Exam 1D solutions

Multiple choice. Exam 1D has all multiple choice answers (a).
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(2) (a), clearly one vector is not a multiple of the other so LI.
(b): too many vectors - dependent.
(c): 3rd vector is a multiple of first- dependent.
(d): zero vector - dependent.
(e): false since LI in (a).
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(3) The standard matrix of 7" is A = |1 —1|. The standard
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matrix of S is B = [ 11 -1l Hence the standard matrix

of ST is the matrix product BA = [1 _1}
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Since this last matrix is upper triangular, the determinant is
—-1-2-3=—6.

(5) For a pxg-matrix, rank(A)-+dim(null(A)) = ¢. Hence dim(null(A))
q —rank(A) =8 -3 =5.
(6) We have to solve the linear system whose augmented matrix is
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first matrix following: [—2 0 2 2| |0 2 6 10 01 3
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(7) Az = b is inconsistent for some b, directly from the 1nvert1ble
matrix theorem.

(8) Let A= |2 2
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and so is invertible. The solution is [ﬂ = A [Z] So B] -
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0 1 —2 1 —=3]|. The equation is equivalent to
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T + x5 — X4 = -3
Ty — 23 + x4y = —3

The bound variables are x1, z9, and free variables are x3, x4.
Rewriting with free variables on the right,

Ty = — 3 —x3 — X4
To = — 3 +21’3 — X4
or in vector parametric form
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or writing r3 = a, x4 = b,
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(11) (a) The pivot columns of A and B are 1, 3, 5, so 9 and x4 are
free variables. Writing the homogeneous equations from B with

xry = 2%2— Ty
free variables on the right gives x5 = x4. The
Ts = 0

system has 2 basic solutions given by setting one free variable
equal to 1 and the others equal to 2. Setting o =1 and x4 =0

gives the solution v; = [2 100 O}T. Setting x5 = 0 and
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x4y = 1 gives the solution vy = [—1 011 O]T (we write
these using transpose T to save space). Then {vy, vy} is a
basis for null(A).

(b) Row operations don’t change the solution space of the
homogeneous equation or the linear dependences of columns of
a matrix. The pivot columns (1st, 2rd, 5th) of B form a basis for
col(B) so the pivot columns (1st, 2rd, 5th) of A form a basis
for col(A). A basis of col(A) is given by {w;,ws, w3} where
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w; = (3] and wy = | 2|, w3 = |—T7].
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(c) Row span of a matrix is unchanged by ERO’s, so row(A
row(B). Since B is in echelon form, its non-zero rows form
basis of row(B) and hence of row(A). So a basis of row(A
is given by {wuy,us, ug} where u; = [1 -2 01 0}, Uy

o |l

001 -1 0Janduy=1[0 0 0 0 1].
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(12) Row-reduce: |2 2 2 0 1 0 |2 2 2 0 1 O
101001423100
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021104{001112 00 —1 1
100 1 —1 —1] 1 -1 -1
010 01/2 =1|so| 0 1/2 —1| is the inverse.
001 -1 1 2 -1 1 2




