This calculation is calledcumu-
lative error. To calculate the prediction error of the pertur-
bation scheme, we use the same cross-validation and error
calculation scheme, except that the model is computed from
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Perturbation

(a)

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of samples, n

R
ec

o
n
st

ru
ct

io
n

er
ro

r

 

 

Our approach (f̃)
Our approach (m̃)
Our approach (ṽ)
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Figure 8. The (a) average, and (b) minimum reconstruction error of various attributes for k = 4. Fuel consumption, f ,
weight (m), speed (v), and frontal area (A).
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Perturbation

(b)
Figure 9. The (a) average, and (b) minimum reconstruction error of various attributes for k = 3. Fuel consumption, f ,
weight (m), speed (v), and frontal area (A).

individually shared segments perturbed with additive noise.
Thus, to estimate fuel consumption of a segment, we simply
add white noise (of a given energy) to the data set with one
segment removed and calculate the regression coefficients of
the noisy data. The power consumption for that segment is
then estimated from the obtained model and the process is
repeated for all other segments in turn.

Our first experiment to evaluate the prediction accuracy
compares the two schemes when the amount of noise en-
ergy used for perturbation changes. Figure 10 shows the re-
sults where the prediction error is represented using the mean
squared error between the estimates and the actual fuel con-
sumption values where all values in the dataset are normal-
ized to[−1,+1] range. Note that, the prediction accuracy of
our approach is presented as a reference and remains con-
stant since we do not use any noise. The x-axis shows the
ratio of the noise variance to the variance of data parameters.

Note that, prediction error linearly changes with noise en-
ergy. However, it is clear from the figure that even with low
noise energy values, the prediction error of the perturbation
scheme is much higher than ours. This is despite the fact that
our scheme is always providing privacy.

The next experiment studies the effect of the total number
of segments that are collected for modeling. We fixn = 10

and noise variance ratio to be 1 and change the total num-
ber of available segments from 10 to 500. Figure 11 depicts
that the prediction error decreases as the number of samples
increases. This is simply because the constructed model be-
comes more accurate. However, when the number of seg-
ments is very small, the perturbation scheme shows an addi-
tional prediction error because the noise values do not cancel
out when the number of samples are small.

In the final experiment, we evaluate the prediction accu-
racy of the fuel consumption for each individual car and re-
port it in Table 2. For each car, only the data set that cor-
responds to the car is used for the prediction. The segments
are similarly left out one by one for cross-validation. Thisre-
sult simply shows that the prediction error increases at least
by four times when using perturbation. In the green navi-
gation service which relies on accurate prediction of energy
consumed on various segments in order to compute the most
fuel-efficient routes and where different routes often differ
in less than 5% to 6% of the total fuel consumption, 2% pre-
diction error certainly affects the routing decisions madeby
the service. Our scheme on the other hand, enables the ap-
plication to have the same accuracy as that achieved in the
absence of privacy-enabling techniques.
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Figure 10. Comparing our approach against data pertur-
bation with varying noise energies.
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Figure 11. Comparing our approach against data pertur-
bation with varying number of total segments collected.

Car Car Car Our Appr. Perturb.
Make Model Year % error % error
Honda Accord 2003 0.46 7.86
Ford Contour 1999 0.58 2.12

Toyota Corolla 2009 0.36 6.52
Ford Focus 2009 0.11 2.25

Hyundai Santa Fe 2008 0.39 2.43
Ford Taurus 2001 0.18 1.75

Table 2. The modeling error induced by the perturba-
tion comparing to our scheme when using individual car
models.

7 Discussion
In the previous sections, we discussed how our technique

matched the two design goals presented in the beginning. Al-
though the perfect modeling criterion is analytically shown
to be satisfied in all situations, our work lacks a rigorous val-
idation of the perfect neutrality condition.

The privacy argument presented in the paper has two ma-
jor shortcomings: i) The quantification of privacy does not
capture all forms of privacy breaches, and ii) this scheme
has not been strictly shown to guarantee privacy, as defined
by our measure of privacy. This section discusses these lim-
itations in detail and presents the cases where the approach
may perform poorly to satisfy the neutrality condition.

Our quantification of privacy captures a specific form of
information about the user, i.e. the exact data point values

in users’ data traces. Sometimes, more high-level informa-
tion about the user can be deduced without reconstructing
the exact data point values. For example, the magnitude of
values in the feature matrix may reveal information about
the range of values in the original trace. Changes in the cor-
relations can also be used to infer information about how
and when a user changes behavior (e.g. in energy consump-
tion). To reflect those concerns, various definitions including
Bayes-Optimal and differential privacy have been studied in
the literature [14, 9]. Understanding the performance of our
scheme under such notions helps a more concrete analysis of
the privacy properties.

Based on our privacy-measure, we identify two major fac-
tors that can affect the possibility of revealing data afterap-
plying the privacy firewall. First, the distribution of the orig-
inal data: a discrete and narrow distribution leaves a fewer
number of choices for the reconstruction. Narrow distri-
butions means that the value of a variable is approximately
known to the attacker even before sharing any data. It can be
the case that some data points are estimated rather accurately
while the total reconstruction error is still high.

The second factor is the correlation values: For example,
if the correlation values are all 1s, the whole data trace is a
constant and therefore can be reconstructed perfectly if the
average value for the user is revealed. Generally, a higher
correlation makes the process of reconstructing the variables
easier as the search space shrinks.

8 Related Work
In recent years, a number of techniques have been pro-

posed for modifying or transforming data in such a way so
as to preserve privacy. Such methods can be classified into
four main categories described in detail below.

First,randomization techniquesthat add noise to the orig-
inal data points have been used to hide the real value of sen-
sitive data and other attributes (e.g., the trend of the data
over time) [2, 6]. They traditionally distort data for meth-
ods such as surveys which have an evasive answer bias be-
cause of privacy concerns [40, 31]. Fuller [18] and Kim and
Winkler [27] showed that some simple statistical information
(e.g., means and correlations) can be preserved by adding
random noise. In [4, 3], independent random noise (e.g.,
Gaussian) with high enough power is used to perturb user
data. However, high noise power might decrease the utility
of the shared data as well and the authors do not quantify this
trade off. Recently, Ganti et al. [20] proposed that correlated
noise, which has the same distribution as real data, can be
used to perturb time-series data. This perturbation method
is resilient to traditional filtering techniques, such as Kalman
filter [24], and Spectral filtering [25]. Using randomization
techniques in the context of privacy preserving regression,
however, will introduce error in the regression model.

Another set of randomization techniques preservediffer-
ential privacyusing randomized aggregation functions [14,
9, 36]. When an aggregate value is derived by a trustworthy
entity or the user client, differential privacy is preserved if
adding or removing a data item does not significantly change
the output (aggregate) probability distribution. Like data
point perturbation, differential privacy methods rely on ran-



domization that introduces noise to the regression model.
Second, thek-anonymity model[30] was developed be-

cause of the possibility of indirect identification of records
from public databases. For example, the identity of a pa-
tient can be inferred from their home address or cellphone
number. In the k-anonymity method, the granularity of data
is reduced using techniques such as generalization and sup-
pression. The l-diversity model [33] was designed to handle
some weaknesses in the k-anonymity model including the
the cases where there is homogeneity of the sensitive values
within a group. Many variants of the above methods exist
in current literature. A good survey of the corresponding al-
gorithms may be found in [10]. Although k-anonymity is
widely used to hide user identity in large database, it can not
be applied into this problem because useful information for
regression will be lost during generalization and suppression.

Distributed privacy preservation[42, 35] is used to derive
aggregate results from data sets which are partitioned across
these entities. While the individual may not desire to share
their entire data set, they may consent to limited information
sharing with the use of a variety of protocols. The overall
effect of such methods is to maintain privacy for each indi-
vidual, while allowing the aggregate results to be correctly
computed over an entire group. Our proposed technique in
this paper falls under this category. For this purpose, the data
sets may either behorizontally partitionedor bevertically
partitioned. In horizontal partitioning [11, 12, 32], the indi-
vidual records are spread out across multiple entities, each
of which have the same set of attributes. In vertically parti-
tioned data sets [11, 39], the individual entities have different
attributes of the same set of records. There have been also a
lot of efforts in finding good privacy preserving regression
methods [38, 13, 26]. None of them, however, quantify the
achieved privacy.

Finally, several recent works have proposed crypto-
graphic solutions for privacy-preserving modeling or aggre-
gation of distributed data [8, 15, 36]. Some of these tech-
niques, like our technique, do not perturb data and hence en-
able exact computation of certain aggregate functions. These
solutions allow data sources to publish data in encrypted
form, which hides the raw data values. They generally use
homomorphic encryption so that the central server can com-
pute aggregate functions directly on encrypted values. How-
ever, such encryptions are extremely expensive (up to 30×
more expensive than regular encryption) and only a small
class of functions can be computed on such encrypted data.
Our solution is computationally cheaper and more general
than these cryptographic solutions.

Some previous work study how to provide different levels
of privacy to different users. Xiao and Tao [41] proposed the
notion of personalized privacyto allow each data owner to
specify her own privacy level. However, the technique works
in a centralized setting and for string attributes organized in
a taxonomy tree. In contrast, the technique in this paper is
targeted towards numerical data in a distributed setting.

9 Conclusion
This paper presented a privacy-aware scheme that enables

regression modeling of participatory sensing data. We con-

sider participatory sensing applications that develop general
prediction models from data. The novelty of this work comes
from the fact that it constructs regression models exactly the
same as if private data where available to the server.

The main idea of the paper is to transform user data traces
into neutral features that can be shared with the community
and with the aggregation server while minimizing the threat
to privacy. The time-series traces that are sensed by the user
are first segmented into intervals of larger scale. The next
step is to convert the segmented data into matrices that give
little insight into the original data.

We show how given the transformed matrices, a server
can construct the same regression model as if it has access to
the data traces. The privacy-enabling properties of our trans-
formation technique are studied. Intuitive arguments and
empirical evidence suggest that when a large enough num-
ber of samples is transformed into a single feature and shared
by a user, a privacy-breach is unlikely. Also, we show how
the a personalized level of privacy is achieved by varying the
number of samples included in the neutral features.

A data set from a green navigation service is used as a
case study. We implement our approach as a client library
and a server that enables privacy-enabling model construc-
tion in this application. Experimental results show that our
technique does not change the accuracy of navigation while
trying to make the user data private. In comparison, tra-
ditional data perturbation schemes introduce a significant
amount of prediction error.

Future work on this topic will include a more formal
quantification of privacy properties and their dependency on
the user’s data set, the number of segments used, and the
number of model inputs available. Deployment data will be
collected from example applications to investigate usability
issues and issue of client interface. Finally, we shall inves-
tigate extensions of this approach to other modeling frame-
works, besides linear regression.
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