
IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990 1175

Priority Inheritance Protocols: An Approach to
Real-Time Synchronization

Abstmct- A direct application of commonly used synchro-
nization primitives such as semaphores, monitors, or the Ada
rendezvous can lead to uncontrolled priority inversion, a situa-
tion in which a higher priority job is blocked by lower priority
jobs for an indefinite period of time. In this paper, we investi-
gate two protocols belonging to the class of priority inheritance
protocols, called the basic priority inheritance protocol and the
priority ceiling protoool. We show that both protocols solve this
uncontrolled priority inversion problem. In particular, the pri-
ority ceiling protocol reduces the worst case task blocking time
to at most the duration of execution of a single critical section
of a lower priority task. In addition, this protocol prevents the
formation of deadlocks. We also derive a set of sufficient con-
ditions under which a set of periodic tasks using this protocol
is schedulable.

Index Terms-Priority inheritance, priority inversion, real-
time systems, scheduling, synchronization.

I. INTRODUCTION

HE SCHEDULING of jobs with hard deadlines has been T an important area of research in real-time computer sys-
terns. Both nonpreemptive and preemptive scheduling algo-
rithms have been studied in the literature [31, [4], [6]-[8],
[lo], [1 I]. An important problem that arises in the context of
such real-time systems is the effect of blocking caused by the
need for the synchronization of jobs that share logical or phys-
ical resources. Mok [9] showed that the problem of deciding
whether it is possible to schedule a set of periodic processes
is NP-hard when periodic processes use semaphores to en-
force mutual exclusion. One approach to the scheduling of
real-time jobs when synchronization primitives are used is to
try to dynamically construct a feasible schedule at run-time.
Mok [9] developed a procedure to generate feasible sched-
ules with a kernelized monitor, which does not permit the
preemption of jobs in critical sections. It is an effective tech-
nique for the case where the critical sections are short. Zhao,
Ramamritham, and Stankovic [14], [15] investigated the use

Manuscript received December 1, 1987; revised May 1, 1988. This work
was suppofled in part by the Office of Naval Research under Contract N00014-
84-K-0734, in part by Naval Ocean Systems Center under Contract N66001-
87-C-0155, and in part by the Weral Systems Division of IBM Corporation
under University Agreement YA-278067.
L. Sha is with the Software Engineering Institute and the Department of

Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
R. Rajkumar is with IBM Thomas J. Watson Research Center, Yorkown

Heights, NY 10598.
J. P. Lehoczky is with the Department of Statistics, Carnegie Mellon Uni-

versity, Pittsburgh, PA 15213.
IEEE Log Number 9037197.

of heuristic algorithms to generate feasible schedules. Their
heuristic has a high probability of success in the generation of
feasible schedules.

In this paper, we investigate the synchronization problem in
the context of priority-driven preemptive scheduling, an ap-
proach used in many real-time systems. The importance of
this approach is underscored by the fact that Ada, the lan-
guage mandated by the U.S. Department of Defense for all
its real-time systems, supports such a scheduling discipline.
Unfortunately, a direct application of synchronization mecha-
nisms like the Ada rendezvous, semaphores, or monitors can
lead to uncontrolled priority inversion: a high priority job be-
ing blocked by a lower priority job for an indefinite period
of time. Such priority inversion poses a serious problem in
real-time systems by adversely affecting both the schedulabil-
ity and predictability of 'real-time systems. In this paper, we
formally investigate the priority inheritance protocol as a pri-
ority management scheme for synchronization primitives that
remedies the uncontrolled priority inversion problem. We for-
mally define the protocols in a uniprocessor environment and
in terms of binary semaphores. In Section 11, we review the
problems of existing synchronization primitives, and define
the basic concepts and notation. In Section 111, we define the
basic priority inheritance protocol and analyze its properties.
In Section IV, we define an enhanced version of the basic
priority inheritance protocol referred to as the priority ceiling
protocol and investigate its properties. Section V analyzes the
impact of this protocol on schedulability analysis when the
rate-monotonic scheduling algorithm is used and Section VI
examines the implication considerations as well as some pos-
sible enhancements to the priority ceiling protocol. Finally,
Section VI1 presents the concluding remarks.

11. THE PRIONTY INVERSION PROBLEM
Ideally, a high-priority job J should be able to preempt

lower priority jobs immediately upon Ss initiation. Priority
inversion is the phenomenon where a higher priority job is
blocked by lower priority jobs. A common situation arises
when two jobs attempt to access shared data. To maintain con-
sistency, the access must be serialized. If the higher priority
job gains access first then the proper priority order is main-
tained; however, if the lower priority job gains access first
and then the higher priority job requests access to the shared
data, this higher priority job is blocked until the lower priority
job completes its access to the shared data. Thus, blocking is
a form of priority inversion where a higher priority job must
wait for the processing of a lower priority job. Prolonged du-

0018-9340/90/0900-1175$01 .OO @ 1990 IEEE

1176 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

rations of blocking may lead to the missing of deadlines even
at a low level of resource utilization. The level of resource
utilization attainable before a deadline is missed is referred to
as the schedulability of the system. To maintain a high de-
gree of schedulability, we will develop protocols that would
minimize the amount of blocking. It is also important to be
able to analyze the performance of any proposed protocol in
order to determine the schedulability of real-time tasks that
use this protocol.

Common synchronization primitives include semaphores,
locks, monitors, and Ada rendezvous. Although the use of
these or equivalent methods is necessary to protect the con-
sistency of shared data or to guarantee the proper use of non-
preemptable resources, their use may jeopardize the ability of
the system to meet its timing requirements. In fact, a direct
application of these synchronization mechanisms can lead to
an indefinite period of priority inversion and a low level of
schedulability.

Example I: Suppose that J1, J2, and J3 are three jobs
arranged in descending order of priority with J1 having the
highest priority. We assume that jobs J1 and J3 share a data
structure guarded by a binary semaphore S. Suppose that at
time tl , job J3 locks the semaphore S and executes its criti-
cal section. During the execution of job J3’s critical section,
the high priority job J1 is initiated, preempts J3, and later at-
tempts to use the shared data. However, job J1 will be blocked
on the semaphore S. We would expect that J1, being the high-
est priority job, will be blocked no longer than the time for
job J3 to complete its critical section. However, the duration
of blocking is, in fact, unpredictable. This is because job J3
can be preempted by the intermediate priority job J2. The
blocking of J3, and hence that of J1, will continue until J2
and any other pending intermediate jobs are completed.

The blocking period in Example 1 can be arbitrarily long.
This situation can be partially remedied if a job in its critical
section is not allowed to be preempted; however, this solution
is only appropriate for very short critical sections, because it
creates unnecessary blocking. For instance, once a low prior-
ity job enters a long critical section, a high priority job which
does not access the shared data structure may be needlessly
blocked. An identical problem exists in the use of monitors.
The priority inversion problem was first discussed by Lamp-
son and Redell [2] in the context of monitors. They suggest
that the monitor be executed at a priority level higher than all
tasks that would ever call the monitor. In the case of the Ada
rendezvous, when a high priority job (task) is waiting in the
entry queue of a server job, the server itself can be preempted
by an independent job J , if job S s priority is higher than both
the priority of the server and the job which is currently in
rendezvous with the server. Raising the server priority to be
higher than all its callers would avoid this particular problem
but would create a new problem: a low priority job may un-
necessarily block the execution of independent higher priority
jobs via the use of the server.

The use of priority inheritance protocols is one approach
to rectify the priority inversion problem in existing synchro-
nization primitives. Before we investigate these protocols, we
first define the basic concepts and state our assumptions. A

job is a sequence of instructions that will continuously use the
processor until its completion if it is executing alone on the
processor. That is, we assume that jobs do not suspend them-
selves, say for I/O operations; however, such a situation can
be accommodated by defining two or more jobs. In addition,
we assume that the critical sections of a job are proper&
nested and a job will release all of its locks, if it holds any,
before or at the end of its execution. In all our discussions
below, we assume that jobs J 1 , J2, . . . , J , are listed in de-
scending order of priority with J 1 having the highest priority.
A periodic task is a sequence of the same type of job occur-
ring at regular intervals, and an aperiodic task is a sequence
of the same type of job occurring at irregular intervals. Each
task is assigned a fixed priority, and every job of the same
task is initially assigned that task’s priority. If several jobs are
eligible to run, the highest priority job will be run. Jobs with
the same priority are executed in a FCFS discipline. When
a job J is forced to wait for the execution of lower priority
jobs, job J is said to be “blocked.” When a job waits for the
execution of high priority jobs or equal priority jobs that have
arrived earlier, it is not considered as “blocked.” We now
state our notation.

Notation :

Ji denotes a job, i.e., an instance of a task ri. Pi and Ti
denote the priority and period of task ~i , respectively.
A binary semaphore guarding shared data and/or re-
source is denoted by Si. P(S;) and V(Si) denote the
indivisible operations lock (wait) and unlock (signal),
respectively, on the binary semaphore Si.
Thejth critical section in job Ji is denoted by zi, j and
corresponds to the code segment of job Ji between the
j th P operation and its corresponding V operation. The
semaphore that is locked and released by critical section
zi, j is denoted by Si, j .
We write zi,, c z i , k if the critical section z;,j is entirely
contained in zi, k .
The duration of execution of the critical section z;, j , de-
noted d; , j , is the time to execute zi, j when Ji executes
on the processor alone.

We assume that critical sections are properly nested. That
is, given any pair of critical sections zi, j and Z i , k , then either
Z i , j C Z i , k , Z i , k c Z i , j , Or Z i , j n 2 i . k = 0. In addition, We
assume that a semaphore may be locked at most once in a
single nested critical section.

Definition: A job J is said to be blocked by the critical
section zi, j of job Ji if Ji has a lower priority than J but J
has to wait for Ji to exit zi, j in order to continue execution.

Definition: A job J is said to be blocked by job J; through
semaphore S , if the critical section zi,, blocks J and Si, j = S.

In the next two sections, we will introduce the concept of
priority inheritance and a priority inheritance protocol called
the priority ceiling protocol. An important feature of this pro-
tocol is that one can develop a schedulability analysis for it
in the sense that a schedulability bound can be determined. If
the utilization of the task set stays below this bound, then the
deadlines of all the tasks can be guaranteed. In order to create
such a bound, it is necessary to determine the worst case du-

SHA et al. : PRIORITY INHERITANCE PROTOCOLS 1177

ration of priority inversion that any task can encounter. This
worst case blocking duration will depend upon the particular
protocol in use.

Notation: P i , j denotes the set of all critical sections of
the lower priority job J j which can block J i . That is,
P i , j = { Z j , k l j > i and z j , k can block J i } . ’

Since we consider only properly nested critical sections,
the set of blocking critical sections is partially ordered by
set inclusion. Using this partial ordering, we can reduce our
attention to the set of maximal elements of / 3 i , j , Pi: ,. Specif-
ically, we have fl:j = { z j , k] (Z j , k E Pi , j) A (k j , m E P i , j
Such that z j , k C Z j , m) } .

contains the longest critical sections of J j which
can block Ji and eliminates redundant inner critical sections.
For purposes of schedulability analysis, we will restrict atten-
tion to @ * = U j , i P [j , the set of all longest critical sections
that can block J i .

The set

III. THE BASIC P r u o ~ ~ INHERITANCE PROTOCOL

The basic idea of priority inheritance protocols is that when
a job J blocks one or more higher priority jobs, it ignores its
original priority assignment and executes its critical section
at the highest priority level of all the jobs it blocks. After
exiting its critical section, job J returns to its original priority
level. To illustrate this idea, we apply this protocol to Example
1. Suppose that job J1 is blocked by job J3. The priority
inheritance protocol requires that job J3 execute its critical
section at job J l ’ s priority. As a result, job J2 will be unable
to preempt job J3 and will itself be blocked. That is, the higher
priority job J2 must wait for the critical section of the lower
priority job J3 to be executed, because job J3 “inherits” the
priority of job J1. Otherwise, J1 will be indirectly preempted
by J2. When J3 exits its critical section, it regains its assigned
lowest priority and awakens J1 which was blocked by J3.

Job J1, having the highest priority, immediately preempts J3

and runs to completion. This enables J2 and J3 to resume in
succession and run to completion.

A . The Definition of the Basic Protocol

We now define the basic priority inheritance protocol.
1) Job J , which has the highest priority among the jobs

ready to run, is assigned the processor. Before job J enters a
critical section, it must first obtain the lock on the semaphore
S guarding the critical section. Job J will be blocked, and the
lock on S will be denied, if semaphore S has been already
locked. In this case, job J is said to be blocked by the job
which holds the lock on S . Otherwise, job J will obtain the
lock on semaphore S and enter its critical section. When job J
exits its critical section, the binary semaphore associated with
the critical section will be unlocked, and the highest priority
job, if any, blocked by job J will be awakened.

2) A job J uses its assigned priority, unless it is in its crit-
ical section and blocks higher priority jobs. If job J blocks
higher priority jobs, J inherits (uses) PH , the highest prior-

’ Note that the second suffix of &,, and the first suffix of 2 j . k correspond
to job J , .

ity of the jobs blocked by J . When J exits a critical section, it
resumes the priority it had at the point of entry into the critical
section.*

3) Priority inheritance is transitive. For instance, suppose
J1, J2, and J3 are three jobs in descending order of priority.
Then, if job J3 blocks job J2, and J2 blocks job J1, J3 would
inherit the priority of J1 via J2. Finally, the operations of
priority inheritance and of the resumption of original priority
must be indi~isible.~
4) A job J can preempt another job J L if job J is not

blocked and its priority is higher than the priority, inherited
or assigned, at which job J L is executing.

It is helpful to summarize that under the basic priority inher-
itance protocol, a high priority job can be blocked by a low-
priority job in one of two situations. First, there is the dirert
blocking, a situation in which a higher priority job attempts
to lock a locked semaphore. Direct blocking is necessary to
ensure the consistency of shared data. Second, a medium pri-
ority job J1 can be blocked by a low priority job J2, which
inherits the priority of a high priority job J o . We refer to this
form of blocking as push-through blocking, which is neces-
sary to avoid having a high-priority job Jo being indirectly
preempted by the execution of a medium priority job J1.

B. The Properties of the Basic Protocol
We now proceed to analyze the properties of the basic pri-

ority inheritance protocol defined above. In this section, we
assume that deadlock is prevented by some external means,
e.g., semaphores are accessed in an order that is consistent
with a predefined acyclical order. Throughout this section, 0;
refers to the sets of the longest critical sections that can block
Ji when the basic priority inheritance protocol is used.

Lemma I : A job J H can be blocked by a lower prior-
ity job J L , only if J L is executing within a critical section
Z L , ~ E

Proof: By the definitions of the basic priority inheritance
protocol and the blocking set P ; i , L , task J L can block J H
only if it directly blocks J H or has its priority raised above
JH through priority inheritance. In either case, the critical
section Z L , j currently being executed by J L is in Or;, L . If J L
is not within a critical section which cannot directly block J H
and cannot lead to the inheritance of a priority higher than
J H , then J L can be preempted by J H and can never block
J H .

Lemma 2: Under the basic priority inheritance protocol, a
high priority job J H can be blocked by a lower priority job
J L for at most the duration of one critical section of
regardless of the number of semaphores J and JL share.

Proof: By Lemma 1, for J L to block J H , J L must be
currently executing a critical section Z L , , E P;, L . Once JL
exits Z L , j , it can be preempted by J H and J H cannot be
blocked by J L again.

when J H is initiated.

* For example, when J executes Y(S2) in SI), . ’ . ,P(S2), . . . ,
Y (S 2) , . . . , V (S ,) } , it reverts to the priority it had before it executedP(S2).
This may be lower than its current priority and cause J to be preempted by
a higher priority task. J would, of course, still hold the lock on SI.

The operations must be indivisible in order to maintain internal consis-
tency of data structures being manipulated in the run-time system.

1178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

Theorem 3: Under the basic priority inheritance proto-
col, given a job J O for which there are n lower priority jobs
{ J I , . . . , J n } , job J O can be blocked for at most the duration
of one critical section in each of 0;. i , 1 5 i 5 n .

Pro08 By Lemma 2 , each of the n lower priority jobs
can block job JO for at most the duration of a single critical
section in each of the blocking sets 0;. i .

We now determine the bound on the blockings as a function
of the semaphores shared by jobs.

Lemma 4: A semaphore S can cause push-through block-
ing to job J , only if S is accessed both by a job which has
priority lower than that of J and by a job which has or can
inherit priority equal to or higher than that of J .

Pro08 Suppose that J L accesses semaphore S and has
priority lower than that of J . According to the priority inher-
itance protocol, if S is not accessed by a job which has or can
inherit priority equal to or higher than that of J , then job JL'S
critical section guarded by S cannot inherit a priority equal to
or higher than that of J . In this case, job J L will be preempted
by job J and the lemma follows.

We next define i,": j , k to be the set of all longest critical
sections of job J j guarded by semaphore S k and which can
block job Ji either directly or via push-through blocking. That
is, it j , k = { Z j , p 1Zj.p E 0,": j and s j , p = Sk}.

Let {;.$ = U j2ii{ j , k represent the set of all longest crit-
ical sections corresponding to semaphore S k which can block
Ji .

Lemma 5: Under the basic priority inheritance protocol, a
job Ji can encounter blocking by at most one critical section
in {,":.& for each semaphore S k , 1 5 k 5 m, where m is the
number of distinct semaphores.

Prm8 By Lemma 1, job J L can block a higher prior-
ity job J H if J L is currently executing a critical section in
P&L. Any such critical section corresponds to the locking
and unlocking of a semaphore S k . Since we deal only with
binary semaphores, only one of the lower priority jobs can be
within a blocking critical section corresponding to a particular
semaphore S k . Once this critical section is exited, the lower
priority job J L can no longer block J H . Consequently, only
one critical section in 0: corresponding to semaphore S k can
block J H . The lemma follows.

Theorem 6: Under the basic priority inheritance protocol,
if there are m semaphores which can block job J , then J can
be blocked by at most m times.

Pro08 It follows from Lemma 5 that job J can be
blocked at most once by each of the m semaphores.

Theorems 3 and 6 place an upper bound on the total block-
ing delay that a job can encounter. Given these results, it is
possible to determine at compile-time the worst case blocking
duration of a job. For instance, if there are four semaphores
which can potentially block job J and there are three other
lower priority tasks, J may be blocked for a maximum dura-
tion of three longest subcritical sections. Moreover, one can
find the worst case blocking durations for a job by studying
the durations of the critical sections in 6,": and {:.$.

Still, the basic priority inheritance protocol has the follow-
ing two problems. First, this basic protocol, by itself, does not
prevent deadlocks. For example, suppose that at time t l , job

J2 locks semaphore S2 and enters its critical section. At time
t 2 , job J Z attempts to make a nested access to lock semaphore
S 1 . However, job J 1 , a higher priority job, is ready at this
time. Job J1 preempts job J2 and locks semaphore S I . Next,
if job J1 tries to lock semaphore S Z , a deadlock is formed.

The deadlock problem can be solved, say, by imposing a
total ordering on the semaphore accesses. Still, a second prob-
lem exists. The blocking duration for a job, though bounded,
can still be substantial, because a chain of blocking can be
formed. For instance, suppose that J1 needs to sequentially
access SI and S2. Also suppose that J2 preempts J3 within
the critical section ~ 3 , 1 and enters the critical section ZZ, 2 .

Job J1 is initiated at this instant and finds that the semaphores
S1 and S2 have been respectively locked by the lower priority
jobs J3 and J z . As a result, J1 would be blocked for the du-
ration of two critical sections, once to wait for J3 to release
SI and again to wait for J Z to release S2. Thus, a blocking
chain is formed.

We present in the next section the priority ceiling protocol
that addresses effectively both these problems posed by the
basic priority inheritance protocol.

IV. THE PRIORITY CEILING PROTOCOL
A . Overview

The goal of this protocol is to prevent the formation of
deadlocks and of chained blocking. The underlying idea of
this protocol is to ensure that when a job J preempts the
critical section of another job and executes its own critical
section z , the priority at which this new critical section z will
execute is guaranteed to be higher than the inherited priorities
of all the preempted critical sections. If this condition cannot
be satisfied, job J is denied entry into the critical section z
and suspended, and the job that blocks J inherits J's priority.
This idea is realized by first assigning a priority ceiling to each
semaphore, which is equal to the highest priority task that
may use this semaphore. We then allow a job J to start a new
critical section only if J's priority is higher than all priority
ceilings of all the semaphores locked by jobs other than J .
Example 2 illustrates this idea and the deadlock avoidance
property while Example 3 illustrates the avoidance of chained
blocking.

Example 2: Suppose that we have three jobs Jo , J1 , and 5 2

in the system. In addition, there are two shared data structures
protected by the binary semaphores SI and S2, respectively.
We define the priority ceiling of a semaphore as the priority of
the highest priority job that may lock this semaphore. Suppose
the sequence of processing steps for each job is as follows.

Jo = {. . . , P(So), . . . , V(So) , . . .}

J1 = {. . . , P(Sl) , . . . ,P(S2), . . . , V(S2), * . a , V (S l) , . . .}

J2 = {. . . , P(S2), . . . , P (S ,) , . . . , V (S l) , . . . , V(S2) , . . .}.

Recall that the priority of job J1 is assumed to be higher than
that of job J2. Thus, the priority ceilings of both semaphores
SI and S2 are equal to the priority of job J1 .

The sequence of events described below is depicted in Fig.
1. A line at a low level indicates that the corresponding job

SHA er al.: PRIORlTY INHERITANCE PROTOCOLS 1179

Critical saction pardtd by So

Critical section pardbd by S

Critical scction guarded by S2

s * unlocked

J1

I I I I I 1 I I
I 1 I I I I t I I +

t t b
t 2 t3 t4 f 5 f 6 7 8

Fig. 1. Sequence of events described in Example 2.

is blocked or has been preempted by a higher priority job. A
line raised to a higher level indicates that the job is executing.
The absence of a line indicates that the job has not yet been
initiated or has completed. Shaded portions indicate execution
of critical sections. Suppose that

At time t o , J2 is initiated and it begins execution and

At time t 1 , job J1 is initiated and preempts job J z .
At time t 2 , job J1 tries to enter its critical section by
making an indivisible system call to executeP(S1). How-
ever, the run-time system will find that job J I 's priority is
not higher than the priority ceiling of locked semaphore
S2. Hence, the run-time system suspends job J I without
locking S I . Job J2 now inherits the priority of job J I
and resumes execution. Note that J I is blocked outside
its critical section. As J 1 is not given the lock on SI but
suspended instead, the potential deadlock involving J 1

and J2 is prevented.
At time f 3 , J2 is still in its critical section and the highest
priority job Jo is initiated and preempts J2. Later, J O
attempts to lock semaphore So. Since the priority of J O
is higher than the priority ceiling of locked semaphore
S2, job J O will be granted the lock on the semaphore
So. Job J O will therefore continue and execute its critical
section, thereby effectively preempting J2 in its critical
section and not encountering any blocking.
At time t 4 , J O has exited its critical section and completes
execution. Job 5 2 resumes, since Jt is blocked by J2 and
cannot execute. J2 continues execution and locks S I .
At time t 5 , J2 releases SI .
At time t 6 , J2 releases S2 and resumes its assigned pri-
ority. Now, J I is signaled and having a higher priority,
it preempts 52, resumes execution, and locks S2. Then,
J I locks S I , executes the nested critical section, and un-
locks SI. Later it unlocks S2 and executes its noncritical
section code.

then locks semaphore S2.

At t 7 , J I completes execution and J2 resumes.

. At t s , J2 completes.

Note that in the above example, J O is never blocked because
its priority is higher than the priority ceilings of semaphores
S1 and S2. J1 was blocked by the lower priority job 5 2 dur-
ing the intervals [t 2 , f 3] and [f 4 , t 6] . However, these intervals
correspond to part of the duration that J2 needs to lock S2.

Thus, J 1 is blocked for no more than the duration of one crit-
ical section of a lower priority job J2 even though the actual
blocking occurs over disjoint time intervals. It is, indeed, a
property of this protocol that any job can be blocked for at
most the duration of a single critical section of a lower pri-
ority job. This property is further illustrated by the following
example.

Example 3: Consider the example from the previous sec-
tion where a chain of blockings can be formed. We assumed
that job J I needs to access S1 and S2 sequentially while 52
accesses S2 and J3 accesses S I . Hence, the priority ceilings
of semaphores SI and S2 are equal to P I . As before, let job
J 3 lock SI at time t o . At time CI, job J2 is initiated and
preempts J 3 . However, at time f 2 , when 52 attempts to lock
S 2 , the run-time system finds that the priority of J2 is not
higher than the priority ceiling P I of the locked semaphore
SI. Hence, 52 is denied the lock on S2 and blocked. Job J3
resumes execution at J2's priority. At time 1 3 , when 53 is still
in its critical section, J I is initiated and finds that only one
semaphore SI is locked. At time t 4 , J1 is blocked by J3 which
holds the lock on S I . Hence, J3 inherits the priority of J I .
At time f 5 , job J3 exits its critical section z3, I , resumes its
original priority, and awakens J1. Job 5 3 , having the highest
priority, preempts J3 and runs to completion. Next, 52 which
is no longer blocked completes its execution and is followed
by J 3 .

Again, note that J 1 is blocked by J3 in the interval [t4, ts]
which corresponds to the single critical section z 3 , l . Also,
job J2 is blocked by 53 in the disjoint intervals [t 2 , t3] and
[t4, t 5 1 which also correspond to the same critical section z3,

1180 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

Critical section guarded by So

Critical section guarded by S,

Critical section guarded by S

blocked
(attempt to lock So)

JO
S 2 locked blocked by J2

'r (aaempt to lock S)

I J 2
I I I I I I I I I I I
I 1 I 1 I I I I b

time
t o '1 t 2 t 3 t 4 '5 '6 '7 '8 '9 'IO

I I I

I
Fig. 2. Sequence of events described in Example 4.

B . Definition

Having illustrated the basic idea of the priority ceiling pro-
tocol and its properties, we now present its definition.

1) Job J , which has the highest priority among the jobs
ready to run, is assigned the processor, and let S* be the
semaphore with the highest priority ceiling of all semaphores
currently locked by jobs other than job J . Before job J en-
ters its critical section, it must first obtain the lock 011 the
semaphore S guarding the shared data structure. Job J will
be blocked and the lock on S will be denied, if the priority
of job J is not higher than the priority ceiling of semaphore
S*.4 In this case, job J is said to be blocked on semaphore
S* and to be blocked by the job which holds the lock on S * .
Otherwise, job J will obtain the lock on semaphore S and en-
ter its critical section. When a job J exits its critical section,
the binary semaphore associated with the critical section will
be unlocked and the highest priority job, if any, blocked by
job J will be awakened.

2) A job J uses its assigned priority, unless it is in its critical
section and blocks higher priority jobs. If job J blocks higher
priority jobs, J inherits P H , the highest priority of the jobs
blocked by J . When J exits a critical section, it resumes the
priority it had at the point of entry into the critical ~ec t ion .~
Priority inheritance is transitive. Finally, the operations of
priority inheritance and of the resumption of previous priority
must be indivisible.

3) A job J , when it does not attempt to enter a critical
section, can preempt another job J L if its priority is higher
than the priority, inherited or assigned, at which job J L is
executing.

We shall illustrate the priority ceiling protocol using an
example.

Note that if S has been already locked, the priority ceiling of S will be at
least equal to the priority of J . Because job Ss priority is not higher than the
priority ceiling of the semaphore S locked by another job, J will be blocked.
Hence, this rule implies that if a job J attempts to lock a semaphore that has
been already locked, J will be denied the lock and blocked instead. ' That is, when J exits the part of a critical section, it resumes its previous
priority.

Example 4: We assume that the priority of job Ji is higher
than that of job J i+ l . The processing steps in each job are as
follows:
Job JO accesses 20.0 and z0, by executing the steps

{' ' ' P(So), ' . ' 7 v (S 0) 7 . ' ' ,P(Sl), ' ' ' 7 y (S 1) , ' ' '},

job J 1 accesses only 2 1 , ~ by executing

and job J2 accesses z2,2 and makes a nested semaphore access
to S1 by executing

{. . . ,P(SZ), * . . ,P(SI), . . . , V(Sl), . . . ,Y(S2) , . ..I.
Note that the priority ceilings of semaphores SO and S1 are

equal to P O , and the priority ceiling of semaphore SZ is P I .
Fig. 2 depicts the sequence of events described below.
Suppose that

At time to, job J Z begins execution and later locks Sz.
At time t l , job J1 is initiated, preempts J z , and begins
execution.
At time t2, while attempting to access S2 already locked
by J2, job J1 becomes blocked. Job J2 now resumes
the execution of its critical section ZZ,Z at its inherited
priority of J1, namely P I .
At time t3, job J2 successfully enters its nested critical
section z2,1 by locking SI. Job J2 is allowed to lock SI,
because there is no semaphore S* which is locked by
other jobs.
At time t4, job J2 is still executing 22, but the highest
priority job J O is initiated. Job JO preempts J2 within
z2,1 and executes its own noncritical section code. This
is possible because PO, the priority of J o , is higher than
P I , the inherited priority level at which job J2's 22.1 was
being executed.
At time t5, job J O attempts to enter its critical section ZO, o

SHA et al. : PRIORITY INHERITANCE PROTOCOLS 1181

by locking SO, which is not locked by any job. However,
since the priority of job J O is not higher than the priority
ceiling PO of the locked semaphore S 1 , job JO is blocked
by job J2 which holds the lock on S 1. This is a new form
of blocking introduced by the priority ceiling protocol in
addition to the direct and push-through blocking encoun-
tered in the basic protocol. At this point, job 52 resumes
its execution of 22.1 at the newly inherited priority level
of Po.
At time t6, job J2 exits its critical section 22,~.
Semaphore S1 is now unlocked, job J2 returns to the pre-
viously inherited priority of P I , and job Jo is awakened.
At this point, JO preempts job J2, because its priority
PO is higher than the priority ceiling P I of S2. Job J O
will be granted the lock on SO and will execute its criti-
cal section z o , ~ . Later, it unlocks SO and then locks and

At time t7, job JO completes its execution, and job J2
resumes its execution of z2,2 at its inherited priority P I .
At time t8, job J2 exits 22,2, semaphore S2 is unlocked,
job 52 returns to its own priority P2, and job J1 is awak-
ened. At this point, job J1 preempts job J2 and J1 is
granted the lock on S2. Later, J1 unlocks S2 and exe-
cutes its noncritical section code.
At time t9, job J1 completes its execution and finally job
J2 resumes its execution, until it also completes at time
tl0.

unlocks Si.

The priority ceiling protocol introduces a third type of
blocking in addition to direct blocking and push-through
blocking caused by the basic priority inheritance protocol.
An instance of this new type of blocking occurs at time t5
in the above example. We shall refer to this form of block-
ing as ceiling blocking. Ceiling blocking is needed for the
avoidance of deadlock and of chained blocking. This avoid-
ance approach belongs to the class of pessimistic protocols
which sometimes create unnecessary blocking. Although the
priority ceiling protocol introduces a new form of blocking,
the worst case blocking is dramatically improved. Under the
basic priority inheritance protocol, a job J can be blocked for
at most the duration of min(n, m) critical sections, where n
is the number of lower priority jobs that could block J and m
is the number of semaphores that can be used to block J. On
the contrary, under the priority ceiling protocol a job J can
be blocked for at most the duration of one longest subcritical
section.
C . The Properties of the Priority Ceiling Protocol

Before we prove the properties of this protocol, it is impor-
tant to recall the two basic assumptions about jobs. First, a
job is assumed to be a sequence of instructions that will con-
tinuously execute until its completion, when it executes alone
on a processor. Second, a job will release all of its locks, if it
ever holds any, before or at the end of its execution. The re-
laxation of our first assumption is addressed at the end of this
section. Throughout this section, the sets pi, j , /3[j , and 0;
refer to the blocking sets associated with the priority ceiling
protocol.

Lemma 7: A job J can be blocked by a lower priority job

JL, only if the priority of job J is no higher than the highest
priority ceiling of all the semaphores that are locked by all
lower priority jobs when J is initiated.

Proof: Suppose that when J is initiated, the priority of
job J is higher than the highest priority ceiling of all the
semaphores that are currently locked by all lower priority jobs.
By the definition of the priority ceiling protocol, job J can
always preempt the execution of job JL , and no higher priority
job will ever attempt to lock those locked semaphores.

Lemma 8: Suppose that the critical section z , , ~ of job Jj
is preempted by job Ji which enters its critical section Zi, m.
Under the priority ceiling protocol, job J j cannot inherit a
priority level which is higher than or equal to that of job Ji
until job Ji completes.

Proof: Suppose that job J j inherits a priority that is
higher than or equal to that of job Ji before Ji completes.
Hence, there must exist a job J which is blocked by J j . In
addition, S s priority must be higher than or equal to that of job
Ji. We now show the contradiction that J cannot be blocked
by J j . Since job Ji preempts the critical section z,,,, of job
J j and enters its own critical section zi, m, job Ji’s priority
must be higher than the priority ceilings of all the semaphores
currently locked by all lower priority jobs. Since Ss priority
is assumed to be higher than or equal to that of Ji, it follows
that job Ss priority is also higher than the priority ceilings
of all the semaphores currently locked by all lower priority
jobs. By Lemma 7, J cannot be blocked by J j . Hence, the
contradiction and the lemma follows.

Definition: Transitive blocking is said to occur if a job J
is blocked by Ji which, in turn, is blocked by another job J j .

Lemma 9: The priority ceiling protocol prevents transitive
blocking.

Proof: Suppose that transitive blocking is possible. Let
J3 block job J2 and let job 52 block job J1. By the transitivity
of the protocol, job J3 will inherit the priority of J1 which
is assumed to be higher than that of job J2. This contradicts
Lemma 8, which shows that J3 cannot inherit a priority that
is higher than or equal to that of job J2. The lemma follows.

Theorem IO: The priority ceiling protocol prevents dead-
locks.

Proof: First, by assumption, a job cannot deadlock with
itself. Thus, a deadlock can only be formed by a cycle of
jobs waiting for each other. Let the n jobs involved in the
blocking cycle be (J1, . . . , Jn }. Note that each of these n
jobs must be in one of its critical sections, since a job that
does not hold a lock on any semaphore cannot contribute to
the deadlock. By Lemma 9, the number of jobs in the blocking
cycle can only be two, i.e., n = 2. Suppose that job J2’s
critical section was preempted by job J1, which then enters
its own critical section. By Lemma 8, job J2 can never inherit
a priority which is higher than or equal to that of job J 1 before
job J1 completes. However, if a blocking cycle (deadlock) is
formed, then by the transitivity of priority inheritance, job J2
will inherit the priority of job J1. This contradicts Lemma 8
and hence the theorem follows.

Remark: Lemma 1 is true under the priority ceiling pro-
tocol.

Remark: Suppose that the run-time system supports the

1182 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

priority ceiling protocol. Theorem 10 leads to the useful re-
sult that programmers can write arbitrary sequences of prop-
erly nested semaphore accesses. As long as each job does not
deadlock with itself, there will be no deadlock in the system.

Lemma 11: Let J L be a job with a lower priority than that
of job J ; . Job J ; can be blocked by job J L for at most the
duration of one critical section in /3[L .

Proof: First, job J ; will preempt J L if J L is not in a
critical section Z L , ~ E /3[L. Suppose that job Ji is blocked
by Z L , ~ . By Theorem 10, there is no deadlock and hence job
J L will exit Z L , m at some instant tl . Once job J L leaves this
critical section at time t 1 , job J L can no longer block job J i .
This is because job J ; has been initiated and J L is not within
a critical section in /3[L. It follows from Lemma 1 that job
J L can no longer block job J i .

Theorem 12: A job J can be blocked for at most the du-
ration of at most one element of b;.

Proof: Suppose that job J can be blocked by n > 1 ele-
ments of 0; . By Lemma 11, the only possibility is that job J
is blocked by n different lower priority jobs. Suppose that the
first two lower priority jobs that block job J are J1 and J2 . By
Lemma 1, in order for both these jobs to block job J , both of
them must be in a longest blocking critical section when job
J is initiated. Let the lowest priority job J2 enter its blocking
critical section first, and let the highest priority ceiling of all
the semaphores locked by J2 be p2 . Under the priority ceiling
protocol, in order for job J 1 to enter its critical section when
J2 is already inside one, the priority of job J1 must be higher
than priority ceiling p2. Since we assume that job J can be
blocked by job J2, by Lemma 7 the priority of job J cannot
be higher than priority ceiling p 2 . Since the priority of job J1
is higher than p2 and the priority of job J is no higher than
p 2 , job J l ' s priority must be higher than the priority of job
J. This contradicts the assumption that the priority of job J
is higher than that of both J1 and J2. Thus, it is impossible
for job J to have priority higher than both jobs J1 and 5 2

and to be blocked by both of them under the priority ceiling
protocol. The theorem follows immediately.

Remark: We may want to generalize the definition of a job
by allowing it to suspend during its execution, for instance,
to wait for I/O services to complete. The following corollary
presents the upper bound on the blocking duration of a gen-
eralized job that might suspend and later resume during its
execution.

Corollary 13: If a generalized job J suspends itself n times
during its execution, it can be blocked by at most n + 1 not
necessarily distinct elements of 0;.

V. SCHEDULABILITY ANALYSIS
Having proved the properties of the priority ceiling proto-

col, we now proceed to investigate the effect of blocking on
the schedulability of a task set. In this section, we develop
a set of sufficient conditions under which a set of periodic
tasks using the priority ceiling protocol can be scheduled by
the rate-monotonic algorithm, which assigns higher priorities
to tasks with shorter periods and is an optimal static priority
algorithm when tasks are independent [8]. To this end, we
will use a simplified scheduling model. First, we assume that

all the tasks are periodic. Second, we assume that each job
in a periodic task has deterministic execution times for both
its critical and noncritical sections and that it does not syn-
chronize with external events, i.e., a job will execute to its
completion when it is the only job in the system. Finally, we
assume that these periodic tasks are assigned priorities accord-
ing to the rate-monotonic algorithm. Readers who are inter-
ested in more general scheduling issues, such as the reduction
of aperiodic response times and the effect of task stochastic
execution times, are referred to [4] and [12].

We quote the following theorem also due to Liu and Lay-
land which was proved under the assumption of independent
tasks, i.e., when there is no blocking due to data sharing and
synchronization.

Theorem 14: A set of n periodic tasks scheduled by the
rate-monotonic algorithm can always meet their deadlines if

where C; and Ti are the execution time and period of task r; ,
respectively.

Theorem 14 offers a sufficient (worst case) condition that
characterizes the rate-monotonic schedulability of a given peri-
odic task set. The following exact characterization was proved
by Lehoczky, Sha, and Ding [5] . An example of the use of
this theorem will be given later in this section.

Theorem 15: A set of n periodic tasks scheduled by the
rate-monotonic algorithm will meet all their deadlines for all
task phasings if and only if

where C j , T j , and Uj are the execution time, period, and
utilization of task r j , respectively, and R; = { (k , 1) 11 I k 5 i ,

When tasks are independent of one another, Theorems 14
and 15 provide us with the conditions under which a set
of n periodic tasks can be scheduled by the rate-monotonic
algorithm.6 Although these two theorems have taken into ac-
count the effect of a task being preempted by higher prior-
ity tasks, they have not considered the effect of a job being
blocked by lower priority jobs. We now consider the effect of
blocking. Each element in pi is a critical section accessed by a
lower priority job and guarded by a semaphore whose priority
ceiling is higher than or equal to the priority of job Jj . Hence,
0; can be derived from p i . By Lemma 7 and Theorem 12,
job J ; of a task r can be blocked for at most the duration of
a single element in 0;. Hence, the worst case blocking time
for J is at most the duration of the longest element of 0;. We
denote this worst case blocking time of a job in task 7; by Bj .
Note that given a set of n periodic tasks, B , = 0, since there
is no lower priority task to block 7,.

meet their deadlines.

1 = I , . . . , lT ; /Tk] } .

6That is, the conditions under which all the jobs of all the n tasks will

SHA er al. : PRIORITY INHERITANCE PROTOCOLS 1183

Theorems 14 and 15 can be generalized in a straightforward
fashion. In order to test the schedulability of 7i, we need to
consider both the preemptions caused by higher priority tasks
and blocking from lower priority tasks along with its own
utilization. The blocking of any job of 7i can be in the form
of direct blocking, push-through blocking, or ceiling blocking
but does not exceed Bi. Thus, Theorem 14 becomes

Theorem 16: A set of n periodic tasks using the prior-
ity ceiling protocol can be scheduled by the rate-monotonic
algorithm if the following conditions are satisfied:

Proof: Suppose that for each task 7; the equation is sat-
isfied. It follows that the equation of Theorem 14 will also be
satisfied with n = i and Ci replaced by CF = (Ci + Bi). That
is, in the absence of blocking, any job of task 7; will still meet
its deadline even if it executes for (Ci + Bi) units of time. It
follows that task 7i , if it executes for only Ci units of time,
can be delayed by Bi units of time and still meet its deadline.
Hence, the theorem follows.

Remark: The first i terms in the above inequality constitute
the effect of preemptions from all higher priority tasks and
7;’s own execution time, while Bi of the last term represents
the worst case blocking time due to all lower priority tasks
for any job of task 7 i . To illustrate the effect of blocking
in Theorem 16, suppose that we have three harmonic tasks:

2, T3 = 8). In addition, B1 = B2 = 1 . Since these tasks
are harmonic, the utilization bound becomes 100%. Thus,
we have ‘‘C1/T1 + BI/T1 = 1” for task 7] . Next, we have
“CI/TI +C2/T2 +B2/T2 = 1” for task 72. Finally, we have
“CI/TI +Cz/T2 + C3/T3 = 1” for task 73. Since all three
equations hold, these three tasks can meet all their deadlines.

Corollary 17: A set of n periodic tasks using the prior-
ity ceiling protocol can be scheduled by the rate-monotonic
algorithm if the following condition is satisfied:

71 =(Cl = 1, T1 = 2), 72 =(C2 = 1, T2 = 4), 73 =(C3 =

Remark: The blocking duration Bi represents the worst
case conditions and hence the necessary and sufficient condi-
tions of Theorem 15 become sufficient conditions in Theorem
18.

The following example helps clarify the use of Theorem
18. Consider the case of three periodic tasks:

Task 71: C1 = 40; TI = 100; B1 = 20; U1 = 0.4
Task 72: C2 = 40; T2 = 150; B2 = 30; U2 = 0.267
Task 73: C3 = 100; T3 = 350; B3 = 0; U3 = 0.286.

Task 71 can be blocked by task 72 for at most 20 units, while 72
can be blocked by task 73 for at most 30 time units. The lowest
priority task, 73, cannot be blocked by any lower priority tasks.
The total utilization of the task set ignoring blocking is 0.952,
far too large to apply the conditions of Theorem 16. Theorem
18 is checked as follows:

1) Task 71: Check C1 + B1 5 100. Since 40 + 20 5 100,

2) Task 72: Check whether either
task 71 is schedulable.

CI +C2 +B2 I 100 80+30 > 100

or 2C1 +C2 + B2 I 150 120 + 30 I 150.

Task 72 is scheddable and in the worst case phasing will
meet its deadline exactly at time 150.

3) Task 73: Check whether either

C1 +C2 +C3 5 100 40 +40 + 100 > 100

or 2C1 +C2 +C3 5 150

or 2C1 +2C2 + C 3 I 200

80 +40 + 100 > 150

80 + 80 + 100 > 200

or3C1 +2c2+c3 5300 120+80+100=300

or 4C1 + 3c2 + C3 5 350 160 + 120 + 100 > 350.
c1 C
TI Tn (:I ’ ’ Tn-l
- + . . + 2 + m a 2 . . . !!.EA) 5 n(21/n - 1).

Task 73 is also scheddable and in the worst case phasing will

. . . , Bn-1 /Tn-l) 2 Bi /Ti, if this equation holds then all the
equations in Theorem 16 also hold. VI. APPLICATIONS OF THE PROTOCOL AND FUTURE WORK

Similar to the sufficient condition in Theorem 16, the con-
ditions in Theorem 15 can be easily generalized. Specifically,

Theorem 18: A set of n periodic tasks using the prior-
ity ceiling protocol can be scheduled by the rate-monotonic
algorithm for all task phasings if

Vi, 1 S i I n ,

where Ci, Ti, and Ui are defined in Theorem 15, and Bi is
the worst case blocking time for 7i.

P m f i The proof is identical to that of Theorem 16.

In this section, we briefly discuss the implementation as-
pects of the protocol as well as the possible extensions of this
work.

A . Implementation Considerations
The implementation of the basic priority inheritance pro-

tocol is rather straightforward. It requires a priority queue-
ing of jobs blocked on a semaphore and indivisible system
calls Lock-Semaphore and Release-Semaphore. These sys-
tem calls perform the priority inheritance operation, in addi-
tion to the traditional operations of locking, unlocking, and
semaphore queue maintenance.

The implementation of the priority ceiling protocol entails
further changes. The most notable change is that we no longer

1184 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 9, SEPTEMBER 1990

maintain semaphore queues. The traditional ready queue is
replaced by a single job queue Job-Q. The job queue is a
priority-ordered list of jobs ready to run or blocked by the
ceiling protocol. The job at the head of the queue is assumed
to be currently running. We need only a single prioritized
job queue because under the priority ceiling protocol, the job
with the highest (inherited) priority is always eligible to ex-
ecute. Finally, the run-time system also maintains S-List, a
list of currently locked semaphores ordered according to their
priority ceilings. Each semaphore S stores the information of
the job, if any, that holds the lock on S and the ceiling of
S . Indivisible system calls Lock-Semaphore and Release-
Semaphore maintain Job-Q and S-List. An example of the
implementation can be seen in [13].

The function Lock-Semaphore could also easily detect a
self-deadlock where a job blocks on itself. Since the run-time
system associates with each semaphore the job, if any, that
holds the lock on it, a direct comparison of a job requesting a
lock and the job that holds the lock determines whether a self-
deadlock has occurred. If such a self-deadlock does occur,
typically due to programmer error, the job could be aborted
and an error message delivered.

Suppose monitors are used for achieving mutual exclusion.
We again assume that a job does not suspend until its comple-
tion when it executes alone on the processor. We also assume
that the job does not deadlock with itself by making nested
monitor calls. A job inside a monitor inherits the priority of
any higher priority job waiting on the monitor. To apply the
priority ceiling protocol, each monitor is assigned a priority
ceiling, and a job J can enter a monitor only if its priority
is higher than the highest priority ceiling of all monitors that
have been entered by other jobs. Since the priority ceiling
protocol prevents deadlocks, nested monitor calls will not be
deadlocked. The implications of priority ceiling protocol to
Ada tasking are more complicated and are beyond the scope
of this paper. Readers who are interested in this subject are
referred to [I].

B . Future Work
The priority ceiling protocol is an effective real-time syn-

chronization protocol for it prevents deadlock, reduces the
blocking to at most one critical section, and is simple to im-
plement. Nonetheless, it is still a suboptimal protocol in that
it can cause blocking to a job that can be avoided by en-
hancements to the protocol. Although a formal treatment of
possible enhancements is beyond the scope of this paper, we
would like to present the ideas of some possible enhancements
to stimulate more research on this subject.

For example, we can define the priority floor of a
semaphore, analogous to its priority ceiling, as the priority
of the lowest priority job that may access it. Then, a job J
can lock a semaphore S if its priority is higher than the pri-
ority ceiling of S or if the following conditions are true. The
lock on S can also be granted if the priority of J is equal to
the priority ceiling of S and the priority floor of S is greater
than the highest priority preempted job. This latter condition,
called the priority floor condition, ensures that neither a pre-
empted job nor a higher priority job accesses S . This guaran-

tees that deadlocks and chaining will be avoided. This protocol
is called the priority limit protocol. The priority limit proto-
col eliminates the ceiling blocking that Jc, encounters at time
t5 in Example 4. Moreover, this protocol requires identical
information as does the priority ceiling protocol and can be
implemented with equal ease. However, the priority limit pro-
tocol does not improve the worst case behavior and hence the
schedulability .

It is also possible to enhance the priority limit protocol by
replacing the priority floor condition by the following condi-
tion. A job J can also be allowed to lock a semaphore S if the
priority of J is equal to the priority of S and no preempted
lower priority job accesses the semaphore S . This condition
also guarantees avoidance of deadlock and chaining. This pro-
tocol is called the job conflict protocol and is better than the
priority ceiling and priority limit protocols.’ The job conflict
protocol is, however, still a suboptimal protocol. It will be an
interesting exercise to develop an optimal priority inheritance
protocol, and then compare it to the priority ceiling protocol
for both performance and implementation complexity.

VII. CONCLUSION
The scheduling of jobs with hard deadlines is an important

area of research in real-time computer systems. In this pa-
per, we have investigated the synchronization problem in the
context of priority-driven preemptive scheduling. We showed
that a direct application of commonly used synchronization
primitives may lead to uncontrolled priority inversion, a situ-
ation in which a high priority job is indirectly preempted by
lower priority jobs for an indefinite period of time. TO rem-
edy this problem, we investigated two protocols belonging to
the class of priority inheritance protocols, called the basic
priority inheritance protocol and the priority ceiling pro-
tocol in the context of a uniprocessor. We showed that both
protocols solve the uncontrolled priority inversion problem.
In particular, the priority ceiling protocol prevents deadlocks
and reduces the blocking to at most one critical section. We
also derived a set of sufficient conditions under which a set
of periodic tasks using this protocol is schedulable by the
rate-monotonic algorithm. Finally, we outlined implementa-
tion considerations for and possible extensions to this proto-
col.

ACKNOWLEDGMENT
The authors wish to thank D. Cornhill for his contributions

on the priority inversion problems in Ada, J. Goodenough for
his many insightful and detailed comments on this paper that
helped us to clarify some of the key issues, and K. Ramam-
ritham for his suggestions on the possible enhancements of
this protocol. We would also like to thank H. Tokuda, T. Ess,
J. Liu, and A. Stoyenko for their helpful comments. Finally,
we want to thank the referees for their many fine suggestions.

REFERENCES

[l] J. B. Goodenough and L. Sha, “The priority ceiling protocol: A
method for minimizing the blocking of high priority Ada tasks,” in
Proc. 2nd ACM Int. Workshop Real-Time Ada Issues, 1988.
B. W. Lampson and D. D. Redell, “Experiences with processes and
monitors in Mesa,” Commun. ACM, vol. 23, no. 2, pp. 105-117,
Feb. 1980.

[2]

’ This enhancement was suggested by Krithi Ramamritham.

SHA el al. : PRIORITY INHERITANCE PROTOCOLS 1185

131

I41

151

I61

171

181

I91

1101

1111

1121

1131

r141

1151

J. P. Lehoczky and L. Sha, ‘‘Performance of real-time bus scheduling
algorithms,” ACM Perform. Eval. Rev., Special Issue, vol. 14, no.
1, May 1986.
J. P. Lehoczky, L. Sha, and J. Strosnider, “Enhancing aperiodic re-
sponsiveness in a hard real-time environment,” in Proc. ZEEE Real-
Time Syst. Symp., 1987.
J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic schedul-
ing algorithm-Exact characterization and average case behavior,” in
Proc. ZEEE Real-Time Svst. SvmD., 1989.

ested in developing analytical solutions for the problems in the construction
of distributed real-time system.

Dr. Sha is a member of the IEEE Computer Society.

- _ _ .
D. W. Leinbaugh, “Guaranteed response time in a hard real-time en-
vironment,” ZEEE Tmns. Software Eng., Jan. 1980.
J. Y. Leung and M. L. Merrill, “A note on preemptive scheduling of
periodic, real time tasks,” Inform. Processing Lett., vol. 11, no. 3,

C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard real time environment,” J. ACM, vol. 20, no. 1,

A. K. Mok, “Fundamental design problems of distributed systems for
the hard real time environment,” Ph.D. dissertation, M.I.T., 1983.
K. Ramamritham and J. A. Stankovic, “Dynamic task scheduling in
hard real-time distributed system,’’ ZEEE Software, July 1984.
L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some prac-
tical problems in prioritized preemptive scheduling,” in Proc. ZEEE
Real-Time Syst. Symp., 1986.
L. Sha, R. Rajkumar, and J . P. Lehoczky, “Task scheduling in
distributed real-time systems,” in P m . ZEEE Industrial Electron.
Conf., 1987.
- , “Priority inheritance protocols: An approach to real-time syn-
chronization,” Tech. Rep., Dep. Comput. Sci., CMU, 1987.
W. Zhao, K. Ramamritham, and J. A. Stankovic, “Scheduling tasks
with resource requirements in hard real-time systems,” ZEEE Trans.
Software Eng., Apr. 1985.
- , “Preemptive scheduling under time and resource constraints,”
ZEEE Tmns. Comput., Aug. 1987.

pp. 115-118, NOV. 1980.

pp. 46-61, 1973.

Lui Sha (S’76-M’84) received the B.S.E.E.
(Hons.) degree from McGill University, Montreal,
P.Q., Canada in 1978 and the M.S.E.E. and Ph.D.
degrees from Carnegie-Mellon University (CMU),
Pittsburgh, PA, in 1979 and 1985.

He was an engineer in the CMU Department of
Computer Science from 1979 to 1984 and was a
member of the Research Faculty in CMU CS depart-
ment from 1985 to 1987. Since 1988 he has been a
member of the Technical Staffs in the CMU’s Soft-
ware Engineering Institute, a member of Research

Faculty in the CMU CS department, and a senior member of the Advanced
Real-Time Technology (ART) project at CMU CS department. He is inter-

Ragunathan Rajkumar (M’90) received the B.E.
(Hons.) degree from the P.S.G. College of Tech-
nology, Coimbatore, India, and the M.S. and Ph.D.
degrees from Camegie Mellon University in 1986
and 1989, respectively.

He has been a Research Staff Member at the
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, since 1989. His interests lie in the
area of real-time systems.

Dr. Rajkumar is a member of the IEEE Computer
Society and the Association for Computing Machin-
ery.

John P. Lehoczky (M’88) received the B.A. de-
gree in mathematics from Oberlin College, Oberlin,
OH, in 1965, and the M.S. and Ph.D. degrees in
statistics from Stanford University, Stanford, CA,
in 1967 and 1969, respectively.

He was an Assistant Professor of Statistics at
Carnegie Mellon University, Pittsburgh, PA, from
1969 to 1973, Associate Professor from 1973 to
1981, and Professor from 1981 to the present. He
has served as Head of the Department of Statistics
since 1984. His research interests involve applied

probability theory with emphasis on models in the area of computer and com-
munication systems. In addition, he is a senior member of the Advanced Real-
Time Technology (ART) Project in the Carnegie Mellon University Computer
Science Department and is doing research in distributed real-time systems.

Dr. Lehoczky is a member of Phi Beta Kappa, a fellow of the Institute
of Mathematical Statistics, and the American Statistical Association. He is
a member of the Operations Research Society of America and the Institute
of Management Science. He served as area editor of Management Science
from 1981 to 1986.

