1. Let $A=\left[\begin{array}{rrr}3 & 2 & -1 \\ 1 & 3 & 2 \\ 4 & 5 & 1\end{array}\right]$. The rank of A is
(a) 2
(b) 3
(c) 0
(d) 4
(e) 1
2. Let $\mathbf{P}_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}\right\}$ where $\left\{a_{0}, a_{1}, a_{2}\right\}$ range over all real numbers, and let $T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2}$ be a linear transformation dedifined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=a_{1}+9 a_{2} t
$$

If $T(p(t))=\lambda p(t)$ for some non-zero polynomial and some real number λ, then $p(t)$ is called an eigenvector corresponding to λ. The linear transformation T has an eigenvector:
(a) 100
(b) 0
(c) t^{2}
(d) $t+9 t^{2}$
(e) t
3. Let $\left\{\lambda_{1}, \lambda_{2}\right\}$ be two eigenvalues of $\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$. Then the product of two eigenvalues, $\lambda_{1} \lambda_{2}$, is equal to
(a) 28
(b) -28
(c) 3
(d) 4
(e) 7
4. Let $\mathbf{b}_{1}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$, Let $\mathbf{b}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$,

Let $\mathbf{x}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$ and $\mathbf{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ Find $[\mathbf{x}]_{\mathbf{B}}$.
(a) $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(b) $\left[\begin{array}{r}1 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{l}5 \\ 4\end{array}\right]$
(d) $\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{l}3 \\ 2\end{array}\right]$
5. The matrix $A=\left[\begin{array}{rr}4 & -3 \\ 3 & 4\end{array}\right]$ has a complex eigenvector:
(a) $\left[\begin{array}{r}3 \\ 4 i\end{array}\right]$
(b) $\left[\begin{array}{r}4 \\ 3 i\end{array}\right]$
(c) $\left[\begin{array}{r}1 \\ -1\end{array}\right]$
(d) $\left[\begin{array}{l}4 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{l}1 \\ i\end{array}\right]$
6. Let $A=\left[\begin{array}{rrr}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$. The eigenvalues of A are
(a) 1, 2, 3
(b) $1, \pm 2$
(c) $0,1,2$
(d) $0,1,-2$
(e) $1,-2,-2$
7. Let S be the parallelogram determined by the vectors $\mathbf{b}_{1}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$ and $\mathbf{b}_{2}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and let $A=\left[\begin{array}{rr}-2 & 99 \\ 0 & 1\end{array}\right]$. Compute the area of the images of S under the mapping $\mathbf{v} \mapsto A \mathbf{v}$.
(a) 3
(b) 99
(c) 2
(d) -2
(e) 5
8. Let $A=\left[\begin{array}{rr}5 & -5 \\ 1 & 1\end{array}\right]$. The complex eigenvalues of A are
(a) $1 \pm 3 i$
(b) $3 \pm i$
(c) $\pm 3 i$
(d) 4
(e) $\pm i$
9. For what value(s) of h will \mathbf{y} be in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, if $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right], \mathbf{v}_{3}\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}6 \\ 4 \\ h\end{array}\right]$.
(a) 2
(b) 4
(c) 10
(d) 6
(e) 3
10.

Let $\mathbf{b}_{1}=\left[\begin{array}{r}-9 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}-5 \\ -1\end{array}\right], \mathbf{c}_{1}=\left[\begin{array}{r}1 \\ -4\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{r}3 \\ -5\end{array}\right], \mathbf{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathbf{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$. If $P=\left[\left[\mathbf{b}_{1}\right]_{\mathbf{C}},\left[\mathbf{b}_{2}\right]_{\mathbf{C}}\right]$ is the change-of-coordinates matrix from \mathbf{B} to \mathbf{C}, then find P.
(a) $\frac{1}{4}\left[\begin{array}{rr}1 & -5 \\ 1 & 9\end{array}\right]$
(b) $\frac{1}{7}\left[\begin{array}{rr}-5 & 3 \\ 4 & 1\end{array}\right]$
(c) $\left[\begin{array}{rr}-9 & -5 \\ 1 & -1\end{array}\right]$
(d) $\left[\begin{array}{rr}6 & 4 \\ -5 & -3\end{array}\right]$
(e) $\left[\begin{array}{rr}1 & 3 \\ -4 & -5\end{array}\right]$
11. Find a matrix A such that $W=\operatorname{Col}(A)$ where $W=\left\{\left[\begin{array}{r}9 a-8 b \\ a+2 b \\ -5 a\end{array}\right]\right\}$ and $\{a, b\}$ range over all real numbers.
(a) $\left[\begin{array}{rr}9 & -8 \\ 1 & 2 \\ 0 & -5\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{rr}9 & -8 \\ 1 & 2 \\ -5 & 0\end{array}\right]$
(d) $\left[\begin{array}{rrr}9 & 1 & -5 \\ -8 & 2 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
12. Let $S=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 2 \\ -1\end{array}\right]\right\}$. Then the subset S
(a) $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is orthogonal to $\left[\begin{array}{r}0 \\ 2 \\ -1\end{array}\right]$
(b) a basis of R^{3}
(c) spans R^{3}
(d) a linearly dependent subset
(e) a linearly independent subset
13. Let $A=\left[\begin{array}{rrr}1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0\end{array}\right]$ Use Cramer's rule to solve $A \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
14. Let $P_{2}=\left\{a_{0}+a_{1} t+a_{2} t^{2}\right\}$ where $\left\{a_{0}, a_{1}, a_{2}\right\}$ range over all real numbers, and let $T: P_{2} \rightarrow P_{1}$ be a linear transformation given by $T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=a_{1}+2 a_{2} t$. Suppose that $\mathbf{B}=\left\{1, t, t^{2}\right\}$ is a basis of P_{2} and $\mathbf{C}=\{1, t\}$ is a basis of P_{1}.
(1) Find a matrix A such that $[T \mathbf{v}]_{\mathbf{C}}=A[\mathbf{x}]_{\mathbf{B}}$.
(2) Find $\operatorname{Nul}(A)$ and $\operatorname{Col}(A)$.
15. Let $A=\frac{1}{5}\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$. Find $\lim _{k \rightarrow \infty} A^{k}$. (Hint: Find the Diagonalization D of A use the formula $A^{k}=P D^{k} P^{-1}$.

Solutions

1.

Reduce to echelon form: $\left[\begin{array}{rrr}3 & 2 & -1 \\ 1 & 3 & 2 \\ 4 & 5 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 3 & 2 \\ 3 & 2 & -1 \\ 4 & 5 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 3 & 2 \\ 0 & -7 & -7 \\ 0 & -7 & -7\end{array}\right]\left[\begin{array}{lll}1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$ There are two pivots so rank is 2
2.

With the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$, the matrix for T is $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 9 \\ 0 & 0 & 0\end{array}\right]$. Because the matrix is triangular, the characteristic polynomial is $-\lambda^{3}$ and hence the eigenvalue is 0 and the eigenvector is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, so $100=100+0 t+0 t^{2}$ is an eigenvector with eigenvalue 0.
3. The product of the roots, with multiplicities, of any polynomial with leading coefficient 1 is $(-1)^{n}$ times the product of the roots where n is the degree: $\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)=$ $t^{n}+\cdots+(-1)^{n}\left(\lambda_{1} \cdots \lambda_{n}\right)$. In this case $\lambda_{1} \lambda_{2}=\operatorname{det} A$ so the answer is -28 .
4.

We need to solve $A \mathbf{y}=\mathbf{x}$ where $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right]$. So reduce to reduced row echelon form $\left[\begin{array}{rrr}1 & 1 & 5 \\ -1 & 2 & 4\end{array}\right]\left[\begin{array}{lll}1 & 1 & 5 \\ 0 & 3 & 9\end{array}\right]\left[\begin{array}{lll}1 & 1 & 5 \\ 0 & 1 & 3\end{array}\right]\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right]$ Hence the solution is $[\mathbf{x}]_{\mathbf{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
5.

The characteristic equation is det $\left|\begin{array}{rr}4-\lambda & -3 \\ 3 & 4-\lambda\end{array}\right|=(4-\lambda)^{2}+9=16-8 \lambda+\lambda^{2}+9=\lambda^{2}-8 \lambda+25$.
The roots are $\lambda=\frac{8 \pm \sqrt{64-100}}{2}=4 \pm 3 i$. The eigenspace for $4+3 i$ is the null space for $\left[\begin{array}{rr}-3 i & -3 \\ 3 & 3 i\end{array}\right]$ and an eigenvector is $\left[\begin{array}{l}1 \\ i\end{array}\right]$.
6.

The characteristic equation is det $\left|\begin{array}{rrr}2-\lambda & 4 & 3 \\ -4 & -6-\lambda & -3 \\ 3 & 3 & 1-\lambda\end{array}\right|=(2-\lambda) \operatorname{det}\left|\begin{array}{rr}-6-\lambda & -3 \\ 3 & 1-\lambda\end{array}\right|-$ $4 \operatorname{det}\left|\begin{array}{rr}-4 & -3 \\ 3 & 1-\lambda\end{array}\right|+3 \operatorname{det}\left|\begin{array}{rr}-4 & -6-\lambda \\ 3 & 3\end{array}\right|=(2-\lambda)((-6-\lambda)(1-\lambda)+9-(4(-4(1-\lambda)+9)+$ $3(-12-3(-6-\lambda))$ and good luck to you!

OR
The sums of the five answers are all the different and the sum of the eigenvalues is the trace of the matrix $2+(-6)+1=-3$. Hence the only choice for the eigenvalues in the given answers is $1,-2,-2$.
7.
-The area is the area of S times the absolute value of the determinant of A, which is 2 . The area of S is $\operatorname{det}\left[\mathbf{b}_{1} \mathbf{b}_{2}\right]=\operatorname{det}\left|\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right|=10-9=1$.
8.

The characteristic equation is $\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=\lambda^{2}-6 \lambda+10$ with roots $\lambda=\frac{6+\sqrt{36-40}}{2}=$ $3 \pm i$.
9.

We are looking for the h such that the equation $A \mathbf{x}=\mathbf{y}$ with $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 3 & 4\end{array}\right]$ so we need to reduce the following matrix to reduced row echelon form:
$\left[\begin{array}{llll}1 & 2 & 3 & 6 \\ 2 & 1 & 1 & 4 \\ 3 & 3 & 4 & h\end{array}\right]\left[\begin{array}{rrrr}1 & 2 & 3 & 6 \\ 0 & -3 & -5 & -8 \\ 0 & -3 & -5 & h-18\end{array}\right]\left[\begin{array}{rrrr}1 & 2 & 3 & 6 \\ 0 & -3 & -5 & -8 \\ 0 & 0 & 0 & h-18+8\end{array}\right]=\left[\begin{array}{rrrr}1 & 2 & 3 & 6 \\ 0 & -3 & -5 & -8 \\ 0 & 0 & 0 & h-10\end{array}\right]$.
To have a solution, $h-10=0$.
10.

We need to write $\mathbf{b}_{1}=\left[\begin{array}{r}-9 \\ 1\end{array}\right]=a \mathbf{c}_{1}+b \mathbf{c}_{2}=a\left[\begin{array}{r}1 \\ -4\end{array}\right]+b\left[\begin{array}{r}3 \\ -5\end{array}\right]$ or solve $\left[\begin{array}{rr}1 & 3 \\ -4 & -5\end{array}\right] \mathbf{x}=\left[\begin{array}{r}-9 \\ 1\end{array}\right]$. $\left[\begin{array}{rrr}1 & 3 & -9 \\ -4 & -5 & 1\end{array}\right]$
$\left[\begin{array}{rrr}1 & 3 & -5 \\ -4 & -5 & -1\end{array}\right]$$\left[\begin{array}{rrr}1 & 3 & -9 \\ 0 & 7 & -35\end{array}\right]\left[\begin{array}{lll}1 & 3 & -5 \\ 0 & 7 & -21\end{array}\right]\left[\begin{array}{lll}1 & 3 & -9 \\ 0 & 1 & -5\end{array}\right]\left[\begin{array}{lll}1 & 3 & -5 \\ 0 & 1 & -3\end{array}\right]\left[\begin{array}{rrr}1 & 0 & 6 \\ 0 & 1 & -5\end{array}\right]$ so the first column of P is $\left[\begin{array}{r}6 \\ -5\end{array}\right]$.

Hence $P=\left[\begin{array}{rr}6 & 4 \\ -5 & -3\end{array}\right]$.
11.

$$
\left[\begin{array}{r}
9 a-8 b \\
a+2 b \\
-5 a
\end{array}\right]=a\left[\begin{array}{r}
9 \\
1 \\
-5
\end{array}\right]+b\left[\begin{array}{r}
-8 \\
2 \\
0
\end{array}\right] \text { so a matrix is }\left[\begin{array}{rr}
9 & -8 \\
1 & 2 \\
-5 & 0
\end{array}\right]
$$

12.

Since there are only two vectors they can not be a basis for R^{3}. They can not even span R^{3}. If the two are dependent, one is a multiple of the other and this is clearly not the case. Hence they are independent. The dot product is -1 so they are not orthogonal.
13.

To use Cramer's rule we need to compute four determinants:

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{rrr}
1 & -4 & 2 \\
-2 & 8 & -9 \\
-1 & 7 & 0
\end{array}\right|=2 \operatorname{det}\left|\begin{array}{rr}
-2 & 8 \\
-1 & 7
\end{array}\right|-(-9) \operatorname{det}\left|\begin{array}{rr}
1 & -4 \\
-1 & 7
\end{array}\right|+0=-12+27=15 \\
& \operatorname{det}\left|\begin{array}{rrr}
0 & -4 & 2 \\
1 & 8 & -9 \\
0 & 7 & 0
\end{array}\right|=0-1 \operatorname{det}\left|\begin{array}{rr}
-4 & 2 \\
7 & 0
\end{array}\right|+0=14 \\
& \operatorname{det}\left|\begin{array}{rrr}
1 & 0 & 2 \\
-2 & 1 & -9 \\
-1 & 0 & 0
\end{array}\right|=-0+1 \operatorname{det}\left|\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right|-0=2 \\
& \text { and }\left|\begin{array}{rrr}
1 & -4 & 0 \\
-2 & 8 & 1 \\
-1 & 7 & 0
\end{array}\right|=0-1 \operatorname{det}\left|\begin{array}{rr}
1 & -4 \\
-1 & 7
\end{array}\right|+0=-3 \\
& \operatorname{det} \\
& \text { Hence the solution vector is } \mathbf{x}=\left[\begin{array}{c}
\frac{14}{15} \\
\frac{2}{15} \\
-\frac{3}{15}
\end{array}\right] .
\end{aligned}
$$

14.

A is a 2×3 matrix and the $i^{\text {th }}$ column is found by working out T on the $i^{\text {th }}$ basis element of \mathbf{B}.

Column 1: $T(1)=0$ so $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Column 2: $T(t)=1$ so $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Column 3: $T\left(t^{2}\right)=0$ so $\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
Hence $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
The matrix A is already in echelon form and there are two pivot positions. Hence $\operatorname{Col}(A)$ has dimension 2 and so is all of P_{1}. The space $\operatorname{Nul}(A)$ has dimension $1,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is clearly a non-zero vector in the null space so it is a basis for it.
15.

The characteristic equation for A is $\lambda^{2}-\operatorname{trace}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-\frac{8}{5} \lambda+\frac{15}{25}=\left(\lambda-\frac{3}{5}\right)(\lambda-1)$. Hence the eigenvalues are $\frac{3}{5}$ and 1 .

The eigenspace for $\frac{3}{5}$ is the null space for $\left[\begin{array}{rr}\frac{4}{5} & \frac{2}{5} \\ -\frac{4}{5} & -\frac{2}{5}\end{array}\right]$ and this is spanned by $\left[\begin{array}{r}2 \\ -4\end{array}\right]$.
The eigenspace for 1 is the null space for $\left[\begin{array}{rr}\frac{2}{5} & \frac{2}{5} \\ -\frac{4}{5} & -\frac{4}{5}\end{array}\right]$ and this is spanned by $\left[\begin{array}{r}1 \\ -1\end{array}\right]$
If $P=\left[\begin{array}{rr}2 & 1 \\ -4 & -1\end{array}\right]$ and $D=\left[\begin{array}{ll}\frac{3}{5} & 0 \\ 0 & 1\end{array}\right]$, then $A=P D P^{-1}$. Note $\lim _{k \rightarrow \infty} D^{k}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ so
$\lim _{k \rightarrow \infty} A^{k}=\left[\begin{array}{rr}2 & 1 \\ -4 & -1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \frac{1}{2}\left[\begin{array}{rr}-1 & -1 \\ 4 & 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}2 & 1 \\ -4 & -1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 4 & 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{rr}4 & 2 \\ -4 & -2\end{array}\right]=\left[\begin{array}{rr}2 & 1 \\ -2 & -1\end{array}\right]$.

1.	(\bullet)	(b)	(c)	(d)	(e)
2.	(\bullet)	(b)	(c)	(d)	(e)
3.	(a)	(\bullet)	(c)	(d)	(e)
4.	$($ a $)$	(b)	(c)	(\bullet)	(e)
5.	(a)	(b)	(c)	(d)	(\bullet)
6.	(a)	(b)	(c)	(d)	(\bullet)
7.	(a)	(b)	(\bullet)	(d)	(e)
8.	(a)	(\bullet)	(c)	(d)	(e)
9.	(a)	(b)	(\bullet)	(d)	(e)
10.	(a)	(b)	(c)	(\bullet)	(e)
11.	$($ a $)$	(b)	(\bullet)	(d)	(e)
12.	(a)	(b)	(c)	(d)	(\bullet)

