Multiple Choice

1. (6 pts.) Find the reduced echelon form of the matrix $\left[\begin{array}{rrrr}1 & 2 & -1 & -1 \\ 2 & 4 & -1 & 0 \\ -3 & -6 & 1 & 0\end{array}\right]$.
(a) $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{rrrr}1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1\end{array}\right]$
(e) $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
2. (6 pts.) Determine by inspection which of the following sets is linearly independent.
(a) $\left\{\left[\begin{array}{r}2 \\ -5 \\ 3\end{array}\right],\left[\begin{array}{r}4 \\ 3 \\ -2\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{r}4 \\ -6 \\ 2 \\ -4\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{r}6 \\ -9 \\ 3 \\ -6\end{array}\right],\left[\begin{array}{r}-1 \\ -1 \\ 2 \\ 0\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 2\end{array}\right]\right\}$
(e) all four sets are linearly dependent
3. (6 pts.) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be linear transformations with

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \text { and } \\
& S\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
-1 \\
1
\end{array}\right], S\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], S\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

Which matrix below is the standard matrix of $S T$?
(a) $\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$
(b) $\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]$
(c) $\left[\begin{array}{rrr}0 & 2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & 0\end{array}\right]$
(d) $\left[\begin{array}{rrr}0 & -2 & 0 \\ 2 & 0 & -2 \\ 0 & 2 & 0\end{array}\right]$
(e) $\left[\begin{array}{ll}-1 & 1 \\ -1 & 1\end{array}\right]$
4. (6 pts.) The determinant of $\left[\begin{array}{rrr}0 & 2 & -3 \\ -2 & 6 & -12 \\ 1 & -2 & 3\end{array}\right]$ is
(a) -6
(b) -12
(c) 0
(d) 6
(e) 12
5. (6 pts.) Let A be a 7×8 matrix of rank 3 . Which of the following is equal to the dimension of the null space of A ?
(a) 5
(b) 0
(c) 3
(d) 4
(e) 7
6. (6 pts.) Let \mathcal{B} be the basis of \mathbb{R}^{3} given by the vectors $\left\{\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]\right\}$ and let x be the vector $x=\left[\begin{array}{l}4 \\ 2 \\ 4\end{array}\right]$. Which of the following is the coordinate vector $[x]_{\mathcal{B}}$ of x with respect to \mathcal{B} ?
(a) $\left[\begin{array}{r}-1 \\ 5 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{r}14 \\ 0 \\ 6\end{array}\right]$
(c) $\left[\begin{array}{r}2 \\ 3 \\ -2\end{array}\right]$
(d) $\left[\begin{array}{r}4 \\ -1 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{r}-2 \\ 0 \\ 5\end{array}\right]$
7. (6 pts .) Suppose an $n \times n$ square matrix A is such that the homogeneous linear system $A x=0$ has a non-trivial solution. Which of the following statements must be true?
(a) The linear system $A x=b$ is inconsistent for some b in \mathbb{R}^{n}
(b) A has a pivot in every column.
(c) The linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(x)=A x$ is onto.
(d) There is an $n \times n$-matrix B with $A B=\mathrm{I}_{n}$.
(e) The linear system $A^{T} x=0$ has only the trivial solution.
8. (6 pts.) Which of the following is the solution for $\left[\begin{array}{l}x \\ y\end{array}\right]$ of the matrix equation

$$
\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
h \\
k
\end{array}\right] ?
$$

(a) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}-5 / 2 & 3 / 2 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(b) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}-5 / 2 & -3 / 2 \\ -2 & -1\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(c) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}-1 & 3 / 2 \\ 2 & -5 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(d) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}-1 & -3 / 2 \\ -2 & -5 / 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
(e) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}5 & -3 \\ -4 & 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$
9. (6 pts.) Let $A=\left[\begin{array}{rrrr}2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & -1 & -2\end{array}\right]$. What is the rank of A ?
(a) 2
(b) 0
(c) 1
(d) 3
(e) 4

Partial Credit

You must show your work on the partial credit problems to receive credit!
10. (14 pts.) Express the solution set of

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}+2 x_{4}=-6 \\
& x_{1}+x_{3}+x_{4}=-3 \\
& x_{1}-x_{2}+3 x_{3}=0
\end{aligned}
$$

in Parametric Vector Form.
11. (14 pts.) The row-reduced echelon form of the 3×5 matrix $A=\left[\begin{array}{rrrrr}2 & -4 & 1 & 1 & 5 \\ 3 & -6 & -2 & 5 & -7 \\ 5 & -10 & 3 & 2 & 4\end{array}\right]$ is given by $B=\left[\begin{array}{rrrrr}1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$. (You may assume this; you do not have to check it.)
(a) Determine a basis for the null space $\operatorname{null}(A)$.
(b) Determine a basis for the column space $\operatorname{col}(A)$.
(c) Determine a basis for the row space $\operatorname{row}(A)$.
12. (14 pts.) Compute the inverse of the matrix $A=\left[\begin{array}{lll}4 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 0 & 1\end{array}\right]$

