ERRATA TO EXAM 2 A-D SOLUTIONS

Exam A, Q3 It might be hepful to note that if A is an $n \times n$-matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the characteristic equation is $p(t)=\operatorname{det}\left(A-t \mathrm{I}_{n}\right)=\operatorname{det}(A)+\ldots+(-1)^{n} t^{n}$ and has roots $\lambda_{1}, \ldots \lambda_{n}$ so $p(t)=\left(\lambda_{1}-t\right) \cdots\left(\lambda_{n}-t\right)$ and $\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n}$.
Exam A, Q5 Should read "The eigenspace for $4-3 i$ is the null space of $\left[\begin{array}{cc}3 i & -3 \\ 3 & 3 i\end{array}\right]$ and an eigenevector is $\left[\begin{array}{l}1 \\ i\end{array}\right]$."
Exam B, Q8 The matrix A is diagonalizable since it has three distinct eigenvalues and A is of size 3×3.
Exam B, Q11 The adjunct is another term for the adjugate.
Exam D, Q6 The third row of the final matrix (in echelon form) should be $\left[\begin{array}{lllll}0 & 0 & 0 & 2 & 2\end{array}\right]$ but the solution is otherwise correct.
Exam D, Q10 \mathcal{E} denotes the standard basis of \mathbb{R}^{2}.

