Name:_____

Instructor:_____

MATH 20580: Introduction to Linear Algebra and Differential Equations

Exam 1 February 17, 2011

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 10 multiple choice questions worth 6 points each and 3 partial credit problems worth 10 points each. You start with 10 points. On the partial credit problems you must show your work and all important steps to receive credit.

You may not use a calculator.

1. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-1\\2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2\\3\\1\\-2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0\\0\\1\\2 \end{bmatrix}$. Find the value of h such that $\mathbf{w} = \begin{bmatrix} 4\\3\\h\\0 \end{bmatrix}$
is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
(a) -2
(b) 1
(c) 3
(d) 2
(e) -5
2. Let $\mathbf{v}_1 = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -4\\-5\\7 \end{bmatrix}$. Describe Span { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ }.
(a) a plane
(b) \mathbb{R}^3
(c) a line
(d) a point
(e) three points
3. Determine by inspection which of the following sets is linearly independent.
(a) $\left\{ \begin{bmatrix} 1\\-1\\4 \end{bmatrix}, \begin{bmatrix} 2\\-2\\0 \end{bmatrix} \right\}$
(b) $\left\{ \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} -1\\4\\4 \end{bmatrix}, \begin{bmatrix} 2\\1\\3 \end{bmatrix} \right\}$

$$\begin{array}{l} \text{(d)} \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\} \\ \text{(e)} \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\1 \end{bmatrix} \right\} \\ \text{4. Let } T : \mathbb{R}^2 \to \mathbb{R}^2 \text{ be a linear transformation that maps } \begin{bmatrix} 1\\0\\0 \end{bmatrix} \to \begin{bmatrix} 2\\5\\0 \end{bmatrix}, \text{ and } \begin{bmatrix} 0\\1\\0 \end{bmatrix} \to \begin{bmatrix} 2\\5\\0 \end{bmatrix}, \text{ and } \begin{bmatrix} 0\\1\\0 \end{bmatrix} \to \begin{bmatrix} -1\\0\\1 \end{bmatrix} \\ \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \\ \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \\ \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \\ \begin{bmatrix} 15\\-7\\0\\0 \end{bmatrix} \\ \text{(d)} \begin{bmatrix} -13\\-7\\0\\-7 \end{bmatrix} \\ \text{(e)} \begin{bmatrix} 13\\1\\1 \end{bmatrix} \\ \end{bmatrix}$$

5. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that performs a horizontal shear, sending \mathbf{e}_2 to $\mathbf{e}_2 - 2\mathbf{e}_1$ and leaving \mathbf{e}_1 unchanged. Let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that reflects points through the line y = -x, sending \mathbf{e}_1 to $-\mathbf{e}_2$ and \mathbf{e}_2 to $-\mathbf{e}_1$. Find the standard matrix for the composition $\mathbf{x} \to S(T(\mathbf{x}))$.

(a)
$$\begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}$$

(b) $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$
(d) $\begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix}$
(e) $\begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}$
(e) $\begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 1 & 0 & -2 & 5 \\ 4 & -1 & 0 & 3 \end{bmatrix}$, find b_{24} , the (2, 4)-entry of B .
(a) -4
(b) 8
(c) -2
(d) 3
(e) 11
7. Determine which of the following is *not* true for all $n \times n$ invertible matrices A ,
(a) $AB = CA \Longrightarrow B = C$
(b) $(AB)^{-1} = B^{-1}A^{-1}$
(c) $(A^T)^{-1} = (A^{-1})^T$

2

B, C.

- (d) A(B+C) = AB + AC
- (e) $AB = AC \Longrightarrow B = C$

8. Let B be an $n \times n$ matrix. Suppose the equation $B\mathbf{x} = \mathbf{c}$ is inconsistent for some \mathbf{c} in \mathbb{R}^n . Determine which of the following statements *must* be true.

- (a) The equation $B\mathbf{x} = \mathbf{0}$ has more than one solution.
- (b) The columns of B span \mathbb{R}^n .
- (c) The linear transformation $\mathbf{x} \to B\mathbf{x}$ is one-to-one.
- (d) The matrix B has n pivot positions.
- (e) The columns of B are linearly independent.
- 9. Determine the rank of the matrix $\begin{bmatrix} 0 & 0 & 1 & 2 & 1 \\ 2 & 4 & 0 & 2 & 0 \\ 3 & 6 & 2 & 7 & 2 \end{bmatrix}$.
- (a) 2
- (b) 1
- (c) 3
- (d) 4
- (e) 5

10. Consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} 2\\-2\\2 \end{bmatrix}, \begin{bmatrix} 3\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$ for \mathbb{R}^3 . If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$, find \mathbf{x} .

(a)
$$\mathbf{x} = \begin{bmatrix} 4\\8\\5 \end{bmatrix}$$

(b) $\mathbf{x} = \begin{bmatrix} 4\\6\\7 \end{bmatrix}$
(c) $\mathbf{x} = \begin{bmatrix} -2\\-4\\2 \end{bmatrix}$
(d) $\mathbf{x} = \begin{bmatrix} -2\\-4\\2 \end{bmatrix}$
(e) $\mathbf{x} = \begin{bmatrix} 3\\0\\-1 \end{bmatrix}$

11. Find all solutions to the system of linear equations. Write your answer in parametric vector form.

$$\begin{cases} x_1 - x_2 + x_4 = 2\\ 2x_1 - 2x_2 + x_3 = 1\\ 5x_1 - 5x_2 + 2x_3 + x_4 = 4 \end{cases}$$

Answer:

12. Let
$$A = \begin{bmatrix} 1 & -2 & -5 & -4 \\ -3 & 6 & 8 & 5 \\ 2 & -4 & -9 & -7 \end{bmatrix}$$
. Find a basis for Col A and a basis for Null A.

Answer:

13. Find the inverse of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.

Answer: