\qquad
1.(6 pts.) Suppose that $s \geq 10$ and that

$$
\begin{array}{ccc}
(s-2) x_{1} & +3 x_{2} & =5 \\
x_{1} & +(s-4) x_{2} & =6
\end{array}
$$

Which of the following is the value of x_{2} in terms of s ?
(a) $\frac{-6 s+17}{s^{2}-6 s+8}$
(b) $\frac{5 s-38}{s^{2}-6 s+8}$
(c) $\frac{5 s-38}{s^{2}-6 s+5}$
(d) $\frac{6 s-17}{s^{2}-6 s+8}$
(e) $\frac{6 s-17}{s^{2}-6 s+5}$
2. (6 pts .) Let \mathbb{P}_{k} denote the vector space of all real polynomials of degree at most k in the indeterminate t. Let

$$
\begin{array}{rlrl}
V_{1}=\left\{p(t) \text { in } \mathbb{P}_{2}: p(1)=0\right\}, & & V_{2}=\left\{p(t) \text { in } \mathbb{P}_{2}: p(0)=1\right\} \\
V_{3}=\left\{a t^{2}+b t+c \text { in } \mathbb{P}_{2}: a-2 b+3 c=1\right\}, & & V_{4} & =\left\{a t^{2}+b t+c \text { in } \mathbb{P}_{2}: a-2 b+3 c=0\right\}
\end{array}
$$

Which one of the following statements is true?
(a) V_{2} is a subspaces of \mathbb{P}_{2} but V_{1}, V_{3} and V_{4} are not.
(b) V_{1}, V_{2} and V_{4} are subspaces of \mathbb{P}_{2} but V_{3} is not.
(c) V_{1} and V_{4} are subspaces of \mathbb{P}_{2} but V_{2} and V_{3} are not.
(d) V_{3} and V_{4} are subspaces of \mathbb{P}_{2} but V_{1} and V_{2} are not.
(e) V_{1} and V_{2} are subspaces of \mathbb{P}_{2} but V_{3} and V_{4} are not.
\qquad
3. (6 pts.) The transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}$ given by $T(\mathbf{p})=\mathbf{p}(2)$ is a linear transformation. Which of the following sets of polynomials is a basis for the kernel (null space) of T ?
(a) $\left\{t^{2}-4,2-t\right\}$
(b) $\left\{t^{2}-t-2,2 t-3\right\}$
(c) $\left\{t^{2}-t-2, t^{2}-4,2-t\right\}$
(d) $\left\{t^{2}-t-2\right\}$
(e) $\left\{t-2, t^{2}-4,2-t\right\}$
4.(6 pts.) Let $A=\left[\begin{array}{rrrrr}1 & -2 & 2 & 0 & 3 \\ -1 & 5 & -2 & 1 & -1 \\ 2 & -4 & 4 & 0 & 5\end{array}\right]$. Which of the following is equal to the dimension of the column space of A ?
(a) 3
(b) 2
(c) 1
(d) 0
(e) 4
5. (6 pts.) Suppose that A is a 10×12 matrix such that the homogeneous system $A \mathbf{x}=\mathbf{0}$ has exactly three free variables. Which one of the following statements is NOT true?
(a) The column space of the transpose matrix A^{T} is nine-dimensional.
(b) The rank of A is 9 .
(c) For all \mathbf{b} in \mathbb{R}^{10}, the linear system $A \mathbf{x}=\mathbf{b}$ has a solution.
(d) The null space of the transpose matrix A^{T} is one-dimensional.
(e) The null space of A is three-dimensional.
6. (6 pts.) Suppose that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ are two bases of \mathbb{R}^{2} such that $\mathbf{b}_{1}=$ $3 \mathbf{c}_{1}-5 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=2 \mathbf{c}_{1}-4 \mathbf{c}_{2}$. Let $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{ll}p_{11} & p_{12} \\ p_{21} & p_{22}\end{array}\right]$ denote the change of coordinates matrix from \mathcal{B} to \mathcal{C}. Which of the following is equal to p_{12} ?
(a) $-\frac{5}{2}$
(b) 2
(c) -5
(d) -2
(e) 3
7.(6 pts.) Let $A=\left[\begin{array}{rrr}2 & 0 & 3 \\ -1 & 2 & 4 \\ -3 & 0 & 8\end{array}\right]$. Which of the following are the eigenvalues of A, listed according to their multiplicities?
(a) $0,0,2$
(b) $2,2,8$
(c) $-3,2,3$
(d) 2, 5, 5
(e) $-1,2,3$
8. (6 pts.) Suppose that A is a 5×5-matrix with eigenvalues $0,0,1,1,2$ (listed according to their multiplicity). Suppose that the eigenspace of A corresponding to eigenvalue 0 is 2 dimensional and the eigenspace of A corresponding to the eigenvalue 1 is 1 -dimensional. Which one of the following statements must be true?
(a) $A-2 I_{5}$ is invertible.
(b) A has rank 3 .
(c) A is diagonalizable.
(d) $A-3 I_{5}$ is not invertible.
(e) The eigenspace of A corresponding to the eigenvalue 2 is 2-dimensional.

Initials:
9. (6 pts.) Let $A=\left[\begin{array}{rr}3 & -2 \\ 1 & 1\end{array}\right]$. Which of the following is a complex eigenvector of A ?
(a) $\left[\begin{array}{c}2-i \\ 1\end{array}\right]$
(b) $\left[\begin{array}{c}3-i \\ 1\end{array}\right]$
(c) $\left[\begin{array}{c}-2-i \\ 1\end{array}\right]$
(d) $\left[\begin{array}{c}1-i \\ 1\end{array}\right]$
(e) $\left[\begin{array}{c}-1-i \\ 1\end{array}\right]$
\qquad
10. (14 pts.) The matrix $A=\left[\begin{array}{rrrr}2 & 4 & 8 & 12 \\ 1 & 2 & 4 & 6 \\ 3 & 6 & 0 & 5 \\ -1 & -2 & 5 & 4\end{array}\right]$ is row equivalent to the matrix $B=\left[\begin{array}{llll}1 & 2 & 4 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(i) (4 pts.) Find a basis for the row space of A.
(ii) (4 pts.) Find a basis for the column space of A.
(iii) (6 pts.) Find a basis for the null space of A.
\qquad
11. (14 pts.) Let A be the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$.
(i) (4 pts.) Find the eigenvalues of A.
(ii) (6 pts.) For each eigenvalue of A, determine a corresponding eigenvector.

0
(iii) (4 pts.) Using just your work in parts (i) and (ii), write down an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
\qquad
12. (14 pts.) Consider the transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ given by $T(\mathbf{p}(t))=(t+2) \mathbf{p}^{\prime}(t)$, where $\mathbf{p}^{\prime}(t)$ is the derivative of $\mathbf{p}(t)$. For example, $T\left(t^{2}+t\right)=(t+2)(2 t+1)=2 t^{2}+5 t+2$. The function T is a linear transformation. You need not show this.
(i) (6 pts.) Calculate the matrix A of T with respect to the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}.
(ii) (4 pts.) Determine the kernel (null space) of T. What is its dimension?
(iii) (4 pts.) What is the dimension of the range of T ?
\qquad

Solutions

1.

Cramer's Rule: $\operatorname{det}\left|\begin{array}{rr}s-2 & 3 \\ 1 & s-4\end{array}\right|=(s-2)(s-4)-3=s^{2}-6 s+8-3=s^{2}-6 s+5$.
For x_{2} we need to compute det $\left|\begin{array}{rr}s-2 & 5 \\ 1 & 6\end{array}\right|=6 s-12-5=6 s-17$ and $x_{2}=\frac{6 s-17}{s^{2}-6 s+5}$.
${ }^{2 \cdot} V_{1}$ is a subspace since closed under addition and scalar multiplication. V_{2} is not since $1+1=2$, not $1 . V_{3}$ is not since $1+1=2$ and V_{4} is.
3.

Using basis $\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}, the matrix for T is $\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$ This matrix is in reduced row echelon form and variables 2 and 3 are free so basis is $\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-4 \\ 0 \\ 1\end{array}\right]$ or $t-2$ and $t^{2}-4$.
4.

$$
\left[\begin{array}{rrrrr}
1 & -2 & 2 & 0 & 3 \\
-1 & 5 & -2 & 1 & -1 \\
2 & -4 & 4 & 0 & 5
\end{array}\right]\left[\begin{array}{rrrrr}
1 & -2 & 2 & 0 & 3 \\
0 & 3 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & -1
\end{array}\right] \text {. There are } 3 \text { pivots so the dimension is } 3 \text {. }
$$

5.

Since $A: \mathbb{R}^{12} \rightarrow \mathbb{R}^{10}$ and the null space has dimension 3. Hence column space has dimension 9 and is not all of \mathbb{R}^{10}. The rank of A is 9 , the row space has dimension 9 and the column space of A^{T} has dimension 9 . Hence null space of A^{T} has dimension 1 .
6.

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \mathbf{e}_{1}=\left[\begin{array}{r}
3 \\
-5
\end{array}\right] \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \mathbf{e}_{2}=\left[\begin{array}{r}
2 \\
-4
\end{array}\right] \text { so } P=\left[\begin{array}{rr}
3 & 2 \\
-5 & -4
\end{array}\right] \text { so } p_{12}=2 \text {. }
$$

7.

$$
\begin{aligned}
& \operatorname{det}\left|\begin{array}{rrr}
2-\lambda & 0 & 3 \\
-1 & 2-\lambda & 4 \\
-3 & 0 & 8-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{rr}
2-\lambda & 3 \\
-3 & 8-\lambda
\end{array}\right|=(2-\lambda)((2-\lambda)(8-\lambda)+9)=(2- \\
& \lambda)\left(16-10 \lambda+\lambda^{2}+9\right)=(2-\lambda)\left(25-10 \lambda+\lambda^{2}\right)=(2-\lambda)(5-\lambda)^{2} .
\end{aligned}
$$

\qquad
8.

The null space of A has dimension 2. Hence A has rank $5-2=3$. Since 1 is a root of multiplicity 2 but the eigenspace only has dimension 1 , the matrix cannot be diagonalized. Since 2 is an eigenvalue $A-2 I$ can not be inverted. The eigenspace of 2 is one dimensional. Since 3 is not an eigenvalue $A-3 I$ can be inverted.
9.
$\operatorname{det}\left|\begin{array}{rr}3-\lambda & -2 \\ 1 & 1-\lambda\end{array}\right|=3-4 \lambda+\lambda^{2}+2=\lambda^{2}-4 \lambda+5$ so eigenvalues are $\lambda=\frac{4 \pm \sqrt{16-20}}{2}=2 \pm i$.
Null space for eigenvalue $2+i:\left[\begin{array}{rr}1-i & -2 \\ 1 & -1-i\end{array}\right]$ so eigenvector is $\left[\begin{array}{r}1+i \\ 1\end{array}\right]$ other eigenvector is $\left[\begin{array}{r}1-i \\ 1\end{array}\right]$
10.

The pivot columns are 1, 3 and 4 .
A basis for the row space is $\left[\begin{array}{l}1 \\ 2 \\ 4 \\ 6\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 3\end{array}\right]$.
A basis for the column space is $\left[\begin{array}{r}2 \\ 1 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{l}8 \\ 4 \\ 0 \\ 5\end{array}\right]$ and $\left[\begin{array}{r}12 \\ 6 \\ 5 \\ 4\end{array}\right]$.
To get a basis for the null space we need reduced row echelon form.
$\left[\begin{array}{llll}1 & 2 & 4 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
Therefore a basis is $\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$.
11. $\operatorname{det}\left|\begin{array}{rr}2-\lambda & 1 \\ 0 & 3-\lambda\end{array}\right|=(2-\lambda)(3-\lambda)$ so the eigenvalues are 2 and 3 .
The eigenspace for $\lambda=2$ is the null space of $\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ which has basis $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
The eigenspace for $\lambda=3$ is the null space for $\left[\begin{array}{rr}-1 & 1 \\ 0 & 0\end{array}\right]$ which has basis $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
\qquad
If $P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$. If you chose $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$, then $D=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$.
12.
$T(1)=0$ so column 1 is $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
$T(t)=t+2$ so column 2 is $\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
$T\left(t^{2}\right)=4 t+2 t^{2}$ so column 3 is $\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right]$.

The matrix is $\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 2\end{array}\right]$.
Columns 2 and 3 are pivots. Hence the null space has dimension 1 and the range (or column space) has dimension 2. It remains to determine the null space or kernel. Put $\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 2\end{array}\right]$ into reduced row echelon form. $\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ and hence $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ or the polynomial 1 or the polynomial $1+0 t+0 t^{2}$ is a basis for the null space.

