1. Let
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 3 & 2 \\ 4 & 5 & 1 \end{bmatrix}$$
. The rank of A is
(a) 2 (b) 3 (c) 0 (d) 4 (e) 1

2. Let $\mathbf{P}_2 = \{a_0 + a_1t + a_2t^2\}$ where $\{a_0, a_1, a_2\}$ range over all real numbers, and let $T : \mathbf{P}_2 \to \mathbf{P}_2$ be a linear transformation dedifined by

$$T(a_0 + a_1t + a_2t^2) = a_1 + 9a_2t$$

If $T(p(t)) = \lambda p(t)$ for some non-zero polynomial and some real number λ , then p(t) is called an eigenvector corresponding to λ . The linear transformation T has an eigenvector:

- (a) 100 (b) 0 (c) t^2 (d) $t + 9t^2$ (e) t
- **3.** Let $\{\lambda_1, \lambda_2\}$ be two eigenvalues of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. Then the product of two eigenvalues, $\lambda_1 \lambda_2$, is equal to

(a) 28 (b)
$$-28$$
 (c) 3 (d) 4 (e) 7

4. Let
$$\mathbf{b}_{1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, Let $\mathbf{b}_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$,
Let $\mathbf{x} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ and $\mathbf{B} = \{\mathbf{b}_{1}, \mathbf{b}_{2}\}$ Find $[\mathbf{x}]_{\mathbf{B}}$.
(a) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} 5 \\ 4 \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ (e) $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$

5. The matrix $A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}$ has a complex eigenvector: (a) $\begin{bmatrix} 3 \\ 4i \end{bmatrix}$ (b) $\begin{bmatrix} 4 \\ 3i \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ (d) $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ (e) $\begin{bmatrix} 1 \\ i \end{bmatrix}$

6. Let
$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$
. The eigenvalues of A are

(a) 1, 2, 3 (b) 1,
$$\pm 2$$
 (c) 0, 1, 2 (d) 0, 1, -2 (e) 1, -2, -2

7. Let S be the parallelogram determined by the vectors $\mathbf{b}_1 = \begin{bmatrix} 5\\3 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 3\\2 \end{bmatrix}$ and let $A = \begin{bmatrix} -2 & 99\\0 & 1 \end{bmatrix}$. Compute the area of the images of S under the mapping $\mathbf{v} \mapsto A\mathbf{v}$. (a) 3 (b) 99 (c) 2 (d) -2 (e) 5

8. Let
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$
. The complex eigenvalues of A are
(a) $1 \pm 3i$ (b) $3 \pm i$ (c) $\pm 3i$ (d) 4 (e) $\pm i$

9. For what value(s) of h will **y** be in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, if $\mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$,

$$\mathbf{v}_2 = \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \mathbf{v}_3 \begin{bmatrix} 3\\1\\4 \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} 6\\4\\h \end{bmatrix}.$$
(a) 2 (b) 4 (c) 10 (d) 6 (e) 3

10.

 $\text{Let } \mathbf{b}_{1} = \begin{bmatrix} -9\\1 \end{bmatrix}, \ \mathbf{b}_{2} = \begin{bmatrix} -5\\-1 \end{bmatrix}, \ \mathbf{c}_{1} = \begin{bmatrix} 1\\-4 \end{bmatrix}, \ \mathbf{c}_{2} = \begin{bmatrix} 3\\-5 \end{bmatrix}, \ \mathbf{B} = \{\mathbf{b}_{1}, \mathbf{b}_{2}\} \text{ and } \mathbf{C} = \{\mathbf{c}_{1}, \mathbf{c}_{2}\}. \text{ If } P = \begin{bmatrix} [\mathbf{b}_{1}]_{\mathbf{C}}, [\mathbf{b}_{2}]_{\mathbf{C}} \end{bmatrix} \text{ is the change-of-coordinates matrix from } \mathbf{B} \text{ to } \mathbf{C}, \text{ then find } P.$ $\text{(a) } \frac{1}{4} \begin{bmatrix} 1 & -5\\1 & 9 \end{bmatrix} \text{ (b) } \frac{1}{7} \begin{bmatrix} -5 & 3\\4 & 1 \end{bmatrix} \text{ (c) } \begin{bmatrix} -9 & -5\\1 & -1 \end{bmatrix} \text{ (d) } \begin{bmatrix} 6 & 4\\-5 & -3 \end{bmatrix} \text{ (e) } \begin{bmatrix} 1 & 3\\-4 & -5 \end{bmatrix}$

11. Find a matrix A such that W = Col(A) where $W = \left\{ \begin{bmatrix} 9a - 8b \\ a + 2b \\ -5a \end{bmatrix} \right\}$ and $\{a, b\}$ range over all real numbers.

(a)
$$\begin{bmatrix} 9 & -8 \\ 1 & 2 \\ 0 & -5 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 9 & -8 \\ 1 & 2 \\ -5 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 9 & 1 & -5 \\ -8 & 2 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
12. Let $S = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} \right\}$. Then the subset S
(a) $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$ (b) a basis of R^3
(c) spans R^3 (d) a linearly dependent subset
(e) a linearly independent subset

13. Let
$$A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$$
 Use Cramer's rule to solve $A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

14. Let $P_2 = \{a_0 + a_1t + a_2t^2\}$ where $\{a_0, a_1, a_2\}$ range over all real numbers, and let $T: P_2 \to P_1$ be a linear transformation given by $T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$. Suppose that $\mathbf{B} = \{1, t, t^2\}$ is a basis of P_2 and $\mathbf{C} = \{1, t\}$ is a basis of P_1 . (1) Find a matrix A such that $[T\mathbf{v}]_{\mathbf{C}} = A[\mathbf{x}]_{\mathbf{B}}$. (2) Find Nul(A) and Col(A).

15. Let $A = \frac{1}{5} \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find $\lim_{k \to \infty} A^k$. (Hint: Find the Diagonalization *D* of *A* use the formula $A^k = PD^kP^{-1}$.

Solutions

1.
 Reduce to echelon form:

$$\begin{bmatrix} 3 & 2 & -1 \\ 1 & 3 & 2 \\ 4 & 5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & -1 \\ 4 & 5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & -7 & -7 \\ 0 & -7 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 There are

 two pivots so rank is 2
 $\begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & -1 \\ 4 & 5 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 3 & 2 \\ 0 & -7 & -7 \\ 0 & -7 & -7 \end{bmatrix}$
 There are

2.

With the basis $\mathcal{B} = \{1, t, t^2\}$, the matrix for T is $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 9 \\ 0 & 0 & 0 \end{bmatrix}$. Because the matrix is triangular, the characteristic polynomial is $-\lambda^3$ and hence the eigenvalue is 0 and the eigenvector is $\begin{bmatrix} 1\\0\\ \end{bmatrix}$,

so $100 = 100 + 0t + 0t^2$ is an eigenvector with eigenvalue 0.

3. The product of the roots, with multiplicities, of any polynomial with leading coefficient 1 is $(-1)^n$ times the product of the roots where n is the degree: $(t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n) =$ $t^n + \cdots + (-1)^n (\lambda_1 \cdots \lambda_n)$. In this case $\lambda_1 \lambda_2 = \det A$ so the answer is -28.

4.

We need to solve $A\mathbf{y} = \mathbf{x}$ where $A = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$. So reduce to reduced row echelon form $\begin{bmatrix} 1 & 1 & 5 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 5 \\ 0 & 3 & 9 \end{bmatrix} \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ Hence the solution is $[\mathbf{x}]_{\mathbf{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

5.

The characteristic equation is det $\begin{vmatrix} 4-\lambda & -3\\ 3 & 4-\lambda \end{vmatrix} = (4-\lambda)^2 + 9 = 16 - 8\lambda + \lambda^2 + 9 = \lambda^2 - 8\lambda + 25.$ The roots are $\lambda = \frac{8 \pm \sqrt{64 - 100}}{2} = 4 \pm 3i$. The eigenspace for 4 + 3i is the null space for $\begin{bmatrix} -3i & -3\\ 3 & 3i \end{bmatrix}$ and an eigenvector is $\begin{bmatrix} 1\\ i \end{bmatrix}$.

6.

The characteristic equation is det $\begin{vmatrix} 2-\lambda & 4 & 3\\ -4 & -6-\lambda & -3\\ 3 & 3 & 1-\lambda \end{vmatrix} = (2-\lambda) \det \begin{vmatrix} -6-\lambda & -3\\ 3 & 1-\lambda \end{vmatrix} - 4 \det \begin{vmatrix} -4 & -3\\ 3 & 1-\lambda \end{vmatrix} + 3 \det \begin{vmatrix} -4 & -6-\lambda\\ 3 & 3 \end{vmatrix} = (2-\lambda)((-6-\lambda)(1-\lambda) + 9 - (4(-4(1-\lambda) + 9) + 3(-12-3(-6-\lambda))))$ and good luck to you! OR

The sums of the five answers are all the different and the sum of the eigenvalues is the trace of the matrix 2 + (-6) + 1 = -3. Hence the only choice for the eigenvalues in the given answers is 1, -2, -2.

7. The area is the area of S times the absolute value of the determinant of A, which is 2. The area of S is det $[\mathbf{b}_1\mathbf{b}_2] = \det \begin{vmatrix} 5 & 3 \\ 3 & 2 \end{vmatrix} = 10 - 9 = 1.$

8.

The characteristic equation is $\lambda^2 - \text{tr}A\lambda + \det A = \lambda^2 - 6\lambda + 10$ with roots $\lambda = \frac{6 + \sqrt{36 - 40}}{2} = 3 \pm i$.

9.

We are looking for the *h* such that the equation $A\mathbf{x} = \mathbf{y}$ with $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 3 & 4 \end{bmatrix}$ so we need to reduce the following matrix to reduced row echelon form: $\begin{bmatrix} 1 & 2 & 3 & 6 \\ 2 & 1 & 1 & 4 \\ 3 & 3 & 4 & h \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 6 \\ 0 & -3 & -5 & -8 \\ 0 & -3 & -5 & h - 18 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 6 \\ 0 & -3 & -5 & -8 \\ 0 & 0 & 0 & h - 18 + 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 6 \\ 0 & -3 & -5 & -8 \\ 0 & 0 & 0 & h - 10 \end{bmatrix}.$ To have a solution, h - 10 = 0.

10.

We need to write
$$\mathbf{b}_{1} = \begin{bmatrix} -9\\1 \end{bmatrix} = a\mathbf{c}_{1} + b\mathbf{c}_{2} = a\begin{bmatrix} 1\\-4 \end{bmatrix} + b\begin{bmatrix} 3\\-5 \end{bmatrix}$$
 or solve $\begin{bmatrix} 1 & 3\\-4 & -5 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -9\\1 \end{bmatrix}$.
$$\begin{bmatrix} 1 & 3 & -9\\-4 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -9\\0 & 7 & -35 \end{bmatrix} \begin{bmatrix} 1 & 3 & -9\\0 & 1 & -5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 6\\0 & 1 & -5 \end{bmatrix}$$
 so the first column of P is $\begin{bmatrix} 6\\-5 \end{bmatrix}$.
$$\begin{bmatrix} 1 & 3 & -5\\-4 & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 3 & -5\\0 & 7 & -21 \end{bmatrix} \begin{bmatrix} 1 & 3 & -9\\0 & 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 4\\0 & 1 & -3 \end{bmatrix}$$
 so the second column of P is $\begin{bmatrix} 4\\-3 \end{bmatrix}$.

Hence
$$P = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}$$
.

11.
$$\begin{bmatrix} 9a - 8b \\ a + 2b \\ -5a \end{bmatrix} = a \begin{bmatrix} 9 \\ 1 \\ -5 \end{bmatrix} + b \begin{bmatrix} -8 \\ 2 \\ 0 \end{bmatrix}$$
so a matrix is
$$\begin{bmatrix} 9 & -8 \\ 1 & 2 \\ -5 & 0 \end{bmatrix}$$

12. Since there are only two vectors they can not be a basis for R^3 . They can not even span R^3 . If the two are dependent, one is a multiple of the other and this is clearly not the case. Hence they are independent. The dot product is -1 so they are not orthogonal.

13. To use Cramer's rule we need to compute four determinants:

$$\det \begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = 2 \det \begin{vmatrix} -2 & 8 \\ -1 & 7 \end{vmatrix} - (-9) \det \begin{vmatrix} 1 & -4 \\ -1 & 7 \end{vmatrix} + 0 = -12 + 27 = 15$$

$$\det \begin{vmatrix} 0 & -4 & 2 \\ 1 & 8 & -9 \\ 0 & 7 & 0 \end{vmatrix} = 0 - 1 \det \begin{vmatrix} -4 & 2 \\ 7 & 0 \end{vmatrix} + 0 = 14$$

$$\det \begin{vmatrix} 1 & 0 & 2 \\ -2 & 1 & -9 \\ -1 & 0 & 0 \end{vmatrix} = -0 + 1 \det \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} - 0 = 2$$
and
$$\det \begin{vmatrix} 1 & -4 & 0 \\ -2 & 8 & 1 \\ -1 & 7 & 0 \end{vmatrix} = 0 - 1 \det \begin{vmatrix} 1 & -4 \\ -1 & 7 \end{vmatrix} + 0 = -3$$
Hence the solution vector is $\mathbf{x} = \begin{bmatrix} \frac{14}{15} \\ \frac{2}{15} \\ -\frac{3}{15} \end{bmatrix}$.

14. A is a 2×3 matrix and the i^{th} column is found by working out T on the i^{th} basis element of \mathbf{B} .

Column 1: T(1) = 0 so $\begin{bmatrix} 0\\0 \end{bmatrix}$. Column 2: T(t) = 1 so $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Column 3: $T(t^2) = 0$ so $\begin{bmatrix} 0\\2 \end{bmatrix}$. Hence $A = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 2 \end{bmatrix}$.

The matrix A is already in echelon form and there are two pivot positions. Hence Col(A)has dimension 2 and so is all of P_1 . The space Nul(A) has dimension 1, $\begin{bmatrix} 0\\0 \end{bmatrix}$ is clearly a non-zero vector in the null space so it is a basis for it.

15.

The characteristic equation for A is $\lambda^2 - \text{trace}(A)\lambda + \det(A) = \lambda^2 - \frac{8}{5}\lambda + \frac{15}{25} = (\lambda - \frac{3}{5})(\lambda - 1).$ Hence the eigenvalues are $\frac{3}{5}$ and 1.

The eigenspace for
$$\frac{3}{5}$$
 is the null space for $\begin{bmatrix} \frac{4}{5} & \frac{2}{5} \\ -\frac{4}{5} & -\frac{2}{5} \end{bmatrix}$ and this is spanned by $\begin{bmatrix} 2 \\ -4 \end{bmatrix}$.
The eigenspace for 1 is the null space for $\begin{bmatrix} \frac{2}{5} & \frac{2}{5} \\ -\frac{4}{5} & -\frac{4}{5} \end{bmatrix}$ and this is spanned by $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
If $P = \begin{bmatrix} 2 & 1 \\ -4 & -1 \end{bmatrix}$ and $D = \begin{bmatrix} \frac{3}{5} & 0 \\ 0 & 1 \end{bmatrix}$, then $A = PDP^{-1}$. Note $\lim_{k \to \infty} D^k = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ so
 $\lim_{k \to \infty} A^k = \begin{bmatrix} 2 & 1 \\ -4 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} -1 & -1 \\ 4 & 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 1 \\ -4 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 4 & 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 4 & 2 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix}$.

1.	(ullet)	(b)	(c)	(d)	(e)
2.	(ullet)	(b)	(c)	(d)	(e)
3.	(a)	(ullet)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(ullet)	(e)
5.	(a)	(b)	(c)	(d)	(ullet)
6.	(a)	(b)	(c)	(d)	(ullet)
7.	(a)	(b)	(ullet)	(d)	(e)
8.	(a)	(ullet)	(c)	(d)	(e)
9.	(a)	(b)	(ullet)	(d)	(e)
10.	(a)	(b)	(c)	(ullet)	(e)
11.	(a)	(b)	(ullet)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(ullet)