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This article addresses the challenge of truth discovery from noisy social sensing data. The work is moti-
vated by the emergence of social sensing as a data collection paradigm of growing interest, where humans
perform sensory data collection tasks. Unlike the case with well-calibrated and well-tested infrastructure
sensors, humans are less reliable, and the likelihood that participants’ measurements are correct is often
unknown a priori. Given a set of human participants of unknown trustworthiness together with their sen-
sory measurements, we pose the question of whether one can use this information alone to determine, in an
analytically founded manner, the probability that a given measurement is true. In our previous conference
paper, we offered the first maximum likelihood solution to the above truth discovery problem for corroborat-
ing observations only. In contrast, this paper extends the conference paper and provides the first maximum
likelihood solution to handle the cases where measurements from different participants may be conflicting.
The paper focuses on binary measurements. The approach is shown to outperform our previous work used
for corroborating observations, the state of the art fact-finding baselines, as well as simple heuristics such
as majority voting.
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1. INTRODUCTION
This paper presents a maximum likelihood estimation approach to truth discovery
from social sensing data. Social sensing has emerged as a new paradigm for collecting
sensory measurements by means of “crowd-sourcing” sensory data collection tasks to a
human population. The paradigm is made possible by the proliferation of a variety of
sensors in the possession of common individuals, together with networking capabilities
that enable data sharing. Examples includes cell-phone accelerometers, cameras, GPS
devices, smart power meters, and interactive game consoles (e.g., Wii). Individuals who
own such sensors can thus engage in data collection for some purpose of mutual inter-
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est. A classical example is geotagging campaigns, where participants report locations
of conditions in their environment that need attention (e.g., litter in public parks).

A significant challenge in social sensing applications lies in ascertaining the cor-
rectness of collected data. Data collection is often open to a large population. Hence,
the participants and their reliability are typically not known a priori. The term, par-
ticipant (or source) reliability is used in this paper to denote the probability that the
participant reports correct observations. Reliability may be impaired because of poor
sensor quality, lack of sensor calibration, lack of (human) attention to the task, or
even intent to deceive. The question posed in this paper is whether or not we can
determine, given only the measurements sent and without knowing the reliability of
sources, which of the reported observations are true and which are not. In this paper,
we concern ourselves with (arrays of) mutually exclusive measurements (e.g., report-
ing whether or not litter exists at each of multiple locations of interest). The obser-
vations from participants can be either corroborating or conflicting. In our previous
conference paper, we developed a maximum likelihood estimator to optimally solve the
above problem where only corroborating observations exist (e.g., people only report ex-
istence of problem and ignore lack of problems) [Wang et al. 2012a]. In contrast, this
paper extended the basic model and maximum likelihood estimation (MLE) approach
used in the conference paper to solve the truth discovery problem in more challeng-
ing cases where observations from participants may be conflicting. The new algorithm
makes inferences regarding both source reliability and measurement correctness by
observing which observations coincide and which contradict and assigns truth values
to measurements without prior knowledge of source reliability. Our approach is shown
to be very accurate in estimating participant reliability and assessing measurement
correctness in the context of conflicting observations from different participants.

Note that, a trivial way of accomplishing the truth discovery task is by “believing”
only those observations that are reported by a sufficient number of sources. We call
such a scheme, voting. The problem with voting schemes is that they do not attempt to
infer source reliability and do not take that estimate into account. Hence, observations
made by several unreliable sources may be believed over those made by a few reliable
ones [Kleinberg 1999]. Instead, we cast the truth discovery problem as one of joint
maximum likelihood estimation of both source reliability and observation correctness.
We solve the problem using the Expectation Maximization (EM) algorithm.

Expectation Maximization (EM) is a general optimization technique for finding the
maximum likelihood estimation of parameters in a statistic model where the data are
“incomplete” [Dempster et al. 1977]. It iterates between two main steps (namely, the
E-step and the M-step) until the estimation converges (i.e., the likelihood function
reaches the maximum). The paper shows that social sensing applications lend them-
selves nicely to an EM formulation. The optimal solution, in the sense of maximum
likelihood estimation, directly leads to an accurate quantification of measurement cor-
rectness as well as participant reliability. Moreover, the solution is shown to be simple
and easy to implement.

Prior literature attempted to solve similar trust analysis problem in information net-
work using heuristics whose inspiration can be traced back to Google’s PageRank [Brin
and Page 1998]. PageRank iteratively ranks the credibility of sources on the Web, by it-
eratively considering the credibility of sources who link to them. Extensions of PageR-
ank, known as fact-finders, iteratively compute the credibility of sources and claims.
Specifically, they estimate the credibility of claims from the credibility of sources that
make them, then estimate the credibility of sources based on the credibility of their
claims. Several algorithms exist that feature modifications of the above basic heuristic
scheme [Pasternack and Roth 2010; Yin et al. 2008; Galland et al. 2010; Berti-Equille
et al. 2009; Yin and Tan 2011; Zhao et al. 2012]. In contrast, our prior conference pub-
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lication [Wang et al. 2012a] is the first attempt to optimally solve the truth discovery
problem in social sensing where the observations from different participants are cor-
roborating by casting it as an expectation maximization problem. This paper extends
the model and maximum likelihood estimation approach used in the conference paper
and proposed an optimal solution to the truth discovery problem where the observa-
tions may be conflicting.

We evaluate our algorithm in simulation, an emulated geotagging scenario as well
as a real world social sensing application. Evaluation results show that the proposed
scheme for conflicting observations in this paper outperforms our previous work [Wang
et al. 2012a] used for corroborating observations, the state-of-art fact-finding heuristics
as well as simple baselines (voting) in quantifying the probability of measurement
correctness and participant reliability.

The rest of this paper is organized as follows: we review related work in Section 2.
In Section 3 we propose the truth discovery model for social sensing applications with
conflicting observations and the new maximum likelihood estimation (MLE) approach
(the EM-Conflict scheme) as the solution. Section 4 presents truth discovery model and
MLE approach for corroborating observations as a special case of the one discussed
in Section 3. Implementation and evaluation results are presented in Section 5. We
discuss the limitations of current model in Section 6. Finally, we conclude the paper in
Section 7.

2. RELATED WORK
Social sensing has received significant attention due to the great increase in the num-
ber of mobile sensors owned by common individuals (e.g., smart phones with GPS, cam-
era, etc.) and the proliferation of Internet connectivity to upload and share sensed data
(e.g., WiFi and 4G networks). A broad overview of social sensing applications is pre-
sented in [Abdelzaher et al. 2007]. Some early applications include CenWits [Huang
et al. 2005], CarTel [Hull et al. 2006] and BikeNet [Eisenman et al. 2007]. More re-
cent work has focused on addressing new challenges emerging in social sensing ap-
plications such as preserving privacy of participants [Ahmadi et al. 2010; Pham et al.
2010], improving energy efficiency of sensing devices [Nath 2012; Park et al. 2011] and
building general models in sparse and multi-dimensional social sensing space [Ah-
madi et al. 2011; Wang et al. 2011b]. Examples include privacy-aware regression mod-
eling, a data fusion technique that produce the same model as that computed from
raw data by properly computing non-invertible aggregates of samples [Ahmadi et al.
2010]. Authors in [Pham et al. 2010] gave special attention to preserving privacy over
time series data based on the observation that sensor data stream typically comprises
a correlated series of sampled data from some continuous physical phenomena. Ac-
quisitional Context Engine (ACE) is a middleware that infers the unknown human
activity attribute from known ones by exploiting the observation that the values of
various human context attribute are limited by physical constraints and hence highly
correlated [Nath 2012]. E-Gesture is an energy efficient gesture recognition architec-
ture that significantly reduces the energy consumption of mobile sensing device while
keeping the recognition accuracy acceptable [Park et al. 2011]. Sparse regression cube
is a modeling technique that combines estimation theory and data mining techniques
to enable reliable modeling at multiple degrees of abstraction of sparse social sensing
data [Ahmadi et al. 2011]. A further improved model to consider the data collection
cost was proposed in [Wang et al. 2011b]. Moreover, social sensing is often organized
as “sensing campaigns” where participants are recruited to contribute their personal
measurements as part of a large-scale effort to collect data about a population or for
some mutual interests. Examples include documenting the quality of roads [Reddy
et al. 2010b], reporting garbage cans on campus [Reddy et al. 2010a] or predicting the
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bus arrival time at various bus stops [Zhou et al. 2012]. In addition, social sensing can
also be triggered spontaneously without prior coordination. Examples include mod-
eling human mobility patterns in different metropolitan areas [Becker et al. 2012],
predicting the expected fare and duration of the taxi ride in large cities [Balan et al.
2011] or real-time summarizing scheduled events from twitter streams [Zubiaga et al.
2012]. Recent research attempts to understand the fundamental factors that affect the
behavior of these emerging social sensing applications, such as analysis of character-
istics of social networks [Delre et al. 2007], information propagation [Hui et al. 2010]
and tipping points [Xie et al. 2011]. Our paper complements past work by addressing
truth discovery in social sensing.

Previous efforts on truth discovery, from the machine learning and data mining
communities, provided several interesting heuristics. Hubs and Authorities [Kleinberg
1999] used a basic fact-finder where the belief in a claim c is B(c) =

∑
s∈Sc

T (s) and the
truthfulness of a source s is T (s) =

∑
c∈Cs

B(c), where Sc and Cs are the sources assert-
ing a given claim and the claims asserted by a particular source, respectively. Paster-
nack et al. extended the fact-finder framework by incorporating prior knowledge into
the analysis and proposed several extended algorithms: Average.Log, Investment, and
Pooled Investment [Pasternack and Roth 2010]. Yin et al. introduced TruthFinder as
an unsupervised fact-finder for trust analysis on a providers-facts network [Yin et al.
2008]. Other fact-finders enhanced the basic framework by incorporating analysis on
properties or dependencies within claims or sources. Galland et al. [Galland et al. 2010]
took the notion of hardness of facts into consideration by proposing their algorithms:
Cosine, 2-Estimates, 3-Estimates. The source dependency detection problem was dis-
cussed and several solutions proposed [Berti-Equille et al. 2009; Dong et al. 2009;
Dong et al. 2010]. More recent works have adapted the Bayesian analysis to model
the source trustworthiness in an explicit and probabilistic way and improved the accu-
racy of truth estimation. Wang et al. [Wang et al. 2011a] proposed the Bayesian Inter-
pretation scheme as an approximation approach to correctly quantify the conclusions
obtained from the basic fact-finding scheme. Zhao et al. [Zhao et al. 2012] presented
another Bayesian based approach to model different types of errors made by sources
and merge multi-valued attribute types of entities in data integration systems. Addi-
tionally, trust analysis was done both on a homogeneous network [Balakrishnan 2011;
Yin and Tan 2011] and a heterogeneous network [Sun et al. 2009]. The EM scheme
proposed in our recent work [Wang et al. 2012a] was the first that finds a maximum
likelihood estimator to directly and optimally quantify the accuracy of conclusions ob-
tained from credibility analysis in social sensing where observations from participants
are corroborating. In contrast, this paper extended the previous EM model to handle
a more challenging case where observations from participants may be conflicting. To
achieve optimality, we intentionally start with a simplified application model, where
measurements are independent and participants do not influence each other’s reports
(e.g., do not propagate each other’s rumors). Subsequent work will address the above
limitations.

There exists vast literature in the machine learning community to improve data
quality and identify low quality labelers in a multi-labeler environment. Sheng et al.
proposed a repeated labeling scheme to improve label quality by selectively acquiring
multiple labels and empirically comparing several models that aggregate responses
from multiple labelers [Sheng et al. 2008]. Dekel et al. applied a classification tech-
nique to simulate aggregate labels and prune low-quality labelers in a crowd to im-
prove the label quality of the training dataset [Dekel and Shamir 2009]. However, all
of the above approaches made explicit or implicit assumptions that are not appropri-
ate in the social sensing context. For example, the work in [Sheng et al. 2008] assumed
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labelers were known a priori and could be explicitly asked to label certain data points.
The work in [Dekel and Shamir 2009] assumed most of labelers were reliable and the
simple aggregation of their labels would be enough to approximate the ground-truth.
In contrast, participants in social sensing usually upload their measurements based
on their own observations and the simple aggregation technique (e.g., majority voting)
was shown to be inaccurate when the reliability of participant is not sufficient [Paster-
nack and Roth 2010]. The maximum likelihood estimation approach studied in this
paper addresses these challenges by intelligently casting the truth discovery problem
in social sensing into an optimization problem that can be efficiently solved by the EM
scheme.

Our work is related with a type of information filtering system called recommender
system, where the goal is usually to predict a user’s rating or preference to an item
using the model built from the characteristics of the item and the behavioral pattern
of the user [Adomavicius and Tuzhilin 2005]. EM has been used in either collaborative
recommender system as a clustering module [Mustapha et al. 2009] to mine the us-
age pattern of users or in a content-based recommender system as a weighting factor
estimator [Pomerantz and Dudek 2009] to infer the user context. However, in social
sensing, the truth discovery problem targets a different goal: we aim to quantify how
reliable a source is and identify whether a claim is true or not rather than predict
how likely a user would choose one item compared to another. Moreover, users in rec-
ommender system are commonly assumed to provide reasonably good data while the
sources in social sensing are in general unreliable and the likelihood of the correctness
of their measurements is unknown a priori. There appears no straightforward use of
methods in the recommendation system regime for the target problem with unpre-
dictably unreliable data.

Several previous efforts on data cleaning and outlier analysis from data mining
and noise removal from statistics addressed some notion of noisy data [Duda et al.
2001; Inc and Staff 1997; Johnson and Wichern 2002; J.Han et al. 2011; Kalman 1960;
Doucet et al. 2001]. They differ in the assumptions made, the modeling approaches
applied and the objectives targeted at. For example, Bayesian inference and decision
tree induction techniques are applied to fill the missing values of data by predictions
from their constructed model [Duda et al. 2001]. Binning and linear regression tech-
niques are used to smooth the noisy data by either using bin means or fitting data
into some linear functions [Inc and Staff 1997; Johnson and Wichern 2002]. Cluster-
ing techniques are widely used to detect outliers by organizing similar data values
into clusters and identifying the ones that fall outside the clusters as outliers [J.Han
et al. 2011]. Other approaches are used in statistics to filter noises from continuous
data [Kalman 1960; Doucet et al. 2001]. Kalman filter is an efficient reclusive filter
that estimates some latent variables of a linear dynamic system from a series of noisy
measurements [Kalman 1960]. It produces estimates of the measurements by com-
puting a weighted average of the predicted values based on their uncertainty. Particle
filters are more sophisticated filters that are based on Sequential Monte Carlo meth-
ods. They are often used to determine the distribution of a latent variable whose state
space is not restricted to Gaussian distribution [Doucet et al. 2001]. Our work is com-
plementary to the above efforts. On one hand, an appropriately cleaned and outlier-
removed dataset will likely result in a better estimation of our scheme. On the other
hand, outliers or noises may not be completely (or even possibly) removed by the data
cleaning and outlier analysis techniques mentioned above due to their own limitations
(e.g., linear model assumption, continuous data assumption, known data distribution
assumption and etc.). The quantifiable estimation on both information source and ob-
served data provided by our approach could actually help the data cleaning and outlier
analysis tools do a better job.
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3. TRUTH DISCOVERY MODEL FOR SOCIAL SENSING WITH CONFLICTING OBSERVATIONS
3.1. Truth Discovery Model for Conflicting Observations
To formulate the truth discovery problem in social sensing in a manner amenable to
rigorous optimization, we consider a basic social sensing application model where a
group of M participants (sources), S1, ..., SM , make individual observations about a set
of N claims C1, ..., CN in their environment. For example, a group of individuals inter-
ested in the appearance of a park in their neighborhood might join a sensing campaign
to report the litter locations of the park. Hence, each claim denotes the existence or
lack thereof of a litter at a given location1. The reported observations from different
participants on the same claim may be conflicting (e.g., some people report litter exists
at location X while others report X to be clean). In general, the claim is assumed to
have K mutually exclusive possible values and only one of them represents the true
value of the claim. In the model to handle conflicting observations, we assume that ob-
servations from participants assert one of the K values of the corresponding claim and
can be conflicting with each other. Let Si represent the ith participant and Cj represent
the jth claim. Each participant generally observes only a subset of all claims (e.g., the
conditions at locations they visited). Let SiCj = k denote participant Si reports the
claim Cj to be of value k for k = 0, ...,K. Note that SiCj = 0 means that participant
Si does not report an observation for claim Cj . Let the probability that participant Si
reports the claim to be of value k be ski (i.e, ski = P (SiCj = k) for k = 1, ...,K). Let
sk̄i represent the probability that Si reports a claim to be of value other than k (i.e.,
sk̄i =

∑
k′ 6=0,k s

k′

i ).
Further, ti denotes the probability that participant Si is right (i.e., probability that

the participant’s observation matches the ground truth of the claim) and 1− ti denotes
the probability that it is wrong. Note that, this probability depends on the participant’s
reliability, which is not known a priori. Our goal is to determine the true value of each
claim as well as the reliability of each participant. As mentioned in the introduction,
we differ from a large volume of previous sensing literature in that we assume no
prior knowledge of source reliability, as well as no prior knowledge of the correctness
of individual observations.

Let us also define aTk,i and aFk,i as the (unknown) probability that participant Si re-
ports a claim to be of value k and value other than k when the claim is indeed of value
k respectively. Formally, aTk,i and aFk,i are defined as follows:

aTk,i = P (SiCj = k|Cj = k)

aFk,i =

K∑
k′ 6=0,k

P (SiCj = k′|Cj = k) (1)

where Cj = k denotes the claim Cj is indeed of value k for k = 1, ...,K. We assume
that participant Si can report one (and only one) of the K mutually exclusive values
for claim Cj (i.e., a source is not self-contradictory on its assertion for a claim). Since a
source may not assert a claim (k = 0), aTk,i + aFk,i ≤ 1.

Let us define the observation matrix SC to handle conflicting observations: SiCj = k
when participant Si reports that Cj is of value k, SiCj = 0 when no reports about Cj
from Si. Let us call this observation matrix the conflicting observation matrix. Let dk
represent the overall prior probability that an arbitrary claim is of value k.

1We assume that locations are discretized, and therefore finite (e.g., they are given by mile markers.)
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Plugging these, together with ti into the definition of aTk,i and aFk,i, we get the rela-
tions between the terms defined above by using the Bayesian theorem:

aTk,i =
ti × ski
dk

aFk,i =
(1− ti)× sk̄i

dk
(2)

3.2. Expectation Maximization for Conflicting Observations
In this subsection, we solve the problem formulated in the previous subsection using
the Expectation-Maximization (EM) algorithm. EM is a general algorithm for finding
the maximum likelihood estimates of parameters in a statistic model, where the data
are “incomplete” or the likelihood function involves latent variables [Dempster et al.
1977]. Intuitively, EM iteratively “completes” the data by “guessing” the values of hid-
den variables and then re-estimates the parameters by using the guessed values as
true values.

The main challenge in using the EM algorithm lies in the mathematical formulation
of the problem in a way that is amenable to an EM solution. Given an observed data
set X, one should judiciously choose the set of latent or missing values Z, and a vector
of unknown parameters θ, then formulate a likelihood function L(θ;X,Z) = p(X,Z|θ),
such that the maximum likelihood estimate (MLE) of the unknown parameters θ is
decided by:

L(θ;X) = p(X|θ) =
∑
Z

p(X,Z|θ) (3)

Once the formulation is complete, the EM algorithm finds the maximum likelihood
estimate by iteratively performing the following steps:

— E-step: Compute the expected log likelihood function where the expectation is taken
with respect to the computed conditional distribution of the latent variables given
the current settings and observed data.

Q
(
θ|θ(n)

)
= EZ|X,θ(n) [logL(θ;X,Z)] (4)

— M-step: Find the parameters that maximize the Q function in the E-step to be used
as the estimate of θ for the next iteration.

θ(n+1) = argmax
θ

Q
(
θ|θ(n)

)
(5)

Our social sensing problem fits nicely into the Expectation Maximization (EM)
model. First, we introduce a latent variable Z for each claim to indicate the value
of the claim. Specifically, we have a corresponding variable zj for the jth claim
Cj such that: zj = k when Cj is of value k. We further denote the observa-
tion matrix SC as the observed data X, and take θ = (θ1, θ2, ..., θK) where θk =
(aTk,1, a

F
k,1, a

T
k,2, a

F
k,2...a

T
k,M , a

F
k,M , dk) as the parameters of the model that we want to esti-

mate. The goal is to get the maximum likelihood estimate of θ for the model containing
observed data X and latent variables Z.
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Given the estimation parameter and hidden variables defined above, the likelihood
function L(θ;X,Z) for conflicting observations is:

L(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

{
K∑
k=1

[ M∏
i=1

aTk,i
SiC

k
j × aFk,i

SiC
k̄
j

× (1− aTk,i − aFk,i)(1−SiCj
k−SiCj

k̄) × dk × zkj
]}

(6)

where SiCkj = 1 when participant Si asserts the claim Cj to be of value k (i.e., SiCj = k)
and 0 otherwise, SiC k̄j = 1 when participant Si asserts the claim Cj to be of value
other than k (i.e., SiCj 6= k or 0) and 0 otherwise, and z1

j , z
2
j , ..., z

K
j is a set of indicator

variables for claim Cj where zkj = 1 when Cj is of value k and zkj = 0 otherwise.
Additionally, the values of SiCj are statistically independent over the M participants
and N claims. The likelihood function above describes the likelihood to have current
observation matrix X and hidden variable Z given the estimation parameter θ we
defined.

Given the above formulation, we can derive the E-Step as

Q
(
θ|θ(n)

)
=

N∑
j=1

{
K∑
k=1

Zk(n, j)×
[ M∑
i=1

(
SiC

k
j log aTk,i + SiC

k̄
j log aFk,i

+ (1− SiCkj − SiC k̄j ) log(1− aTk,i − aFk,i) + log dk

)]}
(7)

where Zk(n, j) is given by:

Zk(n, j) =p(zj = k|Xj , θ
(n))

=
Ak(n, j)× d(n)

k∑K
k=1Ak(n, j)× d(n)

k

(8)

where Ak(n, j) is defined as:

Ak(n, j) = p(Xj , θ
(n)|zj = k)

=

M∏
i=1

{
aTk,i

(n)SiC
k
j × aFk,i

(n)SiC
k̄
j

× (1− aTk,i
(n) − aFk,i

(n)
)(1−SiC

k
j −SiC

k̄
j )
}

(9)
where Zk(n, j) is the conditional probability of the claim Cj to have value k given the
observation matrix related to the jth claim and current estimate of θ. Xj represents
the jth column of the observed SC matrix (i.e., observations of the jth claim from all
participants). Ak(n, j) represents the conditional probability regarding observations
about the jth claim and current estimation of the parameter θ given the jth claim is of
value k.
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The Maximization step (M-Step) is given by (5). We choose θ∗ (i.e., (aTk,1
∗
, ...aTk,M

∗;
aFk,1

∗
, ...aFk,M

∗; d∗) k = 1, 2, ...K) that maximizes the Q
(
θ|θ(n)

)
function in each itera-

tion to be the θ(n+1) of the next iteration.
To get θ∗ that maximizes Q

(
θ|θ(n)

)
, we set the derivatives ∂Q

∂aTk,i

= 0, ∂Q
∂aFk,i

= 0 and
∂Q
∂dk

= 0.
Solving the above equations, we can get expressions of the optimal aTk,i

∗, aFk,i
∗ and

d∗k:

aTk,i
(n+1)

= aTk,i
∗

=

∑
j∈SJk

i
Zk(n, j)∑N

j=1 Zk(n, j)

aFk,i
(n+1)

= aFk,i
∗

=

∑
j∈SJ k̄

i
Zk(n, j)∑N

j=1 Zk(n, j)

dk
(n+1) = dk

∗ =

∑N
j=1 Zk(n, j)

N
(10)

where N is the total number of claims in the conflicting observation matrix. SJki are
the sets of claims the participant Si actually observes to have value k and SJ k̄i are the
ones Si observes to have value other than k in the conflicting observation matrix (i.e,
SC). Zk(n, j) is defined in (8). For details of deriving the above solution, please refer
to the appendix in Section 8. Note that the case where the value of the claim is binary
(i.e., K = 2) can be considered as a special case of the algorithm derived in this section.
The E-step and M-step of the algorithm for binary claims can be written as in (11) and
(12) respectively:

Q
(
θ|θ(n)

)
=

N∑
j=1

{
Z1(n, j)×

[ M∑
i=1

(
SiC

1
j log aT1,i + SiC

2
j log aF1,i

+ (1− SiC1
j − SiC2

j ) log(1− aT1,i − aF1,i) + log d1

)]
+ (1− Z1(n, j))×

[ M∑
i=1

(
SiC

2
j log aT2,i + SiC

1
j log aF2,i

+ (1− SiC1
j − SiC2

j ) log(1− aT2,i − aF2,i) + log(1− d1)
)]}

(11)

where SiCkj = 1, k = 1, 2 when Si reports Cj to have value k and 0 otherwise. Note that
Z2(n, j) = 1− Z1(n, j) and d2 = 1− d1 for the binary case.
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aT1,i
(n+1)

= aT1,i
∗

=

∑
j∈SJ1

i
Z1(n, j)∑N

j=1 Z1(n, j)

aF1,i
(n+1)

= aF1,i
∗

=

∑
j∈SJ2

i
Z1(n, j)∑N

j=1 Z1(n, j)

aT2,i
(n+1)

= aT2,i
∗

=
K1
i −

∑
j∈SJ1

i
Z1(n, j)

N −
∑N
j=1 Z1(n, j)

aF2,i
(n+1)

= aF2,i
∗

=
K2
i −

∑
j∈SJ2

i
Z1(n, j)

N −
∑N
j=1 Z1(n, j)

d1
(n+1) = d1

∗ =

∑N
j=1 Z1(n, j)

N
(12)

where SJ1
i and SJ2

i are the sets of claims Si reports to have one of the binary values
respectively and K1

i and K2
i are the number of claims in the above two sets.

This completes the mathematical development. We summarize the EM algorithm to
handle conflicting observations in the next subsection.

3.3. The Conflict EM Algorithm
We call the EM scheme derived above to handle conflicting observations the EM-

Conflict algorithm. The input to the EM-Conflict algorithm is the conflicting observa-
tion matrix (i.e., SC) and the output is the maximum likelihood estimation of partici-
pant reliability and corresponding judgment on the correctness of claims in the context
of conflicting observations. The E-step and M-step of the conflict EM algorithm reduce
to simply calculating (8) and (10) iteratively until they converge. The convergence
analysis has been done for EM scheme and it is beyond the scope of this paper [Wu
1983]. In practice, we can run the algorithm until the difference of estimation parame-
ter between consecutive iterations becomes insignificant. We can then decide the value
of claim Cj as the one that has the highest Zk(n, j) value for k = 1, 2, ...K. In the special
case where the claim is binary, Cj is true if Zk(n, j) ≥ 0.5 and false otherwise. At the
same time, we can also compute the maximum likelihood estimation on participant
reliability from the converged values of θ(n) based on (2). We summarize the resulting
algorithm as shown in Algorithm 1.

4. TRUTH DISCOVERY MODEL FOR SOCIAL SENSING WITH CORROBORATING
OBSERVATIONS

4.1. The Truth Discovery Model for Corroborating Observations
In the previous section, we proposed the truth discovery model and the EM-Conflict
algorithm for conflicting observations of social sensing applications. However, there
are some social sensing applications where observations are only corroborating. For
example, a group of drivers might join a campaign to report freeway locations in need
of repair. In this application, only locations in need of repair are reported and locations
of normal condition are generally not reported. Hence, in this section we assume, for
the model to handle corroborating observations, that the “normal” state of the claim is
negative (e.g., no potholes on streets). Hence, participants report only when a positive
value is encountered and their observations are corroborating with each other. Based
on this assumption, the model for corroborating observations can be treated as a spe-
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ALGORITHM 1: Conflict Expectation Maximization Algorithm for Conflicting Observations
1: Initialize θ with random values between 0 and 1
2: while θ(n) does not converge do
3: for j = 1 : N do
4: for k = 1 : K do
5: compute Zk(n, j) based on (8)
6: end for
7: end for
8: θ(n+1) = θ(n)

9: for k = 1 : K do
10: for i = 1 :M do
11: compute aTk,i

(n+1)
, aFk,i

(n+1) and d(n+1)
k based on (10)

12: update aTk,i
(n)
, aFk,i

(n)
, d

(n)
k with aTk,i

(n+1)
, aFk,i

(n+1) and d(n+1)
k in θ(n+1)

13: end for
14: end for
15: n = n+ 1
16: end while
17: Let Zc

k,j = converged value of Zk(n, j)

18: Let θc = converged value of θ(n)

19: for j = 1 : N do
20: max = 0; k∗ = 0
21: for k = 1 : K do
22: if Zc

k,j ≥ max then
23: max = Zc

k,j and k∗ = k
24: end if
25: end for
26: Claim Cj is of value k∗
27: end for
28: for i = 1 :M do
29: calculate t∗i from θc based on (2).
30: end for
31: Return the computed maximum likelihood estimation on source reliability t∗i and

corresponding judgment on the true value k∗ of claim Cj .

cial case of the model we discussed in Section 3.1 for conflicting observations when
conflicting observations are never asserted on the same claim and the claim is binary.

Since participants only report positive observations of the claim, we simplify some
of our notations used in the previous section for the model with corroborating obser-
vations. In particular, SiCj denotes an observation reported by participant Si claiming
that Cj is true (e.g., that a given street is in disrepair). Let the probability that par-
ticipant Si makes an observation be si. The same as before, let the probability that
participant Si is right be ti and the probability that it is wrong be 1− ti. Note that, this
probability depends on the participant’s reliability, which is not known a priori.

Let us also define ai as the (unknown) probability that participant Si reports a claim
to be true when it is indeed true, and bi as the (unknown) probability that participant
Si reports a claim to be true when it is in reality false. Formally, ai and bi are defined
as follows:

ai = P (SiCj |Ctj)

bi = P (SiCj |Cfj ) (13)
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From the definition of ti, ai and bi, we can determine their relationship using the
Bayesian theorem:

ai =
ti × si
d

bi =
(1− ti)× si

1− d
(14)

where the background bias d is the overall probability that a randomly chosen claim
is true. For example, it may represent the probability that any street, in general, is in
disrepair. It does not indicate, however, whether any particular claim about disrepair
at a particular location is true or not. Note also that the probability that a participant
makes an observation (i.e., si) is proportional to the number of claims observed by the
participant over the total number of claims observed by all participants, which can be
easily computed from the observation matrix.

The only input to our algorithm is the social sensing topology with corroborating
observations represented by a matrix SC ′, where SiCj = 1 when participant Si reports
that Cj is true, and SiCj = 0 otherwise. Let us call it the corroborating observation
matrix.

4.2. Expectation Maximization for Corroborating Observations
The likelihood function L′(θ;X,Z) of the above model for corroborating claims is given
by:

L′(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

{
M∏
i=1

a
SiCj

i (1− ai)(1−SiCj) × d× zj

+

M∏
i=1

b
SiCj

i (1− bi)(1−SiCj) × (1− d)× (1− zj)

}
(15)

where θ = (a1, a2, ...aM ; b1, b2, ...bM ; d) is the simplified estimation parameter of the
model for corroborating observations. ai and bi are the conditional probabilities defined
in (13), and zj = 1 if claim Cj is true and 0 otherwise. d is the background bias that
a randomly chosen claim is true. SiCj = 1 when participant Si reports that Cj is true,
and SiCj = 0 otherwise. The values of SiCj are statistically independent over the M
participants and N claims. The likelihood function above describes the likelihood to
have current observed data X and hidden variable Z given the estimation parameter
θ we defined.

Given the above formulation, substitution of the likelihood function defined in (15)
into the definition of Q given by (4) leads to the E-step:

Q
(
θ|θ(n)

)
=

N∑
j=1

{
Z ′(n, j)×

[
M∑
i=1

(SiCj log ai + (1− SiCj) log(1− ai) + log d)

]

+ (1− Z ′(n, j))×

[
M∑
i=1

(SiCj log bi + (1− SiCj) log(1− bi) + log(1− d))

]}
(16)

where Z ′(n, j) is given by:
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Z ′(n, j) = p(zj = 1|Xj , θ
(n))

=
p(zj = 1;Xj , θ

(n))

p(Xj , θ(n))

=
p(Xj , θ

(n)|zj = 1)p(zj = 1)

p(Xj , θ(n)|zj = 1)p(zj = 1) + p(Xj , θ(n)|zj = 0)p(zj = 0)

=
A′(n, j)× d(n)

A′(n, j)× d(n) +B′(n, j)× (1− d(n))
(17)

where A′(n, j) and B′(n, j) are defined as:

A′(n, j) = p(Xj , θ
(n)|zj = 1)

=

M∏
i=1

a
(n)SiCj

i (1− a(n)
i )(1−SiCj)

B′(n, j) = p(Xj , θ
(n)|zj = 0)

=

M∏
i=1

b
(n)SiCj

i (1− b(n)
i )(1−SiCj) (18)

The Maximization step (M-step) is given by Equation (5). We choose θ∗ (i.e.,
(a∗1, a

∗
2, ...a

∗
M ; b∗1, b

∗
2, ...b

∗
M ; d∗)) that maximizes the Q

(
θ|θ(n)

)
function in each iteration

to be the θ(n+1) of the next iteration.
To get θ∗ that maximizes Q

(
θ|θ(n)

)
, we set the derivatives ∂Q

∂ai
= 0, ∂Q∂bi = 0, ∂Q∂d = 0.

Solving the above equations, we can get expressions of the optimal a∗i , b∗i and d∗:

a
(n+1)
i = a∗i =

∑
j∈SJ′

i
Z ′(n, j)∑N

j=1 Z
′(n, j)

b
(n+1)
i = b∗i =

Ki −
∑
j∈SJ′

i
Z ′(n, j)

N −
∑N
j=1 Z

′(n, j)

d
(n+1)
i = d∗i =

∑N
j=1 Z

′(n, j)

N
(19)

where Ki is the number of claims observed by participant Si and N is the total number
of claims in the observation matrix. SJ ′i is the set of claims the participant Si actually
observes in the observation matrix SC ′. Z ′(n, j), defined in (17), is the probability the
jth claim is true given the observed data and current estimation of θ. For details of
deriving the above solution, please refer to the appendix in Section 8.

Given the above, The E-step and M-step of EM optimization reduce to simply cal-
culating (17) and (19) iteratively until they converge. Since the claim is binary, Cj is
true if Z ′(n, j) ≥ 0.5 and false otherwise. At the same time, we can also compute the
maximum likelihood estimation of participant reliability t∗i from the converged val-
ues of a(n)

i , b(n)
i and d(n) based on their relationship given by (14). We summarize the

resulting algorithm in the subsection below.

4.3. The Regular EM Algorithm
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ALGORITHM 2: Regular Expectation Maximization Algorithm
1: Initialize θ with random values between 0 and 1
2: while θ(n) does not converge do
3: for j = 1 : N do
4: compute Z′(n, j) based on (17)
5: end for
6: θ(n+1) = θ(n)

7: for i = 1 :M do
8: compute a(n+1)

i , b
(n+1)
i , d(n+1) based on (19)

9: update a(n)
i , b

(n)
i , d(n) with a(n+1)

i , b
(n+1)
i , d(n+1) in θ(n+1)

10: end for
11: n = n+ 1
12: end while
13: Let Zc

j = converged value of Z′(n, j)
14: Let aci = converged value of a(n)

i ; bci = converged value of b(n)
i ;

dc = converged value of d(n)

15: for j = 1 : N do
16: if Zc

j ≥ 0.5 then
17: Cj is true
18: else
19: Cj is false
20: end if
21: end for
22: for i = 1 :M do
23: calculate t∗i from aci , bci and dc based on (14)
24: end for
25: Return the computed maximum likelihood estimation on source reliability t∗i and

corresponding judgment on the correctness of claim Cj .

We call the EM scheme derived above the regular EM algorithm as it handles only
corroborating observations of a claim from different participants. The input to the reg-
ular EM algorithm is the corroborating observation matrix SC ′ from social sensing
data, and the output is the maximum likelihood estimation of participant reliability
and correctness judgment of claims. The pseudocode of regular EM is shown in Algo-
rithm 2.

One should note that a theoretical quantification of accuracy of maximum likeli-
hood estimation (MLE) using the EM scheme is well-known in literature, and can be
done using the Cramer-Rao lower bound (CRLB) on estimator variance[Cramer 1946].
In estimation theory, if the estimation variance of an unbiased estimator reaches the
Cramer-Rao lower bound, the estimator provides the maximum likelihood estimation
and the CRLB quantifies the minimum estimation variance. The estimator proposed
in this paper is shown to operate at this bound and hence reach the maximum like-
lihood estimation [Wang et al. 2012b]. This observation makes it possible to quantify
estimation accuracy, or confidence in results generated from our scheme, using the
Cramer-Rao lower bound [Wang et al. 2013b].

5. EVALUATION
In this section, we carry out experiments to evaluate the performance of the proposed
conflict EM scheme (i.e, EM-Conflict) in terms of estimation accuracy of the probability
that a participant is right or a claim is true compared to the regular EM scheme de-
scribed in Section 4 and other state-of-art solutions for conflicting observations. Those
baselines include Sums [Kleinberg 1999], Average-Log [Pasternack and Roth 2010],

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



Maximum Likelihood Analysis of Conflicting Observations in Social Sensing A:15

TruthFinder [Yin et al. 2008] and the simple voting scheme. We begin by consider-
ing algorithm performance for different abstract observation matrices (i.e., SC), then
apply it to both an emulated participatory sensing scenario and a real world social
sensing application. We show that the conflict EM algorithm outperforms the regular
EM algorithm and the state of the art baselines.

5.1. A Simulation Study
We built a simulator in Matlab 7.10.0 and evaluated the performance of the proposed
EM scheme for conflicting observations compared to the regular EM scheme and sev-
eral state-of-art techniques in literature. The simulator generates a random number of
participants and claims. A random probability Pi is assigned to each participant Si rep-
resenting his/her reliability (i.e., the ground truth probability that they report correct
observations). For each participant Si, Li observations are generated. Each observa-
tion from participant Si has a probability ti of being matched to the correctness of the
claim (i.e., reporting a variable to be the same as its ground truth ) and a probability
1 − ti of being mismatched. Note that participants can report conflicting observations
for the same claim in this scenario. For simplicity, we assume claims to be binary.

We applied both the conflict EM scheme derived in section 3 and the regular EM
scheme derived in section 4 to the sensing topology with conflicting observations and
showed that the conflict EM scheme outperformed the regular EM scheme and other
state-of-art baselines. Note that for the regular EM scheme, we adapted it in a similar
way as fact-finders to handle the conflicting observations of the same claim [Pasternack
and Roth 2010]. Specifically, it takes conflicting observations of the same claim as two
independent observations and pick the one with higher probability to believe after the
algorithm terminates. Reported results are averaged over 100 experiments.

In the first experiment, we compare the estimation accuracy of the conflict EM
scheme and baselines (including regular EM scheme) by varying the number of partic-
ipants in the network. The number of reported claims was fixed at 2000, of which 1000
claims were reported correctly and 1000 were misreported. The average number of ob-
servations per participant was set to 200. The number of participants was varied from
20 to 110. Results are shown in Figure 1. Observe that the conflict EM scheme has both
smaller estimation error on participant reliability and less false positives/negatives on
claims among all schemes under comparison. Note also that the performance gain of
the conflict EM scheme is large when the number of participants is small.

The second experiment compares the conflict EM scheme with baselines when the
average number of observations per participant changes. As before, we fixed the num-
ber of correctly and incorrectly reported claims to be 1000 respectively. The number of
participants was fixed at 50. We vary the average number of observations per partici-
pant from 100 to 1000. The results are shown in Figure 2. Observe that the EM scheme
outperforms the regular EM scheme and other baselines in terms of both participant
reliability estimation accuracy and false positives/negatives of claims as the average
number of observations per participant changes. The performance gain of the conflict
EM scheme is higher when the average number of observations per participant is low.

The third experiment examines the effect of changing the percentage of correct
claims on the estimation accuracy of all schemes. We varied the ratio of the number of
correctly reported claims to the total number of claims from 0.1 to 0.6, while fixing the
total number of such claims to 2000. The number of participants was fixed to 50 and
the average number of observations reported by a participant was set to 200. Reported
results are shown in Figure 3. We observe that the conflict EM scheme has less error
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Fig. 1. Estimation Accuracy versus Number of Participants for Conflicting Observations

in both participant reliability estimation and false positives/negatives on claims under
different mix of correct and false claims.

Finally, we carried out the fourth experiment to evaluate the performance of the
conflict EM scheme and other schemes when the offset of the initial estimation on the
background bias d varies. The offset is defined as the difference between the initial
estimation on d and its ground-truth. We fixed the number of correctly and incorrectly
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(c) Claim Estimation: False Negatives

Fig. 2. Estimation Accuracy versus Average Number of Observations per Participant for Conflicting Obser-
vations

reported claims to 1000 respectively (i.e., d = 0.5). We varied the absolute value of the
initial estimate offset on d from 0 to 0.45. The number of participants was fixed at 50
and the average number of observations per participant was set to 200. Results are
averaged over both positive and negative offsets of the same absolute value. Figure 4
shows the results. We observe that the performance of the conflict EM scheme is bet-
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Fig. 3. Estimation Accuracy versus Ratio of Correctly Reported Claims for Conflicting Observations

ter than other baselines in terms of both participant reliability estimation and false
positives/negatives on claims when the initial estimate offset on d changes. We also ob-
serve the performance of all schemes are relatively stable when offset on d increases.
The reason is the schemes for conflicting observations mainly depend on the mutual
exclusive property of the reports (rather than correct estimation on prior d) to decide
the correctness of claims.
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Fig. 4. Estimation Accuracy versus Initial Estimation Offset on Prior d for Conflicting Observations

This concludes our general simulations. In the next subsection, we emulate the per-
formance of a specific social sensing application.

5.2. A Geotagging Case Study
In this subsection, we applied the proposed EM scheme to a typical social sensing ap-
plication: Geotagging locations of litter in a park or hiking area. In this application,
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litter may be found along the trails (usually proportionally to their popularity). Partic-
ipants visiting the park geotag locations and report whether or not litters exist in the
tagged locations. However, their reports may potentially be conflicting and are not re-
liable, erring both by missing some locations, as well as misrepresenting other objects
as litter. The goal of the application is to find where litter is actually located in the
park, while disregarding all false reports.

To evaluate the performance of different schemes, we define two metrics of interest:
(i) false negatives defined as the ratio of litter locations missed by a scheme to the total
number of litter locations in the park, and (ii) false positives defined as the ratio of the
number of incorrectly labeled locations by a scheme, to the total number of locations
in the park. We compared the proposed conflict EM scheme to several baselines in-
cluding the best performed fact-finder scheme in this scenario, the regular EM scheme
adapted for conflicting observations and voting, where locations are simply ranked by
the number of times people report them.

Fig. 5. A Simplified Trail Map of Geotagging Application

We created a simplified trail map of a park, represented by a binary tree as shown
in Figure 5. The entrance of the park (e.g., where parking areas are usually located) is
the root of the tree. Internal nodes of the tree represent forking of different trails. We
assume trails are quantized into discretely labeled locations (e.g., numbered distance
markers). In our emulation, at each forking location along the trails, participants have
a certain probability Pc to continue walking and 1−Pc to stop and return. Participants
who decide to continue have equal probability to select the left or right path. The
majority of participants are assumed to be reliable (i.e., when they geotag and report
litter at a location, it is more likely than not that the litter exists at that location and
vice versa).

In the first experiment, we study the effect of the number of people visiting the park
on the estimation accuracy of different schemes. We choose a binary tree with a depth
of 4 as the trail map of the park. Each segment of the trail (between two forking points)
is quantized into 100 potential locations (leading to 1500 discrete locations in total on
all trails). We define the pollution ratio of the park to be the ratio of the number of lit-
tered locations to the total number of locations in the park. The pollution ratio is fixed
at 0.2 for the first experiment. The probability that people continue to walk past a fork
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in the path is set to be 95% and the percent of reliable participants is set to be 75%.
We vary the number of participants visiting the park from 20 to 70. The corresponding
estimation results of different schemes are shown in Figure 6. Observe that both false
negatives and false positives decrease as the number of participants increases for all
schemes. This is intuitive: the chances of finding litter on different trails increase as
the number of people visiting the park increases. Note that, the conflict EM scheme
outperforms others in terms of both false negatives and false positivies, which means
the conflict EM scheme can find more pieces of litter than other schemes while keeping
the falsely reported locations less. Generally, voting performs the worst in accuracy be-
cause it simply counts the number of reports claiming about each location but ignores
the reliability of individuals who make them.
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Fig. 6. Litter Geotagging Accuracy versus Number of People Visiting the Park

In the second experiment, we show the effect of park pollution ratio (i.e, how littered
the park is) on the estimation accuracy of different schemes. The number of individuals
visiting the park is set to be 50. We vary the pollution ratio of the park from 0.1 to 0.3.
The estimation results of different schemes are shown in Figure 7. Observe that both
the false negatives and false positives of all schemes increase as the pollution ratio
increases. The reason is that: litter is more frequently found and reported at trails that
are near the entrance point. The amount of unreported litter at trails that are far from
entrance increases more rapidly compared to the total amount of litter as the pollution
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ratio increases. Note that, the conflict EM scheme continues to find more actual litter
locations and report less falsely labeled locations compared to other baselines.
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Fig. 7. Litter Geotagging Accuracy versus Pollution Ratio of the Park

In the third experiment, we evaluate the effect of the initial estimation offset of the
pollution ratio on the performance of different schemes. The pollution ratio is fixed at
0.2 and the number of individuals visiting the park is set to be 50. We vary the abso-
lute value of initial estimation offset of the pollution ratio from 0 to 0.18. Results are
averaged over both positive and negative offsets of the same absolute value. The esti-
mation results of different schemes are shown in Figure 8. Observe that the conflict
EM scheme finds more actual litter locations and reports less falsely labeled locations
than other baselines throughout all initial estimation offsets of pollution ratio simu-
lated.

5.3. A Real World Application
In this section, we evaluate the performance of the proposed conflict EM scheme com-
pared to start-of-art baselines (including the regular EM scheme) through a real world
application, finding free parking lots on University of Illinois at Urbana Champaign
(UIUC) campus. “Free parking lots”’ refer to the parking lots that are free of charge af-
ter 5pm on weekday as well as weekends. The goal was to see if our scheme can find the
free parking lots most accurately compared to other state-of-art baselines. Specifically,

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



Maximum Likelihood Analysis of Conflicting Observations in Social Sensing A:23

 0

 0.05

 0.1

 0.15

 0  0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

F
a

ls
e

 N
e

g
a

ti
v
e

s

Initial Estimation Offset on Pollution Ratio

EM-Conflict
TruthFinder
EM-Regular

Voting

(a) False Negatives (missed/total litter)

 0

 0.05

 0.1

 0.15

 0  0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

F
a

ls
e

 P
o

s
it
iv

e
s

Initial Estimation Offset on Pollution Ratio

EM-Conflict
TruthFinder
EM-Regular

Voting

(b) False Positives (false/total locations)

Fig. 8. Litter Geotagging Accuracy versus Initial Estimation Offset on Pollution Ratio of Park

we selected 106 parking lots of our interests around the campus and asked volunteers
to mark them as either “Free”’ or “Not Free”’. Participants mark those parking lots
they have been to or are familiar with. We note that there are actually various types of
parking lots on campus: enforced parking lots with time limits, parking meters, permit
parking, street parking, and etc. Different parking lots have different regulations for
free parking. Moreover, instructions and permit signs sometimes read similar and are
easy to miss. Hence, people are prone to generate both false positives and false nega-
tives in their reports. For evaluation purpose, we went to those selected parking lots
and manually collected the ground truth.

In the experiment, 30 participants were invited to offer their marks on the 106 park-
ing lots (46 of which are indeed free). There were 901 marks collected from partici-
pants in total. We then generated the observation matrix by taking the participants
as sources and different parking lots as claims. The free parking lots are taken as the
true claims while the non-free ones are taken as the false claims. The corresponding
element SiCj is set according to the marks each participant placed on those parking
lots. We applied the conflict EM scheme discussed in Section 3, other state-of-art base-
lines (including the regular EM scheme adapted for conflicting claims) as well as the
simple voting scheme to the data we collected. We then compared the false positives
and false negatives of different schemes in identifying the free parking lots among all
places selected. The result is shown in Table I. We observe that the conflict EM scheme
designed to handle conflicting observations (i.e., EM-Conflict) achieved the least false
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Table I. Accuracy of Finding Free Parking Lots on Campus

Schemes False Positives False Negatives
EM-Conflict 6.67% 10.87%
EM-Regular 11.67% 17.39%
Average-Log 16.67% 19.57%
Truth-Finder 18.33% 15.22%

Voting 21.67% 23.91%

positives and false negatives among all schemes under comparison. The reason is that
the conflict EM scheme modeled the conflicting observations explicitly and used the
MLE approach to find the value of each claim that is most consistent with the obser-
vations we had.

The above evaluations demonstrate that the new EM scheme for conflicting obser-
vations generally outperforms the current state of the art in inferring facts from social
sensing data. This is because the state of the art heuristics infer the reliability of par-
ticipants and correctness of facts based on the hypothesis that their relationship can
be approximated linearly or using some heuristic models [Pasternack and Roth 2010;
Yin et al. 2008; Wang et al. 2011a]. However, the conflict EM scheme explicitly models
the conflicting observations and makes its inference based on a maximum likelihood
hypothesis that is most consistent with the observed sensing data.

6. DISCUSSION AND LIMITATIONS
Participants (sources) are assumed to be independent from each other in the current
EM scheme. However, sources can sometimes be dependent. That is, they copy ob-
servations from each other in real life (e.g., retweets of Twitter). Regarding possible
solutions to this problem, one possibility is to remove duplicated observations from
dependent sources and only keep the original ones. This can be achieved by applying
copy detection schemes between sources [Dong et al. 2009; Dong et al. 2010]. Another
possible solution is to cluster dependent sources based on some source-dependency met-
ric [Berti-Equille et al. 2009]. In other words, sources in the same cluster are closely
related with each other but independent from sources in other clusters. Then we can
apply the developed algorithm on top of the clustered sources.

The current EM scheme is mainly designed to run on static data sets, where the
computation overhead stays reasonable even when the dataset scales up [Wang et al.
2012a]. However, such computation may become less efficient for streaming data be-
cause we need to re-run the algorithm on the whole dataset from scratch every time
the dataset gets updated. Instead, it will be more technically sound that the algorithm
only runs on the updated dataset and combines the results with previously computed
ones in an optimal (or suboptimal) way. One possibility is to develop a scheme that can
compute the estimated parameter of interests recursively over time using incoming
measurements and a mathematical process model. The challenge here is that the re-
lationship between the estimation from the updated dataset and the complete dataset
may not be linear. Hence, linear regression might not be generally plausible. Rather,
recursive estimation schemes, such as the Recursive EM, would be a better fit [Wang
et al. 2013a]. The authors are currently working on accommodating the above exten-
sions.

7. CONCLUSION
This paper described a maximum likelihood estimation approach to accurately dis-
cover the truth in social sensing applications where observations from participants
may be conflicting. The approach can determine the correctness of reported obser-
vations given only the measurements sent without knowing the trustworthiness of
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participants. The maximum likelihood solution is obtained by solving an expectation
maximization problem and can directly lead to an analytically founded quantification
of the correctness of measurements as well as the reliability of participants. Evalua-
tion results show that non-trivial estimation accuracy improvements can be achieved
by the proposed maximum likelihood estimation approach compared to other state of
the art solutions.

8. APPENDIX
The following derivation demonstrates the details to obtain the results in (10). The
derivation that maximizes the Q

(
θ|θ(t)

)
in the M-step in Section 3.2 yields:

N∑
j=1

Zk(n, j)

[
SiC

k
j

aTk,i
∗ −

(1− SiCkj − SiC k̄j )

1− aTk,i
∗ − aFk,i

∗

]
= 0

N∑
j=1

Zk(n, j)

[
SiC

k̄
j

aFk,i
∗ −

(1− SiCkj − SiC k̄j )

1− aTk,i
∗ − aFk,i

∗

]
= 0 k = 1, 2, ..K (20)

N∑
j=1

[
Zk(n, j)

1

d∗k
− ZK(n, j))

1

1−
∑K−1
i=1 d∗i

]
= 0 k = 1, 2, ..K − 1 (21)

As we defined earlier, SJki and SJ k̄i represent the sets of claims the participant Si
actually reports as value k and value other than k respectively in the conflicting obser-
vation matrix (i.e, SC). Let us also define ¯SJi as the set of claims participant Si does
not report in the conflicting observation matrix. Thus, (20) can be rewritten as:

∑
j∈SJk

i

Zk(n, j)
1

aTk,i
∗ −

∑
j∈ ¯SJi

Zk(n, j)
1

1− aTi
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i

Zk(n, j)
1

aFk,i
∗ −

∑
j∈ ¯SJi

Zk(n, j)
1

1− aTk,i
∗ − aFk,i

∗ = 0 (22)

Solving the above equations, we can obtain the expressions of the optimal aTk,i
∗, aFk,i

∗

and d∗k as shown in (10).
Similarly, the following derivation demonstrates the details to obtain the results in

(19). The derivation that maximizes the Q
(
θ|θ(n)

)
in the M-step in Section 4.2 yields:

N∑
j=1

[
Z ′(n, j)(SiCj

1

a∗i
− (1− SiCj)

1

1− a∗i
)

]
= 0

N∑
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1
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− (1− SiCj)

1
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)

]
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N∑
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1
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− (1− Z ′(n, j))M 1

1− d∗
)

]
= 0 (23)

As we defined before, SJ ′i is the set of claims the participant Si actually reports in
the observation matrix SC, and ¯SJ ′i as the set of claims participant Si does not observe.
Thus, (23) can be rewritten as:
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∑
j∈SJ′

i

Z(n, j)
1

a∗i
−
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i
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1
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= 0

∑
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]
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Solving the above equations, we can get expressions of the optimal a∗i , b∗i and d∗ as
shown in (19).
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