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Priority Inheritance Protocols: An Approach to 
Real-Time Synchronization 

Abstmct- A direct application of commonly used synchro- 
nization primitives such as semaphores, monitors, or the Ada 
rendezvous can lead to uncontrolled priority inversion, a situa- 
tion in which a higher priority job is blocked by lower priority 
jobs for an indefinite period of time. In this paper, we investi- 
gate two protocols belonging to the class of priority inheritance 
protocols, called the basic priority inheritance protocol and the 
priority ceiling protoool. We show that both protocols solve this 
uncontrolled priority inversion problem. In particular, the pri- 
ority ceiling protocol reduces the worst case task blocking time 
to at most the duration of execution of a single critical section 
of a lower priority task. In addition, this protocol prevents the 
formation of deadlocks. We also derive a set of sufficient con- 
ditions under which a set of periodic tasks using this protocol 
is schedulable. 

Index Terms-Priority inheritance, priority inversion, real- 
time systems, scheduling, synchronization. 

I. INTRODUCTION 

HE SCHEDULING of jobs with hard deadlines has been T an important area of research in real-time computer sys- 
terns. Both nonpreemptive and preemptive scheduling algo- 
rithms have been studied in the literature [31, [4], [6]-[8], 
[lo], [ 1 I]. An important problem that arises in the context of 
such real-time systems is the effect of blocking caused by the 
need for the synchronization of jobs that share logical or phys- 
ical resources. Mok [9] showed that the problem of deciding 
whether it is possible to schedule a set of periodic processes 
is NP-hard when periodic processes use semaphores to en- 
force mutual exclusion. One approach to the scheduling of 
real-time jobs when synchronization primitives are used is to 
try to dynamically construct a feasible schedule at run-time. 
Mok [9] developed a procedure to generate feasible sched- 
ules with a kernelized monitor, which does not permit the 
preemption of jobs in critical sections. It is an effective tech- 
nique for the case where the critical sections are short. Zhao, 
Ramamritham, and Stankovic [14], [15] investigated the use 
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of heuristic algorithms to generate feasible schedules. Their 
heuristic has a high probability of success in the generation of 
feasible schedules. 

In this paper, we investigate the synchronization problem in 
the context of priority-driven preemptive scheduling, an ap- 
proach used in many real-time systems. The importance of 
this approach is underscored by the fact that Ada, the lan- 
guage mandated by the U.S. Department of Defense for all 
its real-time systems, supports such a scheduling discipline. 
Unfortunately, a direct application of synchronization mecha- 
nisms like the Ada rendezvous, semaphores, or monitors can 
lead to uncontrolled priority inversion: a high priority job be- 
ing blocked by a lower priority job for an indefinite period 
of time. Such priority inversion poses a serious problem in 
real-time systems by adversely affecting both the schedulabil- 
ity and predictability of 'real-time systems. In this paper, we 
formally investigate the priority inheritance protocol as a pri- 
ority management scheme for synchronization primitives that 
remedies the uncontrolled priority inversion problem. We for- 
mally define the protocols in a uniprocessor environment and 
in terms of binary semaphores. In Section 11, we review the 
problems of existing synchronization primitives, and define 
the basic concepts and notation. In Section 111, we define the 
basic priority inheritance protocol and analyze its properties. 
In Section IV, we define an enhanced version of the basic 
priority inheritance protocol referred to as the priority ceiling 
protocol and investigate its properties. Section V analyzes the 
impact of this protocol on schedulability analysis when the 
rate-monotonic scheduling algorithm is used and Section VI 
examines the implication considerations as well as some pos- 
sible enhancements to the priority ceiling protocol. Finally, 
Section VI1 presents the concluding remarks. 

11. THE PRIONTY INVERSION PROBLEM 
Ideally, a high-priority job J should be able to preempt 

lower priority jobs immediately upon Ss initiation. Priority 
inversion is the phenomenon where a higher priority job is 
blocked by lower priority jobs. A common situation arises 
when two jobs attempt to access shared data. To maintain con- 
sistency, the access must be serialized. If the higher priority 
job gains access first then the proper priority order is main- 
tained; however, if the lower priority job gains access first 
and then the higher priority job requests access to the shared 
data, this higher priority job is blocked until the lower priority 
job completes its access to the shared data. Thus, blocking is 
a form of priority inversion where a higher priority job must 
wait for the processing of a lower priority job. Prolonged du- 
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rations of blocking may lead to the missing of deadlines even 
at a low level of resource utilization. The level of resource 
utilization attainable before a deadline is missed is referred to 
as the schedulability of the system. To maintain a high de- 
gree of schedulability, we will develop protocols that would 
minimize the amount of blocking. It is also important to be 
able to analyze the performance of any proposed protocol in 
order to determine the schedulability of real-time tasks that 
use this protocol. 

Common synchronization primitives include semaphores, 
locks, monitors, and Ada rendezvous. Although the use of 
these or equivalent methods is necessary to protect the con- 
sistency of shared data or to guarantee the proper use of non- 
preemptable resources, their use may jeopardize the ability of 
the system to meet its timing requirements. In fact, a direct 
application of these synchronization mechanisms can lead to 
an indefinite period of priority inversion and a low level of 
schedulability. 

Example I: Suppose that J1,  J2,  and J3 are three jobs 
arranged in descending order of priority with J1 having the 
highest priority. We assume that jobs J1 and J3 share a data 
structure guarded by a binary semaphore S. Suppose that at 
time tl , job J3 locks the semaphore S and executes its criti- 
cal section. During the execution of job J3’s critical section, 
the high priority job J1 is initiated, preempts J3,  and later at- 
tempts to use the shared data. However, job J1 will be blocked 
on the semaphore S. We would expect that J1,  being the high- 
est priority job, will be blocked no longer than the time for 
job J3 to complete its critical section. However, the duration 
of blocking is, in fact, unpredictable. This is because job J3 
can be preempted by the intermediate priority job J2. The 
blocking of J3,  and hence that of J1,  will continue until J2 
and any other pending intermediate jobs are completed. 

The blocking period in Example 1 can be arbitrarily long. 
This situation can be partially remedied if a job in its critical 
section is not allowed to be preempted; however, this solution 
is only appropriate for very short critical sections, because it 
creates unnecessary blocking. For instance, once a low prior- 
ity job enters a long critical section, a high priority job which 
does not access the shared data structure may be needlessly 
blocked. An identical problem exists in the use of monitors. 
The priority inversion problem was first discussed by Lamp- 
son and Redell [2] in the context of monitors. They suggest 
that the monitor be executed at a priority level higher than all 
tasks that would ever call the monitor. In the case of the Ada 
rendezvous, when a high priority job (task) is waiting in the 
entry queue of a server job, the server itself can be preempted 
by an independent job J ,  if job S s  priority is higher than both 
the priority of the server and the job which is currently in 
rendezvous with the server. Raising the server priority to be 
higher than all its callers would avoid this particular problem 
but would create a new problem: a low priority job may un- 
necessarily block the execution of independent higher priority 
jobs via the use of the server. 

The use of priority inheritance protocols is one approach 
to rectify the priority inversion problem in existing synchro- 
nization primitives. Before we investigate these protocols, we 
first define the basic concepts and state our assumptions. A 

job is a sequence of instructions that will continuously use the 
processor until its completion if it is executing alone on the 
processor. That is, we assume that jobs do not suspend them- 
selves, say for I/O operations; however, such a situation can 
be accommodated by defining two or more jobs. In addition, 
we assume that the critical sections of a job are proper& 
nested and a job will release all of its locks, if it holds any, 
before or at the end of its execution. In all our discussions 
below, we assume that jobs J 1 ,  J2,  . . . , J ,  are listed in de- 
scending order of priority with J 1  having the highest priority. 
A periodic task is a sequence of the same type of job occur- 
ring at regular intervals, and an aperiodic task is a sequence 
of the same type of job occurring at irregular intervals. Each 
task is assigned a fixed priority, and every job of the same 
task is initially assigned that task’s priority. If several jobs are 
eligible to run, the highest priority job will be run. Jobs with 
the same priority are executed in a FCFS discipline. When 
a job J is forced to wait for the execution of lower priority 
jobs, job J is said to be “blocked.” When a job waits for the 
execution of high priority jobs or equal priority jobs that have 
arrived earlier, it is not considered as “blocked.” We now 
state our notation. 

Notation : 

Ji denotes a job, i.e., an instance of a task ri. Pi and Ti 
denote the priority and period of task ~i , respectively. 
A binary semaphore guarding shared data and/or re- 
source is denoted by Si.  P(S;)  and V(Si )  denote the 
indivisible operations lock (wait) and unlock (signal), 
respectively, on the binary semaphore Si. 
Thejth critical section in job Ji is denoted by zi, j  and 
corresponds to the code segment of job Ji between the 
j th P operation and its corresponding V operation. The 
semaphore that is locked and released by critical section 
zi, j  is denoted by Si, j .  
We write zi,, c z i , k  if the critical section z;,j is entirely 
contained in zi, k . 
The duration of execution of the critical section z;, j , de- 
noted d; , j ,  is the time to execute zi, j  when Ji executes 
on the processor alone. 

We assume that critical sections are properly nested. That 
is, given any pair of critical sections zi, j and Z i , k ,  then either 
Z i , j  C Z i , k ,  Z i , k  c Z i , j ,  Or Z i , j  n 2 i . k  = 0.  In addition, We 
assume that a semaphore may be locked at most once in a 
single nested critical section. 

Definition: A job J is said to be blocked by the critical 
section zi, j of job Ji if Ji has a lower priority than J but J 
has to wait for Ji to exit zi, j in order to continue execution. 

Definition: A job J is said to be blocked by job J;  through 
semaphore S ,  if the critical section zi,, blocks J and Si, j = S. 

In the next two sections, we will introduce the concept of 
priority inheritance and a priority inheritance protocol called 
the priority ceiling protocol. An important feature of this pro- 
tocol is that one can develop a schedulability analysis for it 
in the sense that a schedulability bound can be determined. If 
the utilization of the task set stays below this bound, then the 
deadlines of all the tasks can be guaranteed. In order to create 
such a bound, it is necessary to determine the worst case du- 
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ration of priority inversion that any task can encounter. This 
worst case blocking duration will depend upon the particular 
protocol in use. 

Notation: P i , j  denotes the set of all critical sections of 
the lower priority job J j  which can block J i .  That is, 
P i , j  = { Z j , k l j  > i and z j , k  can block J i } . ’  

Since we consider only properly nested critical sections, 
the set of blocking critical sections is partially ordered by 
set inclusion. Using this partial ordering, we can reduce our 
attention to the set of maximal elements of / 3 i , j ,  Pi: ,. Specif- 
ically, we have fl:j = { z j , k ] ( Z j , k  E Pi ,  j )  A ( k j , m  E P i ,  j 
Such that z j , k  C Z j , m ) } .  

contains the longest critical sections of J j  which 
can block Ji and eliminates redundant inner critical sections. 
For purposes of schedulability analysis, we will restrict atten- 
tion to @ *  = U j , i P [  j ,  the set of all longest critical sections 
that can block J i .  

The set 

III. THE BASIC P r u o ~ ~  INHERITANCE PROTOCOL 

The basic idea of priority inheritance protocols is that when 
a job J blocks one or more higher priority jobs, it ignores its 
original priority assignment and executes its critical section 
at the highest priority level of all the jobs it blocks. After 
exiting its critical section, job J returns to its original priority 
level. To illustrate this idea, we apply this protocol to Example 
1. Suppose that job J1 is blocked by job J3. The priority 
inheritance protocol requires that job J3 execute its critical 
section at job J l ’ s  priority. As a result, job J2 will be unable 
to preempt job J3 and will itself be blocked. That is, the higher 
priority job J2 must wait for the critical section of the lower 
priority job J3 to be executed, because job J3 “inherits” the 
priority of job J1.  Otherwise, J1 will be indirectly preempted 
by J2.  When J3 exits its critical section, it regains its assigned 
lowest priority and awakens J1 which was blocked by J3. 

Job J1,  having the highest priority, immediately preempts J3 

and runs to completion. This enables J2 and J3 to resume in 
succession and run to completion. 

A .  The Definition of the Basic Protocol 

We now define the basic priority inheritance protocol. 
1) Job J ,  which has the highest priority among the jobs 

ready to run, is assigned the processor. Before job J enters a 
critical section, it must first obtain the lock on the semaphore 
S guarding the critical section. Job J will be blocked, and the 
lock on S will be denied, if semaphore S has been already 
locked. In this case, job J is said to be blocked by the job 
which holds the lock on S .  Otherwise, job J will obtain the 
lock on semaphore S and enter its critical section. When job J 
exits its critical section, the binary semaphore associated with 
the critical section will be unlocked, and the highest priority 
job, if any, blocked by job J will be awakened. 

2) A job J uses its assigned priority, unless it is in its crit- 
ical section and blocks higher priority jobs. If job J blocks 
higher priority jobs, J inherits (uses) PH , the highest prior- 

’ Note that the second suffix of &,, and the first suffix of 2 j . k  correspond 
to job J ,  . 

ity of the jobs blocked by J .  When J exits a critical section, it 
resumes the priority it had at the point of entry into the critical 
section.* 

3) Priority inheritance is transitive. For instance, suppose 
J1, J2, and J3 are three jobs in descending order of priority. 
Then, if job J3 blocks job J2, and J2 blocks job J1, J3 would 
inherit the priority of J1 via J2. Finally, the operations of 
priority inheritance and of the resumption of original priority 
must be indi~isible.~ 
4) A job J can preempt another job J L  if job J is not 

blocked and its priority is higher than the priority, inherited 
or assigned, at which job J L  is executing. 

It is helpful to summarize that under the basic priority inher- 
itance protocol, a high priority job can be blocked by a low- 
priority job in one of two situations. First, there is the dirert 
blocking, a situation in which a higher priority job attempts 
to lock a locked semaphore. Direct blocking is necessary to 
ensure the consistency of shared data. Second, a medium pri- 
ority job J1 can be blocked by a low priority job J2,  which 
inherits the priority of a high priority job J o .  We refer to this 
form of blocking as push-through blocking, which is neces- 
sary to avoid having a high-priority job Jo being indirectly 
preempted by the execution of a medium priority job J1. 

B. The Properties of the Basic Protocol 
We now proceed to analyze the properties of the basic pri- 

ority inheritance protocol defined above. In this section, we 
assume that deadlock is prevented by some external means, 
e.g., semaphores are accessed in an order that is consistent 
with a predefined acyclical order. Throughout this section, 0; 
refers to the sets of the longest critical sections that can block 
Ji when the basic priority inheritance protocol is used. 

Lemma I :  A job J H  can be blocked by a lower prior- 
ity job J L ,  only if J L  is executing within a critical section 
Z L , ~  E 

Proof: By the definitions of the basic priority inheritance 
protocol and the blocking set P ; i , L ,  task J L  can block J H  
only if it directly blocks J H  or has its priority raised above 
JH through priority inheritance. In either case, the critical 
section Z L ,  j currently being executed by J L  is in Or;, L .  If J L  
is not within a critical section which cannot directly block J H  
and cannot lead to the inheritance of a priority higher than 
J H ,  then J L  can be preempted by J H  and can never block 
J H .  

Lemma 2: Under the basic priority inheritance protocol, a 
high priority job J H  can be blocked by a lower priority job 
J L  for at most the duration of one critical section of 
regardless of the number of semaphores J and JL share. 

Proof: By Lemma 1, for J L  to block J H ,  J L  must be 
currently executing a critical section Z L , ,  E P;, L .  Once JL 
exits Z L , j ,  it can be preempted by J H  and J H  cannot be 
blocked by J L  again. 

when J H  is initiated. 

* For example, when J executes Y(S2) in  SI), . ’ .  ,P(S2), . . . , 
Y ( S 2 ) ,  . . . , V ( S , ) } ,  it reverts to the priority it had before it executedP(S2). 
This may be lower than its current priority and cause J to be preempted by 
a higher priority task. J would, of course, still hold the lock on SI. 

The operations must be indivisible in order to maintain internal consis- 
tency of data structures being manipulated in the run-time system. 



1178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990 

Theorem 3: Under the basic priority inheritance proto- 
col, given a job J O  for which there are n lower priority jobs 
{ J I  , . . . , J n } ,  job J O  can be blocked for at most the duration 
of one critical section in each of 0;. i ,  1 5 i 5 n .  

Pro08 By Lemma 2 ,  each of the n lower priority jobs 
can block job JO for at most the duration of a single critical 
section in each of the blocking sets 0;. i .  

We now determine the bound on the blockings as a function 
of the semaphores shared by jobs. 

Lemma 4: A semaphore S can cause push-through block- 
ing to job J ,  only if S is accessed both by a job which has 
priority lower than that of J and by a job which has or can 
inherit priority equal to or higher than that of J .  

Pro08 Suppose that J L  accesses semaphore S and has 
priority lower than that of J .  According to the priority inher- 
itance protocol, if S is not accessed by a job which has or can 
inherit priority equal to or higher than that of J ,  then job JL'S 
critical section guarded by S cannot inherit a priority equal to 
or higher than that of J .  In this case, job J L  will be preempted 
by job J and the lemma follows. 

We next define i,": j , k  to be the set of all longest critical 
sections of job J j  guarded by semaphore S k  and which can 
block job Ji either directly or via push-through blocking. That 
is, it j , k  = { Z j , p  1Zj.p E 0,": j and s j , p  = Sk}. 

Let {;.$ = U j2ii{ j , k  represent the set of all longest crit- 
ical sections corresponding to semaphore S k  which can block 
Ji . 

Lemma 5: Under the basic priority inheritance protocol, a 
job Ji can encounter blocking by at most one critical section 
in {,":.& for each semaphore S k ,  1 5 k 5 m,  where m is the 
number of distinct semaphores. 

Prm8 By Lemma 1, job J L  can block a higher prior- 
ity job J H  if J L  is currently executing a critical section in 
P&L.  Any such critical section corresponds to the locking 
and unlocking of a semaphore S k .  Since we deal only with 
binary semaphores, only one of the lower priority jobs can be 
within a blocking critical section corresponding to a particular 
semaphore S k .  Once this critical section is exited, the lower 
priority job J L  can no longer block J H .  Consequently, only 
one critical section in 0: corresponding to semaphore S k  can 
block J H .  The lemma follows. 

Theorem 6: Under the basic priority inheritance protocol, 
if there are m semaphores which can block job J ,  then J can 
be blocked by at most m times. 

Pro08 It follows from Lemma 5 that job J can be 
blocked at most once by each of the m semaphores. 

Theorems 3 and 6 place an upper bound on the total block- 
ing delay that a job can encounter. Given these results, it is 
possible to determine at compile-time the worst case blocking 
duration of a job. For instance, if there are four semaphores 
which can potentially block job J and there are three other 
lower priority tasks, J may be blocked for a maximum dura- 
tion of three longest subcritical sections. Moreover, one can 
find the worst case blocking durations for a job by studying 
the durations of the critical sections in 6,": and {:.$. 

Still, the basic priority inheritance protocol has the follow- 
ing two problems. First, this basic protocol, by itself, does not 
prevent deadlocks. For example, suppose that at time t l ,  job 

J2 locks semaphore S2 and enters its critical section. At time 
t 2 ,  job J Z  attempts to make a nested access to lock semaphore 
S 1 .  However, job J 1 ,  a higher priority job, is ready at this 
time. Job J1 preempts job J2 and locks semaphore S I .  Next, 
if job J1 tries to lock semaphore S Z ,  a deadlock is formed. 

The deadlock problem can be solved, say, by imposing a 
total ordering on the semaphore accesses. Still, a second prob- 
lem exists. The blocking duration for a job, though bounded, 
can still be substantial, because a chain of blocking can be 
formed. For instance, suppose that J1 needs to sequentially 
access SI and S2. Also suppose that J2 preempts J3 within 
the critical section ~ 3 , 1  and enters the critical section ZZ,  2 .  

Job J1 is initiated at this instant and finds that the semaphores 
S1 and S2 have been respectively locked by the lower priority 
jobs J3 and J z .  As a result, J1 would be blocked for the du- 
ration of two critical sections, once to wait for J3 to release 
SI and again to wait for J Z  to release S2. Thus, a blocking 
chain is formed. 

We present in the next section the priority ceiling protocol 
that addresses effectively both these problems posed by the 
basic priority inheritance protocol. 

IV. THE PRIORITY CEILING PROTOCOL 
A .  Overview 

The goal of this protocol is to prevent the formation of 
deadlocks and of chained blocking. The underlying idea of 
this protocol is to ensure that when a job J preempts the 
critical section of another job and executes its own critical 
section z ,  the priority at which this new critical section z will 
execute is guaranteed to be higher than the inherited priorities 
of all the preempted critical sections. If this condition cannot 
be satisfied, job J is denied entry into the critical section z 
and suspended, and the job that blocks J inherits J's priority. 
This idea is realized by first assigning a priority ceiling to each 
semaphore, which is equal to the highest priority task that 
may use this semaphore. We then allow a job J to start a new 
critical section only if J's priority is higher than all priority 
ceilings of all the semaphores locked by jobs other than J .  
Example 2 illustrates this idea and the deadlock avoidance 
property while Example 3 illustrates the avoidance of chained 
blocking. 

Example 2: Suppose that we have three jobs Jo ,  J1 , and 5 2  

in the system. In addition, there are two shared data structures 
protected by the binary semaphores SI and S2, respectively. 
We define the priority ceiling of a semaphore as the priority of 
the highest priority job that may lock this semaphore. Suppose 
the sequence of processing steps for each job is as follows. 

Jo = {. . . , P(So), . . . , V(So) ,  . . .} 

J1 = {. . . , P(Sl ) ,  . . . ,P(S2), . . . , V(S2),  * .  a ,  V ( S l ) ,  . . .} 

J2 = {. . . , P(S2), . . . , P ( S , ) ,  . . . , V ( S l ) ,  . . . , V(S2) ,  . . .}. 

Recall that the priority of job J1 is assumed to be higher than 
that of job J2.  Thus, the priority ceilings of both semaphores 
SI and S2 are equal to the priority of job J1 .  

The sequence of events described below is depicted in Fig. 
1. A line at a low level indicates that the corresponding job 
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Critical saction pardtd by So 

Critical section pardbd by S 

Critical scction guarded by S2 

s * unlocked 

J1 

I I I  I I 1  I I  
I 1  I I  I I t  I I +  

t t b  
t 2 t3  t4 f 5  f 6  7 8  

Fig. 1. Sequence of events described in Example 2. 

is blocked or has been preempted by a higher priority job. A 
line raised to a higher level indicates that the job is executing. 
The absence of a line indicates that the job has not yet been 
initiated or has completed. Shaded portions indicate execution 
of critical sections. Suppose that 

At time t o ,  J2 is initiated and it begins execution and 

At time t 1 ,  job J1 is initiated and preempts job J z .  
At time t 2 ,  job J1 tries to enter its critical section by 
making an indivisible system call to executeP(S1). How- 
ever, the run-time system will find that job J I  's priority is 
not higher than the priority ceiling of locked semaphore 
S2. Hence, the run-time system suspends job J I  without 
locking S I .  Job J2 now inherits the priority of job J I  
and resumes execution. Note that J I  is blocked outside 
its critical section. As J 1  is not given the lock on SI  but 
suspended instead, the potential deadlock involving J 1 

and J2 is prevented. 
At time f 3 ,  J2 is still in its critical section and the highest 
priority job Jo is initiated and preempts J2. Later, J O  
attempts to lock semaphore So. Since the priority of J O  
is higher than the priority ceiling of locked semaphore 
S2, job J O  will be granted the lock on the semaphore 
So. Job J O  will therefore continue and execute its critical 
section, thereby effectively preempting J2 in its critical 
section and not encountering any blocking. 
At time t 4 ,  J O  has exited its critical section and completes 
execution. Job 5 2  resumes, since Jt  is blocked by J2 and 
cannot execute. J2 continues execution and locks S I .  
At time t 5 ,  J2 releases SI .  
At time t 6 ,  J2 releases S2 and resumes its assigned pri- 
ority. Now, J I  is signaled and having a higher priority, 
it preempts 52, resumes execution, and locks S2. Then, 
J I  locks S I ,  executes the nested critical section, and un- 
locks SI.  Later it unlocks S2 and executes its noncritical 
section code. 

then locks semaphore S2. 

At t 7 ,  J I  completes execution and J2 resumes. 

. At t s ,  J2 completes. 

Note that in the above example, J O  is never blocked because 
its priority is higher than the priority ceilings of semaphores 
S1 and S2. J1 was blocked by the lower priority job 5 2  dur- 
ing the intervals [ t 2 ,  f 3 ]  and [ f 4 ,  t 6 ] .  However, these intervals 
correspond to part of the duration that J2 needs to lock S2. 

Thus, J 1  is blocked for no more than the duration of one crit- 
ical section of a lower priority job J2 even though the actual 
blocking occurs over disjoint time intervals. It is, indeed, a 
property of this protocol that any job can be blocked for at 
most the duration of a single critical section of a lower pri- 
ority job. This property is further illustrated by the following 
example. 

Example 3: Consider the example from the previous sec- 
tion where a chain of blockings can be formed. We assumed 
that job J I  needs to access S1 and S2 sequentially while 52 
accesses S2 and J3 accesses S I .  Hence, the priority ceilings 
of semaphores SI and S2 are equal to P I .  As before, let job 
J 3  lock SI at time t o .  At time CI, job J2 is initiated and 
preempts J 3 .  However, at time f 2 ,  when 52 attempts to lock 
S 2 ,  the run-time system finds that the priority of J2 is not 
higher than the priority ceiling P I  of the locked semaphore 
SI.  Hence, 52 is denied the lock on S2 and blocked. Job J3 
resumes execution at J2's priority. At time 1 3 ,  when 53 is still 
in its critical section, J I  is initiated and finds that only one 
semaphore SI  is locked. At time t 4 ,  J1 is blocked by J3 which 
holds the lock on S I .  Hence, J3 inherits the priority of J I  . 
At time f 5 ,  job J3 exits its critical section z3, I ,  resumes its 
original priority, and awakens J1. Job 5 3 ,  having the highest 
priority, preempts J3 and runs to completion. Next, 52 which 
is no longer blocked completes its execution and is followed 
by J 3 .  

Again, note that J 1  is blocked by J3 in the interval [t4, ts] 
which corresponds to the single critical section z 3 , l .  Also, 
job J2 is blocked by 53 in the disjoint intervals [ t 2 ,  t3] and 
[t4, t 5 1  which also correspond to the same critical section z3, 
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Critical section guarded by So 

Critical section guarded by S, 

Critical section guarded by S 

blocked 
(attempt to lock So) 

JO 
S 2  locked blocked by J2 

'r (aaempt to lock S ) 

I J 2  
I I I I  I I I I I I I 
I 1 I 1  I I I I b 

time 
t o  '1 t 2 t 3  t 4  '5 '6 '7 '8 '9 'IO 

I I I 

I 
Fig. 2. Sequence of events described in Example 4. 

B .  Definition 

Having illustrated the basic idea of the priority ceiling pro- 
tocol and its properties, we now present its definition. 

1) Job J ,  which has the highest priority among the jobs 
ready to run, is assigned the processor, and let S* be the 
semaphore with the highest priority ceiling of all semaphores 
currently locked by jobs other than job J .  Before job J en- 
ters its critical section, it must first obtain the lock 011 the 
semaphore S guarding the shared data structure. Job J will 
be blocked and the lock on S will be denied, if the priority 
of job J is not higher than the priority ceiling of semaphore 
S*.4  In this case, job J is said to be blocked on semaphore 
S* and to be blocked by the job which holds the lock on S * .  
Otherwise, job J will obtain the lock on semaphore S and en- 
ter its critical section. When a job J exits its critical section, 
the binary semaphore associated with the critical section will 
be unlocked and the highest priority job, if any, blocked by 
job J will be awakened. 

2) A job J uses its assigned priority, unless it is in its critical 
section and blocks higher priority jobs. If job J blocks higher 
priority jobs, J inherits P H ,  the highest priority of the jobs 
blocked by J .  When J exits a critical section, it resumes the 
priority it had at the point of entry into the critical ~ec t ion .~  
Priority inheritance is transitive. Finally, the operations of 
priority inheritance and of the resumption of previous priority 
must be indivisible. 

3) A job J ,  when it does not attempt to enter a critical 
section, can preempt another job J L  if its priority is higher 
than the priority, inherited or assigned, at which job J L  is 
executing. 

We shall illustrate the priority ceiling protocol using an 
example. 

Note that if S has been already locked, the priority ceiling of S will be at 
least equal to the priority of J .  Because job Ss priority is not higher than the 
priority ceiling of the semaphore S locked by another job, J will be blocked. 
Hence, this rule implies that if a job J attempts to lock a semaphore that has 
been already locked, J will be denied the lock and blocked instead. ' That is, when J exits the part of a critical section, it resumes its previous 
priority. 

Example 4: We assume that the priority of job Ji is higher 
than that of job J i+ l .  The processing steps in each job are as 
follows: 
Job JO accesses 20.0 and z0, by executing the steps 

{' ' ' P(So), ' .  ' 7 v ( S 0 ) 7 .  ' ' ,P(Sl), ' ' ' 7 y ( S 1 ) ,  ' ' '}, 

job J 1  accesses only 2 1 , ~  by executing 

and job J2 accesses z2,2 and makes a nested semaphore access 
to S1 by executing 

{. . . ,P(SZ), * .  . ,P(SI), . . . , V(Sl), . . . ,Y(S2) ,  . ..I. 
Note that the priority ceilings of semaphores SO and S1 are 

equal to P O ,  and the priority ceiling of semaphore SZ is P I .  
Fig. 2 depicts the sequence of events described below. 
Suppose that 

At time to, job J Z  begins execution and later locks Sz. 
At time t l ,  job J1 is initiated, preempts J z ,  and begins 
execution. 
At time t2, while attempting to access S2 already locked 
by J2,  job J1 becomes blocked. Job J2 now resumes 
the execution of its critical section ZZ,Z at its inherited 
priority of J1,  namely P I .  
At time t3, job J2 successfully enters its nested critical 
section z2,1 by locking SI. Job J2 is allowed to lock SI, 
because there is no semaphore S* which is locked by 
other jobs. 
At time t4, job J2 is still executing 22, but the highest 
priority job J O  is initiated. Job JO preempts J2 within 
z2,1 and executes its own noncritical section code. This 
is possible because PO, the priority of J o ,  is higher than 
P I ,  the inherited priority level at which job J2's 22.1 was 
being executed. 
At time t5, job J O  attempts to enter its critical section ZO, o 
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by locking SO,  which is not locked by any job. However, 
since the priority of job J O  is not higher than the priority 
ceiling PO of the locked semaphore S 1 ,  job JO is blocked 
by job J2 which holds the lock on S 1. This is a new form 
of blocking introduced by the priority ceiling protocol in 
addition to the direct and push-through blocking encoun- 
tered in the basic protocol. At this point, job 52 resumes 
its execution of 22.1 at the newly inherited priority level 
of Po. 
At time t6, job J2 exits its critical section 22,~. 
Semaphore S1 is now unlocked, job J2 returns to the pre- 
viously inherited priority of P I ,  and job Jo is awakened. 
At this point, JO preempts job J2, because its priority 
PO is higher than the priority ceiling P I  of S2. Job J O  
will be granted the lock on SO and will execute its criti- 
cal section z o , ~ .  Later, it unlocks SO and then locks and 

At time t7, job JO completes its execution, and job J2 
resumes its execution of z2,2 at its inherited priority P I .  
At time t8, job J2 exits 22,2, semaphore S2 is unlocked, 
job 52 returns to its own priority P2, and job J1 is awak- 
ened. At this point, job J1 preempts job J2 and J1 is 
granted the lock on S2. Later, J1 unlocks S2 and exe- 
cutes its noncritical section code. 
At time t9, job J1 completes its execution and finally job 
J2 resumes its execution, until it also completes at time 
tl0. 

unlocks Si. 

The priority ceiling protocol introduces a third type of 
blocking in addition to direct blocking and push-through 
blocking caused by the basic priority inheritance protocol. 
An instance of this new type of blocking occurs at time t5 
in the above example. We shall refer to this form of block- 
ing as ceiling blocking. Ceiling blocking is needed for the 
avoidance of deadlock and of chained blocking. This avoid- 
ance approach belongs to the class of pessimistic protocols 
which sometimes create unnecessary blocking. Although the 
priority ceiling protocol introduces a new form of blocking, 
the worst case blocking is dramatically improved. Under the 
basic priority inheritance protocol, a job J can be blocked for 
at most the duration of min(n, m) critical sections, where n 
is the number of lower priority jobs that could block J and m 
is the number of semaphores that can be used to block J. On 
the contrary, under the priority ceiling protocol a job J can 
be blocked for at most the duration of one longest subcritical 
section. 
C .  The Properties of the Priority Ceiling Protocol 

Before we prove the properties of this protocol, it is impor- 
tant to recall the two basic assumptions about jobs. First, a 
job is assumed to be a sequence of instructions that will con- 
tinuously execute until its completion, when it executes alone 
on a processor. Second, a job will release all of its locks, if it 
ever holds any, before or at the end of its execution. The re- 
laxation of our first assumption is addressed at the end of this 
section. Throughout this section, the sets pi, j ,  /3[ j ,  and 0; 
refer to the blocking sets associated with the priority ceiling 
protocol. 

Lemma 7: A job J can be blocked by a lower priority job 

JL, only if the priority of job J is no higher than the highest 
priority ceiling of all the semaphores that are locked by all 
lower priority jobs when J is initiated. 

Proof: Suppose that when J is initiated, the priority of 
job J is higher than the highest priority ceiling of all the 
semaphores that are currently locked by all lower priority jobs. 
By the definition of the priority ceiling protocol, job J can 
always preempt the execution of job JL , and no higher priority 
job will ever attempt to lock those locked semaphores. 

Lemma 8: Suppose that the critical section z , , ~  of job Jj 
is preempted by job Ji which enters its critical section Zi, m. 
Under the priority ceiling protocol, job J j  cannot inherit a 
priority level which is higher than or equal to that of job Ji 
until job Ji completes. 

Proof: Suppose that job J j  inherits a priority that is 
higher than or equal to that of job Ji before Ji completes. 
Hence, there must exist a job J which is blocked by J j .  In 
addition, S s priority must be higher than or equal to that of job 
Ji. We now show the contradiction that J cannot be blocked 
by J j .  Since job Ji preempts the critical section z,,,, of job 
J j  and enters its own critical section zi, m, job Ji’s priority 
must be higher than the priority ceilings of all the semaphores 
currently locked by all lower priority jobs. Since Ss priority 
is assumed to be higher than or equal to that of Ji, it follows 
that job Ss priority is also higher than the priority ceilings 
of all the semaphores currently locked by all lower priority 
jobs. By Lemma 7, J cannot be blocked by J j .  Hence, the 
contradiction and the lemma follows. 

Definition: Transitive blocking is said to occur if a job J 
is blocked by Ji which, in turn, is blocked by another job J j .  

Lemma 9: The priority ceiling protocol prevents transitive 
blocking. 

Proof: Suppose that transitive blocking is possible. Let 
J3 block job J2 and let job 52 block job J1. By the transitivity 
of the protocol, job J3 will inherit the priority of J1 which 
is assumed to be higher than that of job J2. This contradicts 
Lemma 8, which shows that J3 cannot inherit a priority that 
is higher than or equal to that of job J2. The lemma follows. 

Theorem IO: The priority ceiling protocol prevents dead- 
locks. 

Proof: First, by assumption, a job cannot deadlock with 
itself. Thus, a deadlock can only be formed by a cycle of 
jobs waiting for each other. Let the n jobs involved in the 
blocking cycle be (J1, . . . , Jn }. Note that each of these n 
jobs must be in one of its critical sections, since a job that 
does not hold a lock on any semaphore cannot contribute to 
the deadlock. By Lemma 9, the number of jobs in the blocking 
cycle can only be two, i.e., n = 2. Suppose that job J2’s 
critical section was preempted by job J1, which then enters 
its own critical section. By Lemma 8, job J2 can never inherit 
a priority which is higher than or equal to that of job J 1  before 
job J1 completes. However, if a blocking cycle (deadlock) is 
formed, then by the transitivity of priority inheritance, job J2 
will inherit the priority of job J1. This contradicts Lemma 8 
and hence the theorem follows. 

Remark: Lemma 1 is true under the priority ceiling pro- 
tocol. 

Remark: Suppose that the run-time system supports the 
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priority ceiling protocol. Theorem 10 leads to the useful re- 
sult that programmers can write arbitrary sequences of prop- 
erly nested semaphore accesses. As long as each job does not 
deadlock with itself, there will be no deadlock in the system. 

Lemma 11: Let J L  be a job with a lower priority than that 
of job J ; .  Job J ;  can be blocked by job J L  for at most the 
duration of one critical section in /3[ L .  

Proof: First, job J ;  will preempt J L  if J L  is not in a 
critical section Z L , ~  E /3[L. Suppose that job Ji is blocked 
by Z L , ~ .  By Theorem 10, there is no deadlock and hence job 
J L  will exit Z L ,  m at some instant tl . Once job J L  leaves this 
critical section at time t 1 ,  job J L  can no longer block job J i .  
This is because job J ;  has been initiated and J L  is not within 
a critical section in /3[L.  It follows from Lemma 1 that job 
J L  can no longer block job J i .  

Theorem 12: A job J can be blocked for at most the du- 
ration of at most one element of b;. 

Proof: Suppose that job J can be blocked by n > 1 ele- 
ments of 0; .  By Lemma 11, the only possibility is that job J 
is blocked by n different lower priority jobs. Suppose that the 
first two lower priority jobs that block job J are J1 and J2 . By 
Lemma 1, in order for both these jobs to block job J ,  both of 
them must be in a longest blocking critical section when job 
J is initiated. Let the lowest priority job J2 enter its blocking 
critical section first, and let the highest priority ceiling of all 
the semaphores locked by J2 be p2 .  Under the priority ceiling 
protocol, in order for job J 1  to enter its critical section when 
J2 is already inside one, the priority of job J1 must be higher 
than priority ceiling p2. Since we assume that job J can be 
blocked by job J2,  by Lemma 7 the priority of job J cannot 
be higher than priority ceiling p 2 .  Since the priority of job J1 
is higher than p2 and the priority of job J is no higher than 
p 2 ,  job J l ' s  priority must be higher than the priority of job 
J.  This contradicts the assumption that the priority of job J 
is higher than that of both J1 and J2. Thus, it is impossible 
for job J to have priority higher than both jobs J1 and 5 2  

and to be blocked by both of them under the priority ceiling 
protocol. The theorem follows immediately. 

Remark: We may want to generalize the definition of a job 
by allowing it to suspend during its execution, for instance, 
to wait for I/O services to complete. The following corollary 
presents the upper bound on the blocking duration of a gen- 
eralized job that might suspend and later resume during its 
execution. 

Corollary 13: If a generalized job J suspends itself n times 
during its execution, it can be blocked by at most n + 1 not 
necessarily distinct elements of 0;. 

V. SCHEDULABILITY ANALYSIS 
Having proved the properties of the priority ceiling proto- 

col, we now proceed to investigate the effect of blocking on 
the schedulability of a task set. In this section, we develop 
a set of sufficient conditions under which a set of periodic 
tasks using the priority ceiling protocol can be scheduled by 
the rate-monotonic algorithm, which assigns higher priorities 
to tasks with shorter periods and is an optimal static priority 
algorithm when tasks are independent [8]. To this end, we 
will use a simplified scheduling model. First, we assume that 

all the tasks are periodic. Second, we assume that each job 
in a periodic task has deterministic execution times for both 
its critical and noncritical sections and that it does not syn- 
chronize with external events, i.e., a job will execute to its 
completion when it is the only job in the system. Finally, we 
assume that these periodic tasks are assigned priorities accord- 
ing to the rate-monotonic algorithm. Readers who are inter- 
ested in more general scheduling issues, such as the reduction 
of aperiodic response times and the effect of task stochastic 
execution times, are referred to [4] and [12]. 

We quote the following theorem also due to Liu and Lay- 
land which was proved under the assumption of independent 
tasks, i.e., when there is no blocking due to data sharing and 
synchronization. 

Theorem 14: A set of n periodic tasks scheduled by the 
rate-monotonic algorithm can always meet their deadlines if 

where C;  and Ti are the execution time and period of task r; , 
respectively. 

Theorem 14 offers a sufficient (worst case) condition that 
characterizes the rate-monotonic schedulability of a given peri- 
odic task set. The following exact characterization was proved 
by Lehoczky, Sha, and Ding [5 ] .  An example of the use of 
this theorem will be given later in this section. 

Theorem 15: A set of n periodic tasks scheduled by the 
rate-monotonic algorithm will meet all their deadlines for all 
task phasings if and only if 

where C j ,  T j ,  and Uj are the execution time, period, and 
utilization of task r j ,  respectively, and R; = { ( k ,  1)  11 I k 5 i ,  

When tasks are independent of one another, Theorems 14 
and 15 provide us with the conditions under which a set 
of n periodic tasks can be scheduled by the rate-monotonic 
algorithm.6 Although these two theorems have taken into ac- 
count the effect of a task being preempted by higher prior- 
ity tasks, they have not considered the effect of a job being 
blocked by lower priority jobs. We now consider the effect of 
blocking. Each element in pi is a critical section accessed by a 
lower priority job and guarded by a semaphore whose priority 
ceiling is higher than or equal to the priority of job Jj . Hence, 
0; can be derived from p i .  By Lemma 7 and Theorem 12, 
job J ;  of a task r can be blocked for at most the duration of 
a single element in 0;.  Hence, the worst case blocking time 
for J is at most the duration of the longest element of 0;. We 
denote this worst case blocking time of a job in task 7; by Bj . 
Note that given a set of n periodic tasks, B ,  = 0, since there 
is no lower priority task to block 7,. 

meet their deadlines. 

1 = I , . . . ,  lT ; /Tk] } .  

6That is, the conditions under which all the jobs of all the n tasks will 
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Theorems 14 and 15 can be generalized in a straightforward 
fashion. In order to test the schedulability of 7i, we need to 
consider both the preemptions caused by higher priority tasks 
and blocking from lower priority tasks along with its own 
utilization. The blocking of any job of 7i can be in the form 
of direct blocking, push-through blocking, or ceiling blocking 
but does not exceed Bi. Thus, Theorem 14 becomes 

Theorem 16: A set of n periodic tasks using the prior- 
ity ceiling protocol can be scheduled by the rate-monotonic 
algorithm if the following conditions are satisfied: 

Proof: Suppose that for each task 7; the equation is sat- 
isfied. It follows that the equation of Theorem 14 will also be 
satisfied with n = i and Ci replaced by CF = (Ci + Bi). That 
is, in the absence of blocking, any job of task 7; will still meet 
its deadline even if it executes for (Ci + Bi) units of time. It 
follows that task 7i ,  if it executes for only Ci units of time, 
can be delayed by Bi units of time and still meet its deadline. 
Hence, the theorem follows. 

Remark: The first i terms in the above inequality constitute 
the effect of preemptions from all higher priority tasks and 
7;’s own execution time, while Bi of the last term represents 
the worst case blocking time due to all lower priority tasks 
for any job of task 7 i .  To illustrate the effect of blocking 
in Theorem 16, suppose that we have three harmonic tasks: 

2, T3 = 8). In addition, B1 = B2 = 1 .  Since these tasks 
are harmonic, the utilization bound becomes 100%. Thus, 
we have ‘‘C1/T1 + BI/T1 = 1” for task 7 ] .  Next, we have 
“CI/TI +C2/T2 +B2/T2 = 1” for task 72. Finally, we have 
“CI/TI +Cz/T2 + C3/T3 = 1” for task 73. Since all three 
equations hold, these three tasks can meet all their deadlines. 

Corollary 17: A set of n periodic tasks using the prior- 
ity ceiling protocol can be scheduled by the rate-monotonic 
algorithm if the following condition is satisfied: 

71 =(Cl = 1, T1 = 2), 72 =(C2 = 1, T2 = 4), 73 =(C3 = 

Remark: The blocking duration Bi represents the worst 
case conditions and hence the necessary and sufficient condi- 
tions of Theorem 15 become sufficient conditions in Theorem 
18. 

The following example helps clarify the use of Theorem 
18. Consider the case of three periodic tasks: 

Task 71: C1 = 40; TI = 100; B1 = 20; U1 = 0.4 
Task 72: C2 = 40; T2 = 150; B2 = 30; U2 = 0.267 
Task 73: C3 = 100; T3 = 350; B3 = 0; U3 = 0.286. 

Task 71 can be blocked by task 72 for at most 20 units, while 72 
can be blocked by task 73 for at most 30 time units. The lowest 
priority task, 73, cannot be blocked by any lower priority tasks. 
The total utilization of the task set ignoring blocking is 0.952, 
far too large to apply the conditions of Theorem 16. Theorem 
18 is checked as follows: 

1) Task 71: Check C1 + B1 5 100. Since 40 + 20 5 100, 

2) Task 72:  Check whether either 
task 71 is schedulable. 

CI +C2 +B2 I 100 80+30 > 100 

or 2C1 +C2 + B2 I 150 120 + 30 I 150. 

Task 72 is scheddable and in the worst case phasing will 
meet its deadline exactly at time 150. 

3) Task 73: Check whether either 

C1 +C2 +C3 5 100 40 +40 + 100 > 100 

or 2C1 +C2 +C3 5 150 

or 2C1 +2C2 + C 3  I 200 

80 +40 + 100 > 150 

80 + 80 + 100 > 200 

or3C1 +2c2+c3 5300 120+80+100=300 

or 4C1 + 3c2 + C3 5 350 160 + 120 + 100 > 350. 
c1 C 
TI Tn (:I ’ ’ Tn-l 
- + . . + 2 + m a  2 . . . !!.EA) 5 n(21/n - 1). 

Task 73 is also scheddable and in the worst case phasing will 

. . . , Bn-1 /Tn-l) 2 Bi /Ti, if this equation holds then all the 
equations in Theorem 16 also hold. VI. APPLICATIONS OF THE PROTOCOL AND FUTURE WORK 

Similar to the sufficient condition in Theorem 16, the con- 
ditions in Theorem 15 can be easily generalized. Specifically, 

Theorem 18: A set of n periodic tasks using the prior- 
ity ceiling protocol can be scheduled by the rate-monotonic 
algorithm for all task phasings if 

Vi, 1 S i  I n ,  

where Ci,  Ti, and Ui are defined in Theorem 15, and Bi is 
the worst case blocking time for 7i. 

P m f i  The proof is identical to that of Theorem 16. 

In this section, we briefly discuss the implementation as- 
pects of the protocol as well as the possible extensions of this 
work. 

A .  Implementation Considerations 
The implementation of the basic priority inheritance pro- 

tocol is rather straightforward. It requires a priority queue- 
ing of jobs blocked on a semaphore and indivisible system 
calls Lock-Semaphore and Release-Semaphore. These sys- 
tem calls perform the priority inheritance operation, in addi- 
tion to the traditional operations of locking, unlocking, and 
semaphore queue maintenance. 

The implementation of the priority ceiling protocol entails 
further changes. The most notable change is that we no longer 
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maintain semaphore queues. The traditional ready queue is 
replaced by a single job queue Job-Q. The job queue is a 
priority-ordered list of jobs ready to run or blocked by the 
ceiling protocol. The job at the head of the queue is assumed 
to be currently running. We need only a single prioritized 
job queue because under the priority ceiling protocol, the job 
with the highest (inherited) priority is always eligible to ex- 
ecute. Finally, the run-time system also maintains S-List, a 
list of currently locked semaphores ordered according to their 
priority ceilings. Each semaphore S stores the information of 
the job, if any, that holds the lock on S and the ceiling of 
S .  Indivisible system calls Lock-Semaphore and Release- 
Semaphore maintain Job-Q and S-List. An example of the 
implementation can be seen in [13]. 

The function Lock-Semaphore could also easily detect a 
self-deadlock where a job blocks on itself. Since the run-time 
system associates with each semaphore the job, if any, that 
holds the lock on it, a direct comparison of a job requesting a 
lock and the job that holds the lock determines whether a self- 
deadlock has occurred. If such a self-deadlock does occur, 
typically due to programmer error, the job could be aborted 
and an error message delivered. 

Suppose monitors are used for achieving mutual exclusion. 
We again assume that a job does not suspend until its comple- 
tion when it executes alone on the processor. We also assume 
that the job does not deadlock with itself by making nested 
monitor calls. A job inside a monitor inherits the priority of 
any higher priority job waiting on the monitor. To apply the 
priority ceiling protocol, each monitor is assigned a priority 
ceiling, and a job J can enter a monitor only if its priority 
is higher than the highest priority ceiling of all monitors that 
have been entered by other jobs. Since the priority ceiling 
protocol prevents deadlocks, nested monitor calls will not be 
deadlocked. The implications of priority ceiling protocol to 
Ada tasking are more complicated and are beyond the scope 
of this paper. Readers who are interested in this subject are 
referred to [I]. 

B .  Future Work 
The priority ceiling protocol is an effective real-time syn- 

chronization protocol for it prevents deadlock, reduces the 
blocking to at most one critical section, and is simple to im- 
plement. Nonetheless, it is still a suboptimal protocol in that 
it can cause blocking to a job that can be avoided by en- 
hancements to the protocol. Although a formal treatment of 
possible enhancements is beyond the scope of this paper, we 
would like to present the ideas of some possible enhancements 
to stimulate more research on this subject. 

For example, we can define the priority floor of a 
semaphore, analogous to its priority ceiling, as the priority 
of the lowest priority job that may access it. Then, a job J 
can lock a semaphore S if its priority is higher than the pri- 
ority ceiling of S or if the following conditions are true. The 
lock on S can also be granted if the priority of J is equal to 
the priority ceiling of S and the priority floor of S is greater 
than the highest priority preempted job. This latter condition, 
called the priority floor condition, ensures that neither a pre- 
empted job nor a higher priority job accesses S .  This guaran- 

tees that deadlocks and chaining will be avoided. This protocol 
is called the priority limit protocol. The priority limit proto- 
col eliminates the ceiling blocking that Jc, encounters at time 
t5 in Example 4. Moreover, this protocol requires identical 
information as does the priority ceiling protocol and can be 
implemented with equal ease. However, the priority limit pro- 
tocol does not improve the worst case behavior and hence the 
schedulability . 

It is also possible to enhance the priority limit protocol by 
replacing the priority floor condition by the following condi- 
tion. A job J can also be allowed to lock a semaphore S if the 
priority of J is equal to the priority of S and no preempted 
lower priority job accesses the semaphore S .  This condition 
also guarantees avoidance of deadlock and chaining. This pro- 
tocol is called the job conflict protocol and is better than the 
priority ceiling and priority limit protocols.’ The job conflict 
protocol is, however, still a suboptimal protocol. It will be an 
interesting exercise to develop an optimal priority inheritance 
protocol, and then compare it to the priority ceiling protocol 
for both performance and implementation complexity. 

VII. CONCLUSION 
The scheduling of jobs with hard deadlines is an important 

area of research in real-time computer systems. In this pa- 
per, we have investigated the synchronization problem in the 
context of priority-driven preemptive scheduling. We showed 
that a direct application of commonly used synchronization 
primitives may lead to uncontrolled priority inversion, a situ- 
ation in which a high priority job is indirectly preempted by 
lower priority jobs for an indefinite period of time. TO rem- 
edy this problem, we investigated two protocols belonging to 
the class of priority inheritance protocols, called the basic 
priority inheritance protocol and the priority ceiling pro- 
tocol in the context of a uniprocessor. We showed that both 
protocols solve the uncontrolled priority inversion problem. 
In particular, the priority ceiling protocol prevents deadlocks 
and reduces the blocking to at most one critical section. We 
also derived a set of sufficient conditions under which a set 
of periodic tasks using this protocol is schedulable by the 
rate-monotonic algorithm. Finally, we outlined implementa- 
tion considerations for and possible extensions to this proto- 
col. 

ACKNOWLEDGMENT 
The authors wish to thank D. Cornhill for his contributions 

on the priority inversion problems in Ada, J. Goodenough for 
his many insightful and detailed comments on this paper that 
helped us to clarify some of the key issues, and K. Ramam- 
ritham for his suggestions on the possible enhancements of 
this protocol. We would also like to thank H. Tokuda, T. Ess, 
J. Liu, and A. Stoyenko for their helpful comments. Finally, 
we want to thank the referees for their many fine suggestions. 

REFERENCES 

[l] J.  B. Goodenough and L. Sha, “The priority ceiling protocol: A 
method for minimizing the blocking of high priority Ada tasks,” in 
Proc. 2nd ACM Int. Workshop Real-Time Ada Issues, 1988. 
B. W. Lampson and D. D. Redell, “Experiences with processes and 
monitors in Mesa,” Commun. ACM, vol. 23,  no. 2, pp. 105-117, 
Feb. 1980. 

[2] 

’ This enhancement was suggested by Krithi Ramamritham. 



SHA el al. : PRIORITY INHERITANCE PROTOCOLS 1185 

131 

I41 

151 

I61 

171 

181 

I91 

1101 

1111 

1121 

1131 

r141 

1151 

J. P. Lehoczky and L. Sha, ‘‘Performance of real-time bus scheduling 
algorithms,” ACM Perform. Eval. Rev., Special Issue, vol. 14, no. 
1, May 1986. 
J.  P. Lehoczky, L. Sha, and J. Strosnider, “Enhancing aperiodic re- 
sponsiveness in a hard real-time environment,” in Proc. ZEEE Real- 
Time Syst. Symp., 1987. 
J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic schedul- 
ing algorithm-Exact characterization and average case behavior,” in 
Proc. ZEEE Real-Time Svst. SvmD., 1989. 

ested in developing analytical solutions for the problems in the construction 
of distributed real-time system. 

Dr. Sha is a member of the IEEE Computer Society. 

- _ _ .  
D. W. Leinbaugh, “Guaranteed response time in a hard real-time en- 
vironment,” ZEEE Tmns. Software Eng., Jan. 1980. 
J. Y. Leung and M. L. Merrill, “A note on preemptive scheduling of 
periodic, real time tasks,” Inform. Processing Lett., vol. 11, no. 3, 

C. L. Liu and J.  W. Layland, “Scheduling algorithms for multipro- 
gramming in a hard real time environment,” J. ACM, vol. 20, no. 1, 

A. K. Mok, “Fundamental design problems of distributed systems for 
the hard real time environment,” Ph.D. dissertation, M.I.T., 1983. 
K. Ramamritham and J. A. Stankovic, “Dynamic task scheduling in 
hard real-time distributed system,’’ ZEEE Software, July 1984. 
L. Sha, J.  P. Lehoczky, and R. Rajkumar, “Solutions for some prac- 
tical problems in prioritized preemptive scheduling,” in Proc. ZEEE 
Real-Time Syst. Symp., 1986. 
L. Sha, R. Rajkumar, and J .  P. Lehoczky, “Task scheduling in 
distributed real-time systems,” in P m .  ZEEE Industrial Electron. 
Conf., 1987. 
- , “Priority inheritance protocols: An approach to real-time syn- 
chronization,” Tech. Rep., Dep. Comput. Sci., CMU, 1987. 
W. Zhao, K. Ramamritham, and J. A. Stankovic, “Scheduling tasks 
with resource requirements in hard real-time systems,” ZEEE Trans. 
Software Eng., Apr. 1985. 
- , “Preemptive scheduling under time and resource constraints,” 
ZEEE Tmns. Comput., Aug. 1987. 

pp. 115-118, NOV. 1980. 

pp. 46-61, 1973. 

Lui Sha (S’76-M’84) received the B.S.E.E. 
(Hons.) degree from McGill University, Montreal, 
P.Q., Canada in 1978 and the M.S.E.E. and Ph.D. 
degrees from Carnegie-Mellon University (CMU), 
Pittsburgh, PA, in 1979 and 1985. 

He was an engineer in the CMU Department of 
Computer Science from 1979 to 1984 and was a 
member of the Research Faculty in CMU CS depart- 
ment from 1985 to 1987. Since 1988 he has been a 
member of the Technical Staffs in the CMU’s Soft- 
ware Engineering Institute, a member of Research 

Faculty in the CMU CS department, and a senior member of the Advanced 
Real-Time Technology (ART) project at CMU CS department. He is inter- 

Ragunathan Rajkumar (M’90) received the B.E. 
(Hons.) degree from the P.S.G. College of Tech- 
nology, Coimbatore, India, and the M.S. and Ph.D. 
degrees from Camegie Mellon University in 1986 
and 1989, respectively. 

He has been a Research Staff Member at the 
IBM Thomas J. Watson Research Center, Yorktown 
Heights, NY, since 1989. His interests lie in the 
area of real-time systems. 

Dr. Rajkumar is a member of the IEEE Computer 
Society and the Association for Computing Machin- 
ery. 

John P. Lehoczky (M’88) received the B.A. de- 
gree in mathematics from Oberlin College, Oberlin, 
OH, in 1965, and the M.S. and Ph.D. degrees in 
statistics from Stanford University, Stanford, CA, 
in 1967 and 1969, respectively. 

He was an Assistant Professor of Statistics at 
Carnegie Mellon University, Pittsburgh, PA, from 
1969 to 1973, Associate Professor from 1973 to 
1981, and Professor from 1981 to the present. He 
has served as Head of the Department of Statistics 
since 1984. His research interests involve applied 

probability theory with emphasis on models in the area of computer and com- 
munication systems. In addition, he is a senior member of the Advanced Real- 
Time Technology (ART) Project in the Carnegie Mellon University Computer 
Science Department and is doing research in distributed real-time systems. 

Dr. Lehoczky is a member of Phi Beta Kappa, a fellow of the Institute 
of Mathematical Statistics, and the American Statistical Association. He is 
a member of the Operations Research Society of America and the Institute 
of Management Science. He served as area editor of Management Science 
from 1981 to 1986. 


