Exam 1D solutions

Multiple choice. Exam 1D has all multiple choice answers (a).
(1) $\left[\begin{array}{rrrr}1 & 2 & -1 & -1 \\ 2 & 4 & -1 & 0 \\ -3 & -6 & 1 & 0\end{array}\right]\left[\begin{array}{rrrr}1 & 2 & -1 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & -3\end{array}\right]\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(2) (a), clearly one vector is not a multiple of the other so LI.
(b): too many vectors - dependent.
(c): 3rd vector is a multiple of first- dependent.
(d): zero vector - dependent.
(e): false since LI in (a).
(3) The standard matrix of T is $A=\left[\begin{array}{rr}1 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right]$. The standard matrix of S is $B=\left[\begin{array}{rrr}-1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right]$. Hence the standard matrix of $S T$ is the matrix product $B A=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$
(4) $\left|\begin{array}{rrr}0 & 2 & -3 \\ -2 & 6 & -12 \\ 1 & -2 & 3\end{array}\right|=-\left|\begin{array}{rrr}1 & -2 & 3 \\ -2 & 6 & -12 \\ 0 & 2 & -3\end{array}\right|=-\left|\begin{array}{rrr}1 & -2 & 3 \\ 0 & 2 & -6 \\ 0 & 2 & -3\end{array}\right|=-\left|\begin{array}{rrr}1 & -2 & 3 \\ 0 & 2 & -3 \\ 0 & 0 & 3\end{array}\right|$

Since this last matrix is upper triangular, the determinant is $-1 \cdot 2 \cdot 3=-6$.
(5) For a $p \times q$-matrix, $\operatorname{rank}(A)+\operatorname{dim}(\operatorname{null}(A))=q$. Hence $\operatorname{dim}(\operatorname{null}(A))=$ $q-\operatorname{rank}(A)=8-3=5$.
(6) We have to solve the linear system whose augmented matrix is first matrix following: $\left[\begin{array}{rrrr}1 & 1 & 2 & 4 \\ -2 & 0 & 2 & 2 \\ 1 & 1 & 0 & 4\end{array}\right]\left[\begin{array}{rrrr}1 & 1 & 2 & 4 \\ 0 & 2 & 6 & 10 \\ 0 & 0 & -2 & 0\end{array}\right]\left[\begin{array}{llll}1 & 1 & 2 & 4 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 0\end{array}\right]$ $\left[\begin{array}{rrrr}1 & 0 & -1 & -1 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{rrrr}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0\end{array}\right]$. The coordinate vector is $\left[\begin{array}{r}-1 \\ 5 \\ 0\end{array}\right]$.
(7) $A x=b$ is inconsistent for some b, directly from the invertible matrix theorem.
(8) Let $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$. Note A has determinant $2 \cdot 5-3 \cdot 4=-2$ and so is invertible. The solution is $\left[\begin{array}{l}x \\ y\end{array}\right]=A^{-1}\left[\begin{array}{l}h \\ k\end{array}\right]$. So $\left[\begin{array}{l}x \\ y\end{array}\right]=$ $\frac{1}{-2}\left[\begin{array}{rr}5 & -3 \\ -4 & 2\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]=\left[\begin{array}{rr}-5 / 2 & 3 / 2 \\ 2 & -1\end{array}\right]\left[\begin{array}{l}h \\ k\end{array}\right]$.
(9) Row reduce: $\left[\begin{array}{rrrr}2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & -1 & -2\end{array}\right]\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 2 & 3 & 0 & 0 \\ 1 & 2 & -1 & -2\end{array}\right]\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 0 & 1 & -2 & -4 \\ 0 & 1 & -2 & 4\end{array}\right]$ $\left[\begin{array}{rrrr}1 & 0 & 3 & 6 \\ 0 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Partial credit

(10) $\begin{aligned} {\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & -6 \\ 1 & 0 & 1 & 1 & -3 \\ 1 & -1 & 3 & 0 & 0\end{array}\right]\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & -6 \\ 0 & -1 & 2 & -1 & 3 \\ 1 & -2 & 4 & -2 & 6\end{array}\right]\left[\begin{array}{rrrrr}1 & 1 & -1 & 2 & -6 \\ 0 & 1 & -2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] } \\ {\left[\begin{array}{rrrrr}1 & 0 & 1 & -1 & -3 \\ 0 & 1 & -2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] . \text { The equation is equivalent to } }\end{aligned}$

$$
\begin{array}{ll}
x_{1} & +x_{3}-x_{4}=-3 \\
& x_{2}
\end{array} x_{3}+2 x_{3}=-3
$$

The bound variables are x_{1}, x_{2}, and free variables are x_{3}, x_{4}. Rewriting with free variables on the right,

$$
\begin{aligned}
x_{1} & =-3-x_{3}-x_{4} \\
x_{2} & =-3+2 x_{3}-x_{4}
\end{aligned}
$$

or in vector parametric form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-3 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right]=
$$

or writing $x_{3}=a, x_{4}=b$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-3 \\
0 \\
0
\end{array}\right]+a\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

(11) (a) The pivot columns of A and B are $1,3,5$, so x_{2} and x_{4} are free variables. Writing the homogeneous equations from B with

$$
\begin{aligned}
x_{1} & =2 x_{2}-x_{4} \\
x_{3} & = \\
x_{5} & =0
\end{aligned}
$$

free variables on the right gives $x_{3}=x_{4}$. The
system has 2 basic solutions given by setting one free variable equal to 1 and the others equal to 2 . Setting $x_{2}=1$ and $x_{4}=0$ gives the solution $v_{1}=\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0\end{array}\right]^{T}$. Setting $x_{2}=0$ and
$x_{4}=1$ gives the solution $v_{2}=\left[\begin{array}{ccccc}-1 & 0 & 1 & 1 & 0\end{array}\right]^{T}$ (we write these using transpose T to save space). Then $\left\{v_{1}, v_{2}\right\}$ is a basis for $\operatorname{null}(A)$.
(b) Row operations don't change the solution space of the homogeneous equation or the linear dependences of columns of a matrix. The pivot columns (1st, $2 \mathrm{rd}, 5$ th) of B form a basis for $\operatorname{col}(B)$ so the pivot columns (1st, 2rd, 5th) of A form a basis for $\operatorname{col}(A)$. A basis of $\operatorname{col}(A)$ is given by $\left\{w_{1}, w_{2}, w_{3}\right\}$ where $w_{1}=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$ and $w_{2}=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right], w_{3}=\left[\begin{array}{c}5 \\ -7 \\ 4\end{array}\right]$.
(c) Row span of a matrix is unchanged by ERO's, so $\operatorname{row}(A)=$ $\operatorname{row}(B)$. Since B is in echelon form, its non-zero rows form a basis of $\operatorname{row}(B)$ and hence of $\operatorname{row}(A)$. So a basis of $\operatorname{row}(A)$ is given by $\left\{u_{1}, u_{2}, u_{3}\right\}$ where $u_{1}=\left[\begin{array}{ccccc}1 & -2 & 0 & 1 & 0\end{array}\right], u_{2}=$ $\left[\begin{array}{lllll}0 & 0 & 1 & -1 & 0\end{array}\right]$ and $u_{1}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$.
(12) Row-reduce: $\left[\begin{array}{llllll}4 & 2 & 3 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 2 & 2 & 0 & 1 & 0 \\ 4 & 2 & 3 & 1 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 & 1 & -2 \\
0 & 2 & -1 & 1 & 0 & -4
\end{array}\right]\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 & 1 & -2 \\
0 & 0 & -1 & 1 & -1 & -2
\end{array}\right]\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & -1 & -1 \\
0 & 2 & 0 & 0 & 1 & -2 \\
0 & 0 & -1 & 1 & -1 & -2
\end{array}\right]} \\
& {\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 1 / 2 & -1 \\
0 & 0 & 1 & -1 & 1 & 2
\end{array}\right] \text { so }\left[\begin{array}{rrrr}
1 & -1 & -1 \\
0 & 1 / 2 & -1 \\
-1 & 1 & 2
\end{array}\right] \text { is the inverse. }}
\end{aligned}
$$

