Multiple Choice

$$\begin{array}{c} \mathbf{1.} \ (6 \text{ pts.}) \ \text{Find the reduced echelon form of the matrix} } \begin{bmatrix} 1 & 2 & -1 & -1 \\ 2 & 4 & -1 & 0 \\ -3 & -6 & 1 & 0 \end{bmatrix}. \\ (a) \ \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad (b) \ \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad (c) \ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ (d) \ \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad (e) \ \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

2. (6 pts.) Determine by inspection which of the following sets is linearly independent.

(a)
$$\left\{ \begin{bmatrix} 2\\ -5\\ 3 \end{bmatrix}, \begin{bmatrix} 4\\ 3\\ -2 \end{bmatrix} \right\}$$
 (b) $\left\{ \begin{bmatrix} 3\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ -1 \end{bmatrix} \right\}$
(c) $\left\{ \begin{bmatrix} 4\\ -6\\ 2\\ -4 \end{bmatrix}, \begin{bmatrix} 2\\ 3\\ 1\\ 3 \end{bmatrix}, \begin{bmatrix} 6\\ -9\\ 3\\ -6 \end{bmatrix}, \begin{bmatrix} -1\\ -1\\ 2\\ 0 \end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}, \begin{bmatrix} 3\\ 6\\ 2 \end{bmatrix} \right\}$

3. (6 pts.) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ and $S : \mathbb{R}^3 \to \mathbb{R}^2$ be linear transformations with

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\1\end{bmatrix}, T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\-1\\1\end{bmatrix} \text{ and}$$
$$S\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\1\end{bmatrix}, S\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}, S\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-1\end{bmatrix}.$$

Which matrix below is the standard matrix of ST?

(a)
$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}$

(d)
$$\begin{bmatrix} 0 & -2 & 0 \\ 2 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix}$$
 (e) $\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$

4. (6 pts.) The determinant of
$$\begin{bmatrix} 0 & 2 & -3 \\ -2 & 6 & -12 \\ 1 & -2 & 3 \end{bmatrix}$$
 is
(a) -6 (b) -12 (c) 0 (d) 6 (e) 12

5. (6 pts.) Let A be a 7×8 matrix of rank 3. Which of the following is equal to the dimension of the null space of A?

(a) 5 (b) 0 (c) 3 (d) 4 (e) 7

6. (6 pts.) Let \mathcal{B} be the basis of \mathbb{R}^3 given by the vectors $\left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\0 \end{bmatrix} \right\}$ and let x be the vector $x = \begin{bmatrix} 4\\2\\4 \end{bmatrix}$. Which of the following is the coordinate vector $[x]_{\mathcal{B}}$ of x with respect to \mathcal{B} ?

(a)
$$\begin{bmatrix} -1\\5\\0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 14\\0\\6 \end{bmatrix}$ (c) $\begin{bmatrix} 2\\3\\-2 \end{bmatrix}$
(d) $\begin{bmatrix} 4\\-1\\3 \end{bmatrix}$ (e) $\begin{bmatrix} -2\\0\\5 \end{bmatrix}$

7. (6 pts.) Suppose an $n \times n$ square matrix A is such that the homogeneous linear system Ax = 0 has a non-trivial solution. Which of the following statements must be true?

- (a) The linear system Ax = b is inconsistent for some b in \mathbb{R}^n
- (b) A has a pivot in every column.
- (c) The linear map $T \colon \mathbb{R}^n \to \mathbb{R}^n$ given by T(x) = Ax is onto.
- (d) There is an $n \times n$ -matrix B with $AB = I_n$.
- (e) The linear system $A^T x = 0$ has only the trivial solution.

8. (6 pts.) Which of the following is the solution for $\begin{vmatrix} x \\ y \end{vmatrix}$ of the matrix equation

$$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} h \\ k \end{bmatrix}?$$
(a) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5/2 & 3/2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$
(b) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5/2 & -3/2 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$
(c) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 3/2 \\ 2 & -5/2 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$
(d) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & -3/2 \\ -2 & -5/2 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$
(e) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 & -3 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} h \\ k \end{bmatrix}$

9. (6 pts.) Let
$$A = \begin{bmatrix} 2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & -1 & -2 \end{bmatrix}$$
. What is the rank of A?
(a) 2 (b) 0 (c) 1 (d) 3 (e) 4

Partial Credit

You must show your work on the partial credit problems to receive credit!

10. (14 pts.) Express the solution set of

in Parametric Vector Form.

11. (14 pts.) The row-reduced echelon form of the 3×5 matrix $A = \begin{bmatrix} 2 & -4 & 1 & 1 & 5 \\ 3 & -6 & -2 & 5 & -7 \\ 5 & -10 & 3 & 2 & 4 \end{bmatrix}$ is

given by $B = \begin{bmatrix} 1 & -2 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. (You may assume this; you do not have to check it.)

- (a) Determine a basis for the null space $\operatorname{null}(A)$.
- (b) Determine a basis for the column space col(A).
- (c) Determine a basis for the row space row(A).

12. (14 pts.) Compute the inverse of the matrix
$$A = \begin{bmatrix} 4 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$