
CarSpeak: A Content-Centric Network for Autonomous
Driving

Swarun Kumar, Lixin Shi, Nabeel Ahmed, Stephanie Gil, Dina Katabi and Daniela Rus
Massachusetts Institute of Technology

{swarun, lixshi, n3ahmed, sgil, dk, rus}@mit.edu

ABSTRACT
This paper introduces CarSpeak, a communication system for au-

tonomous driving. CarSpeak enables a car to query and access sen-
sory information captured by other cars in a manner similar to how
it accesses information from its local sensors. CarSpeak adopts a
content-centric approach where information objects – i.e., regions
along the road – are first class citizens. It names and accesses road
regions using a multi-resolution system, which allows it to scale the
amount of transmitted data with the available bandwidth. CarSpeak
also changes the MAC protocol so that, instead of having nodes
contend for the medium, contention is between road regions, and
the medium share assigned to any region depends on the number of
cars interested in that region.

CarSpeak is implemented in a state-of-the-art autonomous driv-
ing system and tested on indoor and outdoor hardware testbeds in-
cluding an autonomous golf car and 10 iRobot Create robots. In
comparison with a baseline that directly uses 802.11, CarSpeak re-
duces the time for navigating around obstacles by 2.4×, and re-
duces the probability of a collision due to limited visibility by 14×.

Categories and Subject Descriptors C.2.2 [Computer
Systems Organization]: Computer-Communications Networks

Keywords Autonomous Vehicles, Content-Centric, Wireless

1. INTRODUCTION
Autonomous vehicles have been the topic of much recent re-

search [5, 31, 18]. The goal of these systems is to drive from point A
to point B in an efficient and safe manner, while dealing with con-
tinuous changes in the environment due to pedestrian and object
movements, and the potential of unexpected events, such as road-
work and accidents. To achieve their goal, autonomous vehicles
need detailed realtime information about their surroundings [22].
They typically use laser rangefinder sensors to discover the sur-
faces of nearby objects and represent this information as a 3D-point
cloud similar to that shown in Fig. 1. Using only the car’s on-board
sensors, however, prevents autonomous vehicles from uncovering
hidden objects that are not directly in their line-of-sight, e.g., a kid
running around the corner, or a car pulling out of an occluded drive-
way. These sensors also cannot deliver long-range data with suffi-
cient accuracy, which limits the car’s ability to plan ahead [31].
Further, they are costly (e.g., the sensors alone on an autonomous
vehicle can cost several hundred thousand US dollars [17, 18]). For
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Figure 1—Example of sensory information used in autonomous
driving. The figure shows a 3D-point cloud of a road obtained by
a Velodyne laser sensor, where colors refer to elevation from the
ground. Note that a 3D-point cloud provides the (x, y, z) coordinates
of points lying on the surface of obstacles.

these reasons, the report from the recent DARPA Urban Challenge
identifies the need for information sharing between autonomous ve-
hicles as a key lesson learned from the contest [3]. However, 802.11
is ill-suited for this application. Navigation sensors can generate re-
altime streams at Gb/s from each car, leading to a scenario where
there is always more data than bandwidth to send it. Furthermore,
a communication protocol that cannot capture the importance of
different pieces of information for the application will end up in-
undating the medium with irrelevant or stale data, and potentially
denying access to important and urgent information.

This paper introduces CarSpeak, a communication system that
addresses the needs of autonomous vehicles. CarSpeak enables cars
to request and access sensory information from other cars, as well
as static infrastructure sensors, in a manner similar to how they ac-
cess their own sensory information. To achieve its goal, CarSpeak
adopts a content-centric design, where information objects are first
class citizens. CarSpeak’s information objects are regions in the
car’s environment (e.g., a cube of 1 m3). In CarSpeak, a car can
request a realtime stream of a 3D-point cloud data from a particular
region along the road. It can also zoom in to get a more detailed
description, or zoom out for a wider view.

CarSpeak delivers its design via three components that address
the main challenges in sharing navigation sensor data:

• How does a car describe the information it wants, at a particular
resolution, if that information describes a region along the road?
In order to name and find road regions, CarSpeak divides the
world recursively into cubes; smaller cubes provide a finer de-
scription of the encompassing cube. Each cube refers to a re-
gion. To efficiently represent this data, CarSpeak uses an Octree,
a data structure commonly used in graphics to represent 3D ob-
jects [28, 11]. Each node in the Octree refers to a cube, and the
sub-tree rooted at that node refers to finer details inside that cube,
as shown in Fig. 2. The Octree representation allows CarSpeak
to name regions at different resolution and according to their lo-
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Figure 2—Representation of regions using Octree.

cation in the world. Specifically CarSpeak names a region by
referring to the root of the region’s sub-tree; it expresses the res-
olution of the region using the depth from the root of the region’s
sub-tree. The Octree also enables a car to store its data efficiently
because, though the world is huge, each car needs to only expand
the part of the Octree in its neighborhood.
• How does the system allocate the wireless bandwidth to the most

recent data from the region, given that multiple cars may sense
the same region and each car does not know what information
other cars know?
CarSpeak adopts a content-centric MAC where information ob-
jects, as opposed to senders, contend for medium access. Further,
each information object (i.e., 3D-point cloud stream) obtains a
share of the medium proportional to the number of requests it
receives.
CarSpeak implements this abstraction using a distributed proto-
col, where nodes that sense a region contend on its behalf. Re-
quests for region data are broadcast on the medium. Nodes com-
pute a summary value of the quality of the information they have
of each region (which is a measure of the timeliness and com-
pleteness of this information). CarSpeak uses a low overhead
protocol to share this information among the nodes as annota-
tions on their transmitted data packets. Each car uses these an-
notations to compute how much sensory data it should transmit
so that its contribution to each stream is proportional to the com-
pleteness and freshness of the data it has from the corresponding
region. CarSpeak then enforces this allocation by controlling the
802.11 contention window appropriately.
• How does the system compress the redundancy in the transmitted

sensor data while being resilient to packet loss?
CarSpeak makes each packet self-contained by assigning it an in-
dependent set of branches in the Octree that are derived from the
root. As a result, each received packet can be correctly inserted
into the tree independent of other packets. CarSpeak also reduces
the overlap between data transmitted by cars that sense the same
region. Recall that each region is a cube that encompasses many
smaller cubes, whose values keep changing in realtime due to the
arrival of new sensor data. In CarSpeak even if multiple cars re-
ceive a request for the same region (i.e., the same encompassing
cube), each of them will pick a different permutation according
to which they transmit the sub-cubes in the region. Thus, if only
one car has sensor data about the region, it will eventually trans-
mit all the sub-cubes from the region. However, if multiple cars
have data about the same region, then they are likely to cover all
sub-cubes in the region, while limiting the overlap in their trans-
missions.

We built a prototype of CarSpeak in ROS, the Robot OS [26]
and integrated it with a state of the art path planner, whose earlier
version was used in the DARPA Urban Challenge. We evaluated
CarSpeak on two testbeds: 1) an indoor testbed of iRobot Create
programmable robots connected to netbooks with Atheros AR9285
cards and gathering sensor data from Xbox 360 Kinects, and 2) an

outdoor testbed composed of an autonomous Yamaha G22E golf
car mounted with Hokuyo laser range sensors, and exchanging sen-
sory information with the Create robots. We compared CarSpeak
with a baseline inter-vehicle communication protocol that directly
uses the existing 802.11 protocol.

Experiments from the indoor testbed show that compared to the
802.11 baseline, CarSpeak reduces the time taken to navigate an en-
vironment with obstacles by 2.4×, and the probability of a collision
due to limited visibility by 14×.

Outdoor experiments with the a Yamaha golf car tests the role of
communication in enabling cars to react safely to pedestrians who
suddenly exit a blind spot and cross the car’s path. Empirical results
show that use of CarSpeak allows for the receiver on the golf car to
issue a stop command with a maximum average delay of 0.45 sec-
onds which is 4.75× smaller than the minimum delay of 2.14 sec-
onds using 802.11. These relatively small delays using CarSpeak
allow the vehicle to safely stop before the crosswalk if the pedes-
trian appears at distances as small as 1.4 meters on average, even
when the vehicle is traveling at its maximum velocity of 2 meters
per second. In contrast, using 802.11 the vehicle is unable to stop
before reaching the crosswalk if the pedestrian appears when the
vehicle is closer than four meters from the crosswalk on average.

Contributions: To our knowledge, CarSpeak is the first commu-
nication system for multiple autonomous vehicles that focuses on
maximizing the utility of information for this application, and that
is fully integrated with autonomous vehicle systems. It is evaluated
on a testbed of autonomous vehicles, and demonstrated to reduce
path length and the probability of collisions. Its content-centric de-
sign that operates on realtime rich sensory data sets it apart from
past work on VANET. This design is delivered via three compo-
nents including a multi-resolution naming and addressing scheme,
a content-centric MAC, and a new approach to compressing rich
sensory data that is suitable for lossy and dynamic environments.

2. RELATED WORK

Recent years have witnessed major advances in designing and
building autonomous vehicles to realize safer and more fuel effi-
cient future cars [5, 31, 18]. Past work in this domain [14, 8, 17], in-
cluding the DARPA Urban Challenge and the Google autonomous
car, focuses on issues related to perception, efficient path planning,
obstacle detection, etc. In contrast, this paper focuses on designing
a communication protocol that is most suitable for sharing sensory
data between autonomous vehicles.

Our work is related to a broad area in robotics that studies net-
works of robots. Past work in this area can be divided into two
categories: The first category uses communication as a black-box,
and focuses on algorithms that enable robots to collaborate on a
desired task, for instance, cooperative exploration [23] or pursuit
evasion [15]. The second category considers the application as a
black-box and focuses on harvesting robot mobility to improve net-
work connectivity or throughput [24, 9]. In contrast, our work is
based on designing the communication protocols around the needs
of the application, and takes neither as a black box.

A large number of research papers have focused on the problem
of Vehicular ad-hoc networks (VANETs). Work in this area focuses
on efficient routing [19, 27, 30], delay tolerant networks [20], reli-
able delivery of emergency messages [2, 6], or specific applications
such as detecting accidents [13]. None of these papers, however,
present a content-centric architecture or design a MAC protocol
where information objects contend for the medium. Also, none of
them present a solution that is particularly suitable for autonomous
driving.

Our work builds on past work on content-centric networking.



Sensor 1

Sensor 2

Sensor n

Perception

Mapping

Localization

Path
Planner

Controller

Sensor 
Data

Global 
Map

Vehicle
State

Path

gear, speed, steering  angle

Figure 3—High-Level Architecture of Autonomous Vehicular
Systems. The path planner module uses information from various
sensors to compute a safe path for the vehicle.

Past work in this domain is mostly focused on the Internet [12, 16].
The few papers that apply this concept in the wireless domain are
focused on storage or routing information content [25, 29, 4]. Our
work differs from all these papers in that it is focused on resource
sharing at the MAC layer. Also, it uses a multi-resolution naming
system and is fully integrated with an autonomous driving in terms
of design, implementation and evaluation.

3. PRIMER ON AUTONOMOUS VEHICLES
In this section, we provide a quick background of autonomous

driving software so that it is clearer how CarSpeak interfaces with
these systems. Successful performance of autonomous vehicles re-
lies on their ability to sense and process information about the en-
vironment around them. To obtain this information, autonomous
vehicles and robots are typically equipped with ranging sensors,
which deliver realtime measurements of the distance of the vehicle
to the surrounding 3D objects. The vehicle may use laser scanners,
ultrasonic range finders for outdoor settings and Kinect for indoor
settings [31, 5, 18, 10]. Other sensors like cameras and light detec-
tors are also used for additional information.

Most autonomous vehicles use the Robot Operating System
(ROS) framework [26]. ROS provides a publish/subscribe archi-
tecture, where a module (e.g., sensor) publishes a topic (e.g., /sen-
sor_data) that can be subscribed to by multiple modules. We dis-
cuss the commonly defined high-level modules below (Figure 3):

• Sensor Infrastructure: Each sensor attached to the autonomous
vehicle has an associated module which converts raw sensor in-
formation obtained from the driver into a generic sensor format.
The most widely used format is a 3D-point cloud which provides
the 3-D (x, y, z) coordinates of points lying on the surface of ob-
stacles. The point cloud, along with a timestamp t denoting the
time of retrieval of sensor data, is published by each sensor mod-
ule.
• Planner: The planner’s goal is to use sensory information to

plan an obstacle-free path for the vehicle to navigate along. The
planner typically has access to a detailed global map of the envi-
ronment. The planner is sub-divided into four modules:

◦ Perception module subscribes to point cloud information from
the sensors and applies complex obstacle detection algorithms to
recognize obstacles in the frame of reference of the vehicle. It
publishes a map of these obstacles.
◦ Localization module publishes the vehicle’s position within the

global map based on GPS, odometry or more advanced sensory
infrastructure, some of which can be as accurate as a few cen-
timeters [18].
◦ Mapper subscribes to information from the localization and
perception modules and publishes a global map incorporated
with locations of obstacles.
◦ Path planner subscribes to the vehicle’s location and the global

obstacle map and publishes a path for the vehicle to travel along.
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Figure 4—Information Flow in CarSpeak. CarSpeak has three
components: A Multi-Resolution Naming and Addressing system,
A Loss-Resilient Compression system and a Content-Centric MAC

• Controller: The controller subscribes to the vehicle’s path and
issues steering and velocity-control commands to the vehicle, so
that it navigates along the computed path. In many cases, the con-
troller may execute emergency maneuvers if there is substantial
change in the obstacle map due to moving obstacles.

4. CARSPEAK’S ARCHITECTURE
CarSpeak’s design aims to interface effectively with the ROS

(Robotic Operating System) architecture for autonomous vehicles.
From the perspective of the ROS planner, CarSpeak looks like a lo-
cal sensor that streams sensory information obtained from other ve-
hicles and static infrastructure sensors.1 CarSpeak receives requests
from the car’s planner by subscribing to /query_region topic. It
propagates these requests over the network to CarSpeak modules
on other vehicles to direct them to transmit information from the
requested region. When it receives sensory data in response to re-
quests it sent, like other sensors, CarSpeak publishes this data as a
stream of 3D point-cloud data (under the topic /car_speak). The
planner may now subscribe to the information from the requested
regions. Unless refreshed, a subscription (as well as the correspond-
ing requests broadcast on the medium) expires after one minute.
Timing out subscriptions is done for efficient use of bandwidth as
cars are expected to lose interest in some regions and gain interest
in others, as they move around.

CarSpeak’s guarantees are best effort, i.e. CarSpeak aims to
make the best use of the available bandwidth to send as much
relevant information as possible, in a loss-resilient manner. Car-
Speak has three components: A Content-Centric MAC, a Multi-
Resolution Naming and Addressing system, and a Loss-Resilient
Compression system. Fig. 4 illustrates how these components in-
teract with each other, the planner, and the wireless channel.

The MAC receives region requests from the planner and broad-
casts these requests on the medium. It also keeps track of requests
received from other cars over the wireless medium. It evaluates the
importance of different regions based on how many requests they
have recently received and tries to satisfy these requests by working
with the other CarSpeak components.

The multi-resolution naming and addressing system subscribes
to 3D-point cloud information published by local sensors and builds
an Octree-representation of this data. The Octree is read by the
compression module whenever CarSpeak sends data packets in re-
sponse to outside requests, and is written by the compression mod-
ule whenever CarSpeak receives data packets in response to re-
quests generated by the car. The multi-resolution naming and ad-

1Sharing information requires a notion of trust. One option is to use the
IEEE 1609.2 security standard for inter-vehicular networks to digitally sign
and verify all messages. However, the details are beyond the scope of this
paper.



dressing system also publishes updates to the Octree caused by
the arrival of external data as a 3D-point cloud under the topic
/car_speak, which is subscribed to by the planning system of the
autonomous vehicle.

The loss-resilient compression is triggered by the MAC to gen-
erate compressed data packets for transmission on the medium or
to decode received data packets and insert them in the Octree.

In the following sections, we discuss the design and functioning
of each of these modules in more detail.

5. MULTI-RESOLUTION NAMING
In autonomous vehicles, sensory information is typically repre-

sented as a 3D-point cloud. The point-cloud representation however
is unstructured, and hence does not facilitate requesting information
about a specific region. It is also inefficient because it does not com-
press the information by leveraging the fact that points close to each
in space other tend to have similar properties: empty or occupied.
Sharing information across vehicles requires a naming scheme in
which a car can name a specific region of interest. It also requires
an efficient representation that compresses the exchanged data and
reduces bandwidth consumption.

5.1 Information Naming and Representation
CarSpeak uses the Octree naming system to identify and repre-

sent sensor information from the environment. Specifically, CarS-
peak divides the world recursively to cubes. It starts with a known
bounding cube that encompasses all points observed by vehicles in
the environment. Thus this bounding cube, or root cube, is known
and agreed upon by all vehicles . Each cube is then recursively di-
vided into 8 smaller cubes as shown in Figure 5. A cube is set to
be either: (1) occupied, if the point cloud representation has points
within it (i.e., the cube has some object and the car should not drive
through it); (2) unoccupied, if there are no points within it (i.e., the
cube is vacant and the car may drive through it); and (3) unknown if
there is no sufficient sensory information about it (i.e., the cube may
have some object but the car does not yet have sensor data to iden-
tify it). We note that a parent is occupied if any of its descendants
are occupied. A parent is unoccupied only if all of its descendants
are unoccupied. Otherwise the parent is unknown.

CarSpeak maintains this recursive structure in an Octree, where
each vertex in the Octree represents a cube, and the sub-tree rooted
at that vertex refers to the recursive divisions of the cube. The Oc-
tree representation allows CarSpeak to name road regions at dif-
ferent resolutions and according to their locations in the world.
Specifically, in CarSpeak a region is an encompassing cube, which
is nothing but a sub-tree in the Octree, truncated to L levels, where
L is the resolution at which the region is described. In principle, one
can allow regions of any size to have any resolution. This would al-
low a car to request the whole world at the finest resolution. Such a
design is both inefficient and unnecessary.

Thus, CarSpeak expresses large regions at coarse resolutions and
smaller regions at finer resolutions. Specifically, CarSpeak parti-
tions the Octree into mutually disjoint sub-trees, where each sub-
tree is truncated to L levels. Each of these truncated sub-trees de-
notes a region and forms a hierarchy, as shown in Fig. 5. All regions
are described completely by their corresponding truncated sub-tree,
which contain up to 8L−1 vertices, labeled either “occupied”, “un-
occupied”, or “unknown”. Regions at a higher-level in the hierar-
chy provide a zoom-out view and are represented at a coarser spa-
tial granularity, whereas regions at a lower level in the hierarchy
provide a zoom-in view and are represented at a finer spatial granu-
larity. A key point to note is that truncated sub-trees corresponding
to any pair of regions, regardless of their hierarchy, do not overlap.

L 

Regions Octree 

Figure 5—Naming Regions in CarSpeak. The figure on the left
shows four different regions at different hierarchies with L = 2. The
figure on the right depicts the truncated sub-trees corresponding to
these regions in the Octree.

To assign regions globally unique names, we number them in
ascending order in a top-down, breadth-first manner starting from
the region containing the root of the Octree (that provides a coarse
view of the entire environment). The number of regions and L are
design parameters that can be chosen to fit the specific application.

Benefits: CarSpeak Octree-based naming system has two advan-
tages. First, it facilitates requesting and accessing sensory data at
different resolutions. Second, it compresses the data both for stor-
age and transmission. In particular, while the world may be huge,
each vertex need not expand regions that are far from its location.
Further, when exchanging information, a large subtree can be sent
as one vertex if all vertices in the subtree have the same value (e.g.,
if a whole subtree has occupied vertices, CarSpeak sends a single
value expressing the fact that the whole subtree is occupied).

5.2 Information Retrieval and Maintenance
The multi-resolution naming and addressing module subscribes

to information from local sensors and incorporates this data into its
Octree. It also populates its Octree using sensor data received from
other vehicles over the wireless medium. This octree provides infor-
mation to other nodes that may failed to obtain it from the original
sender due to packet loss or disconnectivity. Further, it publishes the
data it receives from other vehicles through the topic /car_speak
after converting it to the 3D point cloud representation. (Note that
data from local sensors is already published by the sensors them-
selves.)

Garbage Collection. Each vertex of the the Octree data-
structure is annotated with a time_stamp field that is set to the
timestamp of the most recent sensor information stored in this cube.
CarSpeak runs a thread to periodically traverse the Octree and re-
moves vertices which are outdated. If time_stamp is older than the
current time by over a fixed threshold, then the entire sub-tree is
dropped. We note that in CarSpeak, all cars use NTP to synchro-
nize their time to within tens of milliseconds, which is sufficient
for the purpose of the application.

5.3 Information Quality
The 3D stream of a region contains data from multiple nodes that

sense that region. On average, for each region, CarSpeak aims to
provide each node a share of the medium proportional to the quality
of information it possesses about that region. Let Q(i, r) denote the
quality of information that node i has regarding region r. CarSpeak
evaluates this function based on the following metrics:

• Time: Sensor information gathered more recently is of greater
value, than sensor information gathered in the past. CarSpeak de-
creases the quality of sensor information Q(i, r) based on delay,
by a factor of µ(tcurr−tsense); where tcurr is the current timestamp,



tsense denotes the timestamp at which sensor information was last
obtained from the region and 0 < µ < 1 is a constant.
• Completeness: The more complete the information a node has

about a region, the higher the value of its information. Hence,
CarSpeak linearly increases the quality of sensor information
based on its completeness, i.e., Q(i, r) ∝ C(i, r), where C(i, r) is
a measure of completeness of information that node i possesses
about region r. The Octree presents an effective metric for mea-
suring C(i, r). Let C(i, r) denote the number of vertices not la-
beled unknown in the section of the Octree, possessed by node i,
representing region r divided by the number of possible vertices
in region r. Hence, C(i, r) represents the fraction of region r that
node i has sensed.

Thus, CarSpeak’s multi-resolution naming and addressing sys-
tem on node i keeps track of the quality of sensor information,
Q(i, r), possessed by its node for each region r, as:

Q(i, r) = C(i, r)µ(tcurr−tsense), (1)

where tsense, tcurr, and C(i, r) are as defined above and 0 < µ < 1 is
a constant (µ = 0.5 in our implementation).

6. LOSS-RESILIENT COMPRESSION
3D streams of region data are highly redundant. The informa-

tion at each node is correlated because occupied cubes tend to be
co-located. The same applies to unoccupied and unknown cubes.
Further, different nodes that sense the same region may have over-
lapping information (though the overlap is typically not complete
due to differences in perspective and viewing distances). Thus, effi-
cient transmission requires compressing the data. A good compres-
sion scheme however should deal with the following issues: 1) The
compression algorithm should have a low computational overhead
to maintain the realtime nature of the data; 2) It should not require
the cars to track how their information relate to each other; and 3) It
should be resilient to packet loss. We describe how CarSpeak meets
these requirements below.

State-of-the-art compression schemes in the graphics community
for 3D-point clouds leverage the fact that the corresponding Octrees
can be efficiently encoded to provide a compressed high-entropy
representation [28, 11]. Similarly, CarSpeak exploits this compres-
sion capability of the Octree.

The standard Octree encoding technique is as follows: Let each
vertex in the Octree be represented by a tuple of length 8 represent-
ing the occupancy of each of its children. We traverse the tree in a
top-down and breadth-first fashion and read off the corresponding
tuples to obtain the compressed data. The root vertex can always be
assumed to be occupied. Then, for each vertex, its occupied and un-
known children are recursively encoded. In contrast, no further in-
formation needs to be encoded for unoccupied vertices (as they are
assumed to be entirely unoccupied). Additionally, vertices whose
descendants are entirely occupied or unknown are terminated by a
special 8-tuple (with all entries marked occupied or unknown re-
spectively) and are not further encoded, as shown in Fig. 6. The de-
coder can then faithfully recover the Octree by following the same
traversal rules as the encoder.

This algorithm is very efficient since it simply walks the Octree
representation. The problem however with using traditional Octree
compression is that the loss of even a single byte in the Octree rep-
resentation affects the correctness of all data following that byte.
Consequently, Octree based compression frameworks are highly
sensitive to packet loss. Furthermore, the above algorithm cannot
deal with data overlap across nodes that sense the same region.

We introduce a new algorithm that leverages the above standard
Octree compression, but deals with packet loss and overlap. Specif-
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Figure 6—Octree Representation Representation of 3D-point
cloud using a 2-level Octree. Vertices that are unoccupied are not
expanded; vertices that are completely occupied or unknown are
terminated by special leaf vertices; these have been omitted for clar-
ity.
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Figure 7—Picking tree T for compression Tree T picked with j
initialized to 0 is highlighted by red contours.

ically: Let r be the region from which a packet is requested by the
Content-Centric MAC. Let Or denote the truncated sub-tree in the
Octree corresponding to this region. Let v0, v1, . . . , vK−1 denote the
leaf vertices of this sub-tree. The algorithm to generate a packet
proceeds as follows: Let variable j be set to a random integer be-
tween 0 and K − 1, and variable T be set to an empty tree.

(1) Add vertex vj to the tree T as well as all its ancestors tracing all
the way up to the root of Or.

(2) Set j ← j + 1 and repeat step (1), while the encoding of T fits
within the maximum size of a packet.

The algorithm writes the Octree encoding of T to a packet and
transmits it. Note that all packets are not generated in one shot, i.e.
even if two packets are describing the same region, the one with
the more recent time stamp will have more current information. As
nodes pick different random seeds, it is highly probable that differ-
ent nodes that sense the same region do not transmit overlapping
information, at any point in time.

The compression algorithm can be further improved by using
predictive coding techniques [28, 11] as the sub-graph T preserves
edges between parents and children in the original Octree Or (Our
current implementation however does not use predictive coding).

The resulting compression algorithm has the following desirable
properties: 1) it is computationally efficient because it is linear in
the size of the region’s Octree; 2) it is robust to losses because each
packet is self-contained; 3) packets received from different cars that
sense the same region have minimal overlap because at any point
in time, they transmit different parts of the region’s Octree; and 4)
it supports a form of unequal error protection because the transmit-
ted subtrees contain paths of all vertices to the root of the region.
Hence, vertices at higher levels in the tree are less likely to be lost
than vertices at lower levels. Thus, the loss of a packet typically
results in the loss of resolution as opposed to complete loss of in-
formation.

7. CONTENT CENTRIC MAC
CarSpeak adopts a content-centric MAC that focuses on the ap-

plication’s goals and requirements. In CarSpeak, regions, as op-
posed to senders, contend for the medium. The MAC tracks region
requests and allocates to each region a medium share proportional



Symbol Meaning
Si Node i’s desirable share of the medium
CWmin,i Contention window of node i
Rr Region r’s desirable share of the medium
Pi,r Probability of transmitting packets from

region r at node i
Q(i, r) The quality-function at node i for region r

Table 1— Table of Notations. We use i to iterate over nodes, and
r to iterate over regions

to how often it is requested. Further, it ensures that the number of
transmissions each node makes on behalf of a region is proportional
to the quality of information that the node has about the region as
measured by the function Q(i, r). Below we describe how the MAC
performs these functions.

7.1 Tracking Region Requests
The content-centric MAC handles requests for different regions

both from its own vehicle and other vehicles. The module records
REQs, a measure of requests made for each region s by various
nodes. In our implementation, REQs is set to one plus the number
of requests made for region s. This is to ensure that in the absence
of requests all regions get equal share of the medium.

Internal Requests: When the MAC receives requests from its own
car, it broadcasts them to other vehicles over the wireless medium.
It also keeps track of past requests and times them out after a
minute. When packets with region data arrive, the module checks
whether they answer a request that has not timed out, in which case
it passes them to the compression module for decoding.

External Requests: The MAC actively listens on the medium to
track the requests made for various regions, and to identify which
regions are observed by vehicles in the network. When a vehicle
receives a request for region s, it updates REQs accordingly, which
biases it to transmit more information about region s, if available.

7.2 Region Contention
CarSpeak aims to share the medium among regions proportion-

ally to the number of requests they receive.

(a) Sharing the Medium Among Regions. Let Rr be region’s r
share of the wireless medium, i.e., the percentage of transmissions
that should describe region r. We can write:

Rr =
pos(

∑
i Q(i, r))REQr∑

s pos(
∑

i Q(i, s))REQs
(2)

where REQs is a measure of requests made for region s, and
pos(x) = 1 if x > 0 and 0 otherwise. The function pos(

∑
i Q(i, r))

ensures that only regions for which some node has information ac-
quire a share of the medium. Regions that no node has sensed (i.e.,
Q(i, r) = 0,∀i) do not get a share of the medium.

But how does a node obtain the information it needs to substitute
in the above equation in order to compute Rr? CarSpeak dissemi-
nates this information as annotation on the data packets transmitted
by each node. Specifically, every CarSpeak packet sent by node j
includes a list of region ids for which node j has information and
their corresponding Q(j, r)’s. By default this list has 5 entries for a
total of 40 bytes (6 bytes for region ids and 2 bytes for Q(j, r)).

CarSpeak nodes listen on the medium and collects information
about the different regions and quality of information that other
nodes have for these regions. They use this information to popu-
late a table of region ids, and the quality of information the vari-
ous nodes have for each region. A garbage collection thread that

runs every 10 seconds multiplies Q(i, r) values by a factor µ,
(0 < µ < 1) in order to age-out quality information that is out-
dated it also timeout requests that have not been refreshed in the
past minute.

(b) Controlling Medium Access. Using its estimate of the share
of the various regions of the medium, Rr’s, a node can estimate how
often it should transmit, i.e., its own share of the medium. Let Si be
the medium share of node i. Node i’s share of the medium is the
sum of its contribution to the transmissions related to all regions
for which i has data. This contribution is also proportional to the
quality of information the node has about each of these regions.
Thus:

Si =
∑

r

Rr
Q(i, r)∑

j Q(j, r)
. (3)

Conceptually, once a node knows its share of the wireless
medium, it should be able to transmit according to that share. At
first, it seems that the node can achieve this goal by simply waiting
for a transmission opportunity – i.e., the medium being idle – and
using such opportunities as often as its share permits. For example,
if its share is 20% of the medium time, it then transmits once every
five times it senses the medium to be idle. Unfortunately, this ap-
proach does not work in practice. In practice, the decision to trans-
mit upon the detection of an idle medium is performed in the card
itself and cannot be controlled in software.

Thus, we will enforce the node share indirectly by controlling
its contention window CWmin. The relation between the contention
window and the resulting share of the wireless medium is given
in [1] as:

CWmin,i =
2− Si

Si
. (4)

The above relation is derived from a detailed Markov chain model
of the progression of the contention window in 802.11 [1]. Intu-
itively, however, one can understand it as follows: In 802.11 a node
picks a random value between 0 and CWmin. Thus, the average con-
tention value is CWmin+1

2 . Thus, on average the node accesses the
medium once every CWmin+1

2 , and hence its share of the medium
Si =

2
1+CWmin

.

(c) Partitioning a Node’s Transmissions Among Regions. While
the above ensures that the node gets the proper share of the medium,
the node still has to divide this share between various regions de-
pending on: 1) each region’s share of the medium, and 2) the quality
of information the node has about the region. To achieve this goal,
whenever the node has an opportunity to transmit a packet, it picks
the packet from region r with the following probability:

Pi,r =
Rr × Q(i,r)∑

j Q(j,r)∑
s Rs × Q(i,s)∑

j Q(j,s)

=
Rr

Si
× Q(i, r)∑

j Q(j, r)
(5)

Clearly
∑

r Pi,r = 1, for every wireless node i.
The above is implemented using a non-blocking UDP socket.

Whenever the socket has space for new packets, the node picks
those packets from the regions according to the probabilities Pi,r’s.

7.3 Scaling
The above design has an important side benefit: it provides con-

gestion control for 802.11 broadcast mode. Specifically, the pres-
ence of many 802.11 senders can lead to excessive collisions and
a congestion collapse. This effect is countered in 802.11 unicast
mode by the fact that a node that does not receive an ACK for its
packet, backs off and doubles its contention window. Hence, during



congestion, nodes tend to back off and reduce the number of colli-
sions. In contrast, 802.11 broadcast mode does not have ACKs and
hence it cannot use the lack of ACK as a signal of congestion to
which it reacts by backing off. This leaves the broadcast mode with
no protection against medium congestion. The resulting problem is
typically referred to as a broadcast storm [19, 30]. In contrast, Car-
Speak scales with a large number of senders because senders do not
contend for the medium. It also scales with a large number of re-
gions because as the number of regions increases the share of each
region decreases because Rr depends on a region’s share of the total
number of requests.

8. DISCUSSION
In this section, we discuss some design considerations in imple-

menting CarSpeak:

Communicating Processed Information. An important design de-
cision is whether CarSpeak nodes should send processed sensor in-
formation, such as locations of pedestrians or whether a road is
congested, instead of raw sensor information. While this approach
may be sufficient for specialized scenarios, they are not suitable for
general-purpose communication between autonomous vehicles. In
the most general applications, transmitting nodes in networks of au-
tonomous vehicles need not know how receivers plan to process this
information. Furthermore, different receivers may process the same
sensor information to achieve different objectives. Native sensor in-
formation, available at different resolutions, is the only representa-
tion generic enough to cater to varied objectives, such as evaluating
road congestion, detecting pedestrians, avoiding vehicles, enabling
better localization, route planning, and curb-detection amongst oth-
ers.

One Hop vs. Multi-Hops. One design decision is whether CarS-
peak nodes should relay requests, in an attempt to find the rele-
vant information at vehicles that are multiple hops away from the
originator. We chose not to do so, i.e., we do not make vehicles
forward region requests. Our reasoning is based on the tradeoff be-
tween bandwidth consumption and the value of information about
relatively distant locations. CarSpeak targets urban environments
and speeds lower than 20 miles per hour. For autonomous driving
applications, and even with a conservative estimate, a car should
not need information from locations that are farther than half to
one minute away. At the above speeds, this translates into locations
that are 100 to 200 meters away, which are typically within radio
range.2 Hence, we believe that limiting access to only information
that is within the radio range of the requester is a reasonable design
choice that enables each region to expend its wireless bandwidth on
serving its local, and hence most urgent, requests.

Regular Traffic. CarSpeak can support 802.11 traffic unrelated to
autonomous driving as well. Such traffic can be represented sim-
ply as a virtual region in space. The designer can decide how to
weigh this region in comparison to autonomous driving regions.
For example, one may want to divide the medium equally between
autonomous driving and other applications by setting Rvirtual = 0.5,
in which case the autonomous driving application can use half the
medium share (as well as any resource unused by the virtual re-
gion).

9. IMPLEMENTATION
We implement CarSpeak’s multi-resolution naming, addressing,

and information sharing system as a module (“ROS node”) in the

2For example, the Dedicated Short Range Communication (DSRC)
technology, which was adopted by the intelligent transportation
system (ITS) has a radio range of up to 1000 meters [21].

Figure 8—CarSpeak’s Indoor Testbed. The blue circles denote
candidate locations for robots and gray boxes denote obstacle loca-
tions.

Robot Operating System. We operate ROS on the Ubuntu 11.04 dis-
tribution (with linux kernel version 2.6.38-8-generic), that runs on
the ASUS netbooks attached to the iCreate robots. Our implemen-
tation of CarSpeak’s multi-resolution naming system maintains the
Octree datastructure with L = 8 and three levels of region sub-trees.
We also implement CarSpeak’s garbage collection as a ROS timer
thread with a threshold of 10 seconds for the freshness of sensor
information.

Our implementation of CarSpeak’s multi-resolution naming sys-
tem subscribes to multiple topics containing sensor information in
ROS’s PointCloud format. It publishes the /car_speak topic, in
ROS’s PointCloud format, based on UDP packets received from
the MAC layer. In this sense, CarSpeak behaves as any other sen-
sor module in ROS. We implement CarSpeak’s Octree-based com-
pression framework to sub-sample the Octree and generate UDP
packets to be forwarded to the MAC module.

CarSpeak’s content centric MAC implementation has two key
requirements: 1) The ability to modify channel access parameters
such as the contention window size and, 2) Accurate timing to en-
sure packets are transmitted by the driver with minimum queuing
delay. We chose the open-source ath9k driver+firmware for Atheros
802.11n based chipsets because it met our requirements. In our im-
plementation, whenever the driver receives a packet (over-the-air or
from userspace), it searches for a CarSpeak header within the pay-
load of the packet to identify it as a CarSpeak packet. If the packet is
from userspace, the driver places it in a queue corresponding to the
region for which the packet contains information. The driver does
not directly transmit the packet because the next packet to trans-
mit (based on region sampling probabilities) may not correspond
to the region for which the packet contains information. For actual
transmission, we create a separate high priority thread within the
driver to schedule packets based on the region sampling probabili-
ties discussed in Section §3. Once a region is chosen for transmis-
sion, the thread dequeues the packet from the region’s queue, sets
the CWMin for the hardware’s queue, and writes the packet into the
hardware’s queue. To minimize waisted airtime, we schedule this
thread as fast as possible with the help of High-Resolution Timers
available in the 2.6.x version of the Linux kernel. HR Timers are
very accurate, with scheduling errors as low as 10us.

10. EVALUATION ENVIRONMENT
Below we describe the testing environment and the evaluated

schemes.

Testbeds: We evaluate CarSpeak in both indoor and outdoor set-
tings. Our indoor testbed uses a Vicon motion capture system for
robot localization, and contains 10 iRobot Create robots equipped
with Xbox 360 Kinect sensors. Asus EEPC 1015PX netbooks
equipped with Atheros AR9285 wireless network adapters are
mounted on each robot. Our testbed includes several large and small



Figure 9—CarSpeak’s Outdoor Setup. Image of the actual golf
car route demonstrating the lobby area that poses a hazardous blind
spot for the golf car and makes visual confirmation of a pedestrian
difficult before he enters the road.

obstacles as shown in Fig. 8. The testbed is divided to 40 high reso-
lution regions. Low resolution regions are specified per experiment.

Our outdoor testbed contains an autonomous Yamaha G22E
golf car mounted with various sensors, such as cameras, SICK
and Hokuyo range finders. The autonomous car, navigating in a
campus-like environment, needs to detect pedestrians and other ve-
hicles. We implement CarSpeak on the golf car and several iRobot
Create robots equipped with Kinect sensors situated in multiple lo-
cations. The setup was deployed over an area of 20 × 40 m. The
robots assist the golf car’s navigation system by providing sensor
information useful in detecting pedestrians in the environment. Fig-
ure 9 shows the actual pedestrian crosswalk and depicts that the
lobby adjacent to the crosswalk is a blind spot for the vehicle.

Compared Schemes: We evaluate three schemes including CarS-
peak and two baseline implementations:

• 802.11: An 802.11 based inter-vehicle communication system,
which allows vehicles to make requests for regions, Responses
are in the form of UDP/broadcast packets and are provided by all
wireless nodes which possess any information about the given
set of regions. The system uses the standard 802.11 MAC proto-
col to transmit information. The protocol keeps track of requests
and causes requests older than one minute to expire. It also dis-
cards sensor data older than 10 seconds. The system however
does not implement Octree-based naming or compression and
instead transmits raw 3D-point cloud information. It also does
not implement the functionalities of the content centric MAC.
• 802.11+Naming: This baseline includes CarSpeak’s Octree

based naming and compression modules. It tracks requests and
transmits packets from each region proportionally to the number
of requests it received for that region, i.e., REQr. It also times out
requests after one minute and discards sensor data older than 10
seconds. However it does not implement region-based contention
or other CarSpeak MAC functions.
• CarSpeak: CarSpeak with all of its components including the

content-centric MAC.

Metric: We compare CarSpeak against these baseline implementa-
tions based on a utility function, computing the rate of useful sensor
information, received per second. A 3D point cloud is considered
useful, if it contains sensor information only from the requested re-
gion(s), at the right resolution. For e.g., if a region is requested at
a coarse resolution, fine grained high resolution information from
that region are aggregated into the requested resolution and then
their contribution to the useful information is computed. If all the
fine grained information covers only 1 point in the requested coarse
resolution, their contribution to the utility metric will be 1 point.

11. RESULTS
We evaluate CarSpeak in both indoor and outdoor environments.

Our indoor testbed contains several obstacles that create blind-spots
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Figure 10—Region Contention. CDFs of variance in rate of points
received from two regions. The variance obtained using CarSpeak
is significantly smaller, across a variety of topologies and in the
presence of mobile robots.

for the robots. Figure 8 depicts candidate robot locations in the
test-bed. Experiments are repeated with robots assigned to different
randomly chosen locations and moving towards different randomly
chosen destinations. Our experiments allow robots to obtain sensor
information from a diverse set of regions at various points in time.

11.1 Region Contention
CarSpeak’s key goal is to enable regions to share the medium

efficiently, regardless of the location or number of nodes. We verify
if CarSpeak delivers on that promise.

Method. We place robots in randomly chosen locations in the
indoor testbed. We issue an equal number of requests for two differ-
ent regions in the environment at regular intervals from two wire-
less nodes in the testbed. We measure the variance of the rate of
3D-points received from the two regions by both robots, by Car-
Speak the standard 802.11 MAC protocol, and a hybrid approach
802.11+Naming. We repeat the experiment for 20 different topolo-
gies, with requests generated from different pairs of robots.

Results. Figure 10 shows the cumulative distribution function
(CDF) of the variance (normalized by the average square) of the
rate of points received from the two regions by the robots. The
mean variance obtained using CarSpeak is 0.0015, while that of
the standard 802.11 protocol and 802.11+Naming are 0.101 and
0.081 respectively. The higher 802.11 variance is due to the fact
that 802.11 allocates bandwidth to senders not regions. Hence, the
region that was observed by more robots received a greater share of
the medium compared to the other region. The exact difference in
the shares of the two regions varied from one experiment to another
depending on the topology and mobility pattern. 802.11+Naming
had a slightly lower variance. This is because the protocol en-
forces the desired region rates locally – i.e., if one robot has in-
formation from both regions the amount of data it transmits is bal-
anced between the two regions – but cannot guarantee the desired
medium allocation across different nodes. In contrast, CarSpeak’s
region based contention mechanism ensures that the medium is
shared equally between the two requested regions, across a variety
of topologies and mobility patterns.

11.2 Region Requests
In this experiment, we test CarSpeak’s region request module and

verify an increased number of requests for a given region leads to
a proportional increase in the number of 3D points received from
that region.

Method. We place robots in randomly chosen locations in the
indoor testbed. We issue queries for two regions in the environment.
We fix the query rate for the first region (5 requests/sec) and vary the
query rate for the second region across experiments. We measure
the ratio of the number of points received from the two regions
at the requesting robots, when the experiments are carried using
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Figure 11—Region Requests. Ratio of the number of points re-
ceived from two requested regions plotted against ratio of the num-
ber of requests made for the two regions. CarSpeak ensures the
wireless bandwidth is allocated to region proportionally to the num-
ber of requests they receive.

CarSpeak, 802.11 and 802.11+Naming. We repeat the experiment
for 20 different topologies, with requests generated from different
pairs of robots.

Results. Figure 11 plots the ratio of the number of 3D points
received from the two requested regions as a function of the ratio of
the number of requests made for the two regions. The figure shows
that, for CarSpeak, the ratio of received points is roughly equal to
the ratio of requests. This holds across a variety of topologies and
mobility patterns. In contrast, for 802.11, the ratio of points is to-
tally independent of the ratio of requests. 802.11+Naming performs
slightly better showing some correlation between the ratio of points
from the two regions and the ratio of their requests.

11.3 Scaling
In this experiment, we demonstrate that CarSpeak scales to envi-

ronments with a large number of vehicles.
Method. We conduct the experiment with two regions that have

equal request rates. However, we increase the number of transmit-
ters and explore the impact on the protocols. We measure the num-
ber of points received by the requesting receivers for CarSpeak and
the two baselines. We repeat the experiment for different topologies
and pairs of regions.

Results. Figure 12 plots the number of received 3D points, with
CarSpeak, 802.11, and 802.11+Naming as a function of the number
of contending nodes. While CarSpeak’s performance scales grace-
fully, the performance of both the 802.11 baselines deteriorates
when there are over 6 nodes. This is due to the large number of col-
lisions that occur when multiple nodes transmit using the 802.11
broadcast mode, causing a broadcast storm. CarSpeak’s content
centric MAC protocol solves this problem by adapting the nodes’
contention window so that it stays independent of the number of
transmitters.

11.4 Compression
In this experiment, we evaluate the performance of CarSpeak’s

compression module. We verify if our compression scheme is ro-
bust to packet loss while providing significant compression over
sending uncompressed point cloud data.

Method. Since the level of possible compression depends on the
scene, we place the robots in a typical outdoor setting containing
several buildings and obstacles, with Kinect sensors receiving depth
information.3 We vary the distance between the robots to achieve
a wide range of loss rates. We evaluate CarSpeak’s compression
module against the following two compression schemes:

3Kinect does not work in sunny outdoor settings. Hence, we pick afternoon
hours and locations a lot of shades.
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Figure 12—Scaling. Number of 3D points received at a receiver by
CarSpeak, 802.11 and 802.11+Naming as a function of the num-
ber of contending nodes. We observe that while CarSpeak scales
gracefully, 802.11’s performance deteriorates when there are over
6 nodes, due to an excessive number of collisions and the lack of a
backoff mechanism in the broadcast mode.
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Figure 13—Compression module. Ratio of the number of points
received over the number of transmitted points measured across
packet loss rates when packetizing compressed point cloud data,
using CarSpeak’s compression module and without using compres-
sion. CarSpeak’s compression module provides a consistent gain
of 4.5x over sending uncompressed data, while packetizing com-
pressed point cloud data performs poorer than CarSpeak for packet
loss rates as low as 2%.

• No Compression: 3D-point cloud information is transmitted di-
rectly without any compression but with random sub-sampling.
• Standard Octree Compression: 3D-point cloud data from the en-

vironment obtained from the sensor at regular intervals is com-
pressed using the standard Octree compression algorithm de-
scribed in §6. The resultant data is packetized and broadcast on
the medium.

We repeat the experiment for different locations of the robots in an
outdoor setting.

Results. Figure 13 plots the number of received 3D points di-
vided by the number of transmitted packets, as a function of the
packet loss rate. CarSpeak’s compression module provides a con-
sistent gain of 4× over sending uncompressed data. While packetiz-
ing compressed point cloud data achieves a greater compression at
very low loss rates, the scheme deteriorates to poorer than sending
uncompressed data at a packet loss rate of 10% (which we found
to be typical in our mobile outdoor scenarios). Since point cloud
data is sought by several receivers whose channel to the transmitter
varies with time due to mobility, a practical compression scheme
must be robust to a wide range of packet loss. CarSpeak delivers on
this promise.

11.5 Resolution
In this experiment, we evaluate the performance of CarSpeak

when observing regions at different resolutions. We verify if Car-
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Figure 14—Resolution. The figure shows the rate at which infor-
mation is received from a requested low-resolution region, for dif-
ferent schemes. Increasing the number of robots that do not have the
requested resolution can dramatically impact the performance of
802.11 and 802.11+Naming. In contrast, CarSpeak maintains high
rate of information from the desired region.

Speak responds with high quality information at the appropriate
resolution, when a region is requested.

Method. We experiment with a scenario in which a robot re-
quests a region at a low resolution. The environment has one robot
who has the region at the proper resolution and many other robots
that have incomplete and higher resolution information of the re-
gion. We measure the number of the 3D points received from the
large region at the requester, in each of the three compared schemes.
Note that fine grained high resolution information from within the
requested region are aggregated into the requested resolution and
then their contribution to the useful information is computed. For
example, if all the fine grained information ends up covering only
one point in the requested coarse resolution, their contribution to
the utility metric will be one point. We repeat the experiment 20
times under different topologies.

Results. Figure 14 plots the rate at which the requester receives
points from the desired resolution. The figure shows that adding
robots observing smaller regions does not reduce CarSpeak’s per-
formance, as it recognizes that the robot observing the entire region
has a greater quality of sensor information and deserves greater ac-
cess to the medium. However, 802.11’s performance is reduced as
the medium is increasingly shared by wireless nodes observing only
a small fragment of the requested region. Note that as the 802.11
baseline does not implement Octree-based compression, its rate of
received sensor information is lower, compared to 802.11+Naming
or CarSpeak. Overall, across experiments, CarSpeak delivery rate
of the desired data is 4.5× higher than 802.11+Naming and over
29× higher than 802.11.

11.6 Planning Efficiency
In this experiment, we demonstrate CarSpeak’s capability to pro-

vide the path planner with more efficient routes in an environment
with obstacles.

Method. Consider a topology of the robots as shown in figure
15(a). Robot A seeks to navigate to location X, via the shortest
possible path. However, the road ahead of X is blocked, and this in-
formation is available only with Robot B. Robot A does not have a
line-of-sight view of the road block. The environment also has sev-
eral other robots positioned at various other locations with sensor
information of lower importance, also contending for the medium.
Robot A makes several requests for regions close to X, for which
its own sensors have no information. In the presence of timely sen-
sor information from Robot B, Robot A can make a detour at the
intersection to reach its destination via a marginally longer route.
However, without this information, Robot A reaches the road-block
and must U-turn to take the detour. We repeat the experiment with

Path 1
Path 2

(a) Planning efficiency setup (b) Safety setup

Figure 15—Experiment setup for (a), The shortest path 1 from
A to destination is blocked, efficient communication from sensor B
should enable A to take path 2; for (b), There is a potential collision
of A with B when A tries to merge into the traffic in another road at
the T intersection. The collision can be avoided if A can hear from
C about the other side of the road.
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Figure 16—Planning Efficiency. Time taken by the robot to nav-
igate an obstacle ridden environment across number of contending
wireless nodes. CarSpeak performs 2.4× better, on average, than
the baseline 802.11 implementation in a network of over 6 robots.

a different number of vehicles contending for the medium in the
environment.

Results. Figure 16 plots the time taken by robot A to navigate to
location X vs. the number of contending nodes when running Car-
Speak as well as the two 802.11 benchmarks. We observe that in a
network of over 6 contending wireless transmitters, CarSpeak per-
forms, on average, 2.4× better than the 802.11 baseline and 2.1×
better than 802.11’s MAC with CarSpeak’s multi-resolution nam-
ing system. In this network, 802.11 predominantly picks the incor-
rect path to the destination, while CarSpeak correctly picks the de-
tour at the intersection, with high probability. While, 802.11+Nam-
ing performs marginally better than 802.11 due to a more effective
compression scheme, its performance remains poor as much of the
available wireless bandwidth is used by other nodes, with sensor
information of much lower importance.

11.7 Safety
In this experiment, we evaluate CarSpeak’s effectiveness in im-

proving the safety of autonomous driving by detecting obstacles
outside the field of view of the vehicle.

Method. Consider a topology of the robots as shown in figure
15(b) emulating the common scenario of vehicles at an intersection.
Robot A is navigating towards a T-intersection and seeks to merge
with other traffic on the main roadway. Ideally, Robot A must yield
to Robot B (emulating a human-driven car without sensors), which
is currently traveling on the main road. However, Robot A’s sensors
have a limited field of view and cannot detect Robot B. Negotiating
such intersections is one of the most challenging problems in de-
signing autonomous vehicles, often requiring human intervention
or additional information regarding obstacles on the road [7]. In
this topology, Robot C has access to sensor information capturing
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Figure 17—Safety. Percentage of successful detection of Robot B
across number of wireless nodes contending for the medium. For a
network of over 6 contending transmitters, CarSpeak’s probability
of successfully detecting Robot B is 14× that of 802.11 and 6.5×
that of 802.11+Naming.

Robot B. The network has several other robots contending for the
wireless medium, placed in randomly chosen locations. We evalu-
ate the ability of Robot A to detect Robot B, while implementing
CarSpeak against the 802.11 baseline implementations. We repeat
the experiment with different numbers of vehicles contending for
the medium in the environment.

Results. Figure 17 plots the percentage of successful detection
of Robot B vs. the number of wireless nodes contending for the
medium. While the performance of 802.11 and 802.11+Naming
deteriorate to as low as 6.1% and 11.9% as the number of robots
increases, CarSpeak successfully detects Robot B with 91% prob-
ability. In a network of over 6 transmitters, CarSpeak’s probabil-
ity of detecting Robot B is 14× that of 802.11 and 6.5× that of
802.11+Naming.

11.8 Outdoor Experiments on an Autonomous Vehicle
CarSpeak was implemented in an outdoor setting at a pedestrian

crosswalk in a campus-like environment. This pedestrian crosswalk
presents a hazardous setting where the two buildings on either side
of the crosswalk completely block the view such that vehicles on
the road are not aware of pedestrians before they emerge onto the
street. See Figure 9. We present empirical results demonstrating
CarSpeak’s capability of improving the stopping time of an au-
tonomous Yamaha G22E golf car over 802.11 when point cloud
sensor data for pedestrians in the vehicle’s blind spot is transmitted
to the vehicle. In particular, our results show that CarSpeak enables
the vehicle to make a stop decision before the crosswalk even at
full speeds, if a pedestrian appears when the vehicle is one to two
meters away from from the crosswalk.

Method. Our setup consists of a total of six Kinect sensors
placed adjacent to the pedestrian crosswalk, i.e., the vehicle blind
spot. The experiments were conducted in the presence of multi-
ple collision domains, and hidden terminals.4 Five out of six of
these Kinects are monitoring a different section of the environment
and thus are inconsequential for detecting pedestrians entering the
crosswalk. Only one of the Kinect sensors is strategically placed
to monitor the pedestrian crosswalk blind spot and thus obtains in-
formation relevant for the vehicle. Each Kinect broadcasts its point
cloud sensor information using the Asus netbook described in §10.
A receiver node on the autonomous golf car, a Vaio VPCF23BFX
laptop with an Intel Core 17-2670QM processor, processes the sen-
sor data that it receives from the Kinects to infer the presence of
a pedestrian in the critical region (i.e., vehicle blind spot) viewed

4Pairwise pings show that only a subset of the pairs can directly hear each
other, and in some pairs, the two nodes do not receive each other’s pings
though a third node can receive pings from both nodes, which indicates a
hidden terminal scenario.
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Figure 18—Time Delay Averages for CarSpeakand 802.11. Dis-
tances on the x-axis are grouped into bins of two meters repre-
senting distances of the golf car from the crosswalk at the time
the pedestrian enters the crosswalk.

by the high priority Kinect. The pedestrian detection module issues
a positive reading if the number of point cloud data points within
the critical region is above a threshold of 1000 points. Upon de-
tecting the presence of the pedestrian, the receiver node immedi-
ately publishes a stop command to the golf car through a ROS pub-
lish/subscribe interface. We compare CarSpeak against the bench-
mark of the traditional 802.11 protocol for data transmission.

For the purposes of obtaining our performance metric, we make
the node attached to the Kinect log the sensor data to detect the ex-
act time when the pedestrian appears in the lobby in front of the
transmitting Kinect. This time is then compared against the times-
tamp of when the receiver issues a stop command to the vehicle.
Using the vehicle’s on-board localization paired with the two times-
tamps recorded, we also compare the distance of the vehicle from
the crosswalk when the pedestrian enters the crosswalk and when
the golf car is issued a stop command by the receiver. We note how-
ever, that processing is not necessary at the transmitter and is only
done for computing our performance metrics.

The golf car drives from 15 meters away towards the crosswalk.
We perform the experiment by allowing the pedestrian to enter the
crosswalk’s blind spot when the golf car is traveling at a full speed
of two meters per second at distances of roughly ten meters, eight
meters, six meters, four meters, and two meters from the crosswalk.
For all of our results we assume the pedestrian takes an additional
0.5 seconds to enter the crosswalk from the time he is detected at
the Kinect in the lobby and this is the time value we use on the x-
axis of our plots. The results of these experiments are averaged over
five runs for each of these distances using both CarSpeak and the
traditional 802.11 protocols and are compared in the next section.

Results. Our results, in Figure 18, show a clear improvement
in the vehicle’s ability to safely stop before the crosswalk using
CarSpeak as compared to 802.11. In particular CarSpeak allows
for the receiver to issue a stop command with a minimum average
delay of as little as 0.3 seconds from when the pedestrian appears
in the field of view of the Kinect and a maximum average delay of
0.45 seconds. The maximum average delay of a positive pedestrian
detection using CarSpeak is 4.75 times smaller than the minimum
delay of 2.14s using 802.11.

These relatively small delays using CarSpeak allow the vehicle to
safely stop before the crosswalk even when it is one to two meters
away and traveling at a speed of two meters per second when the
pedestrian appears. Use of the traditional 802.11 protocol, however,
fails to stop the car before the crosswalk if a pedestrian appears
when the vehicle is closer than four meters from the crosswalk, on
average. See Figure 19. Using CarSpeak allows for a larger por-
tion of critical information requested by the golf car from the prior-
ity Kinect sensor to reach the receiver, whereas an 802.11 protocol
floods the receiver with proportionally more data from the irrelevant
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Figure 19—Comparison of golf car distance from the crosswalk
when the pedestrian enters the crosswalk to the distance from
the crosswalk at which the receiver issues a stop command to
the car. Distances on the x-axis are grouped into bins of 2 m.

Kinect sensors, inhibiting the receiver’s ability to process a posi-
tive pedestrian detection. In particular, using CarSpeak the receiver
obtains 7.5× as many pedestrian critical 3D points as 802.11, av-
eraged over twenty runs. Thus, using CarSpeak allows the receiver
to gain several folds more information about regions of the envi-
ronment that it considers important, even with several contending
non-relevant transmitters, allowing more timely usage of important
data to make critical decisions on actual autonomous vehicles.

12. CONCLUSION
This paper introduces CarSpeak, a content-centric communica-

tion system for autonomous driving, enabling cars to query and ac-
cess sensory information captured by other cars in a manner similar
to how they access information from their local sensors. Field tests
using a combination of iRobot robots and a Yamaha instrumented
car show that, in comparison with a baseline that directly uses
802.11, CarSpeak improves safety, increases information through-
put, and provides several folds reduction in the time to navigate an
obstacle-ridden environment.
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