1.(6 pts.) Suppose that $s \ge 10$ and that

$$\begin{aligned} (s-2)x_1 &+ & 3x_2 &= 5\\ x_1 &+ & (s-4)x_2 &= 6 \end{aligned}$$

Which of the following is the value of x_2 in terms of s?

(a)
$$\frac{-6s+17}{s^2-6s+8}$$
 (b) $\frac{5s-38}{s^2-6s+8}$ (c) $\frac{5s-38}{s^2-6s+5}$ (d) $\frac{6s-17}{s^2-6s+8}$ (e) $\frac{6s-17}{s^2-6s+5}$

2.(6 pts.) Let \mathbb{P}_k denote the vector space of all real polynomials of degree at most k in the indeterminate t. Let

 $V_1 = \{ p(t) \text{ in } \mathbb{P}_2 : p(1) = 0 \}, \qquad V_2 = \{ p(t) \text{ in } \mathbb{P}_2 : p(0) = 1 \}$ $V_3 = \{ at^2 + bt + c \text{ in } \mathbb{P}_2 : a - 2b + 3c = 1 \}, \qquad V_4 = \{ at^2 + bt + c \text{ in } \mathbb{P}_2 : a - 2b + 3c = 0 \}.$ Which one of the following statements is true?

- (a) V_2 is a subspaces of \mathbb{P}_2 but V_1 , V_3 and V_4 are not.
- (b) V_1 , V_2 and V_4 are subspaces of \mathbb{P}_2 but V_3 is not.
- (c) V_1 and V_4 are subspaces of \mathbb{P}_2 but V_2 and V_3 are not.
- (d) V_3 and V_4 are subspaces of \mathbb{P}_2 but V_1 and V_2 are not.
- (e) V_1 and V_2 are subspaces of \mathbb{P}_2 but V_3 and V_4 are not.

- **3.**(6 pts.) The transformation $T: \mathbb{P}_2 \to \mathbb{R}$ given by $T(\mathbf{p}) = \mathbf{p}(2)$ is a linear transformation. Which of the following sets of polynomials is a basis for the kernel (null space) of T?
 - (a) $\{t^2 4, 2 t\}$ (b) $\{t^2 - t - 2, 2t - 3\}$ (c) $\{t^2 - t - 2, t^2 - 4, 2 - t\}$ (d) $\{t^2 - t - 2\}$ (e) $\{t - 2, t^2 - 4, 2 - t\}$

4.(6 pts.) Let $A = \begin{bmatrix} 1 & -2 & 2 & 0 & 3 \\ -1 & 5 & -2 & 1 & -1 \\ 2 & -4 & 4 & 0 & 5 \end{bmatrix}$. Which of the following is equal to the dimension of the column space of A? (a) 3 (b) 2 (c) 1 (d) 0 (e) 4

- **5.**(6 pts.) Suppose that A is a 10×12 matrix such that the homogeneous system $A\mathbf{x} = \mathbf{0}$ has exactly three free variables. Which one of the following statements is NOT true?
 - (a) The column space of the transpose matrix A^T is nine-dimensional.
 - (b) The rank of A is 9.
 - (c) For all **b** in \mathbb{R}^{10} , the linear system $A\mathbf{x} = \mathbf{b}$ has a solution.
 - (d) The null space of the transpose matrix A^T is one-dimensional.
 - (e) The null space of A is three-dimensional.

- **6.**(6 pts.) Suppose that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ are two bases of \mathbb{R}^2 such that $\mathbf{b}_1 = 3\mathbf{c}_1 5\mathbf{c}_2$ and $\mathbf{b}_2 = 2\mathbf{c}_1 4\mathbf{c}_2$. Let $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$ denote the change of coordinates matrix from \mathcal{B} to \mathcal{C} . Which of the following is equal to p_{12} ?
 - (a) $-\frac{5}{2}$ (b) 2 (c) -5 (d) -2 (e) 3

7.(6 pts.) Let $A = \begin{bmatrix} 2 & 0 & 3 \\ -1 & 2 & 4 \\ -3 & 0 & 8 \end{bmatrix}$. Which of the following are the eigenvalues of A, listed according to their multiplicities?

(a) 0, 0, 2 (b) 2, 2, 8 (c) -3, 2, 3 (d) 2, 5, 5 (e) -1, 2, 3

8.(6 pts.) Suppose that A is a 5×5 -matrix with eigenvalues 0, 0, 1, 1, 2 (listed according to their multiplicity). Suppose that the eigenspace of A corresponding to eigenvalue 0 is 2-dimensional and the eigenspace of A corresponding to the eigenvalue 1 is 1-dimensional. Which one of the following statements must be true?

(a) $A - 2I_5$ is invertible. (b) A has rank 3.

(c) A is diagonalizable. (d) $A - 3I_5$ is not invertible.

(e) The eigenspace of A corresponding to the eigenvalue 2 is 2-dimensional.

5

9.(6 pts.) Let $A = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$. Which of the following is a complex eigenvector of A? (a) $\begin{bmatrix} 2-i \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} 3-i \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} -2-i \\ 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1-i \\ 1 \end{bmatrix}$ (e) $\begin{bmatrix} -1-i \\ 1 \end{bmatrix}$

Initials: $\mathbf{10.}(14 \text{ pts.}) \text{ The matrix } A = \begin{bmatrix} 2 & 4 & 8 & 12 \\ 1 & 2 & 4 & 6 \\ 3 & 6 & 0 & 5 \\ -1 & -2 & 5 & 4 \end{bmatrix} \text{ is row equivalent to the matrix } B = \begin{bmatrix} 1 & 2 & 4 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$ (i) (4 pts.) Find a basis for the row space of A.

(ii) (4 pts.) Find a basis for the column space of A.

(iii) (6 pts.) Find a basis for the null space of A.

Initials: _

11.(14 pts.) Let A be the matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$. (i) (4 pts.) Find the eigenvalues of A.

- (ii) (6 pts.) For each eigenvalue of A, determine a corresponding eigenvector.
- (iii) (4 pts.) Using just your work in parts (i) and (ii), write down an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

8

- **12.**(14 pts.) Consider the transformation $T: \mathbb{P}_2 \to \mathbb{P}_2$ given by $T(\mathbf{p}(t)) = (t+2)\mathbf{p}'(t)$, where $\mathbf{p}'(t)$ is the derivative of $\mathbf{p}(t)$. For example, $T(t^2+t) = (t+2)(2t+1) = 2t^2 + 5t + 2$. The function T is a linear transformation. You need not show this.
 - (i) (6 pts.) Calculate the matrix A of T with respect to the basis $\mathcal{B} = \{1, t, t^2\}$ for \mathbb{P}_2 .
 - (ii) (4 pts.) Determine the kernel (null space) of T. What is its dimension?
 - (iii) (4 pts.) What is the dimension of the range of T?

Solutions

1.

Cramer's Rule: det
$$\begin{vmatrix} s-2 & 3\\ 1 & s-4 \end{vmatrix} = (s-2)(s-4) - 3 = s^2 - 6s + 8 - 3 = s^2 - 6s + 5.$$

For x_2 we need to compute det $\begin{vmatrix} s-2 & 5\\ 1 & 6 \end{vmatrix} = 6s - 12 - 5 = 6s - 17$ and $x_2 = \frac{6s - 17}{s^2 - 6s + 5}.$

 V_1 is a subspace since closed under addition and scalar multiplication. V_2 is not since 1+1=2, not 1. V_3 is not since 1 + 1 = 2 and V_4 is.

3.

Using basis $\{1, t, t^2\}$ for \mathbb{P}_2 , the matrix for T is $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$ This matrix is in reduced row echelon form and variables 2 and 3 are free so basis is $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}$ or t-2 and t^2-4 .

4.	- _1 _1	$-2 \\ 5$	$2 \\ -2$	0 1	$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$-2 \\ 3$	$2 \\ 0$	0 1	$3 \\ 2$	There are 3 pivots so the dimension is 3
	2	-4	4	0	5	0	0	0	0	$-1_{_{_{_{_{_{_{_{}}}}}}}}$	

5. Since $A: \mathbb{R}^{12} \to \mathbb{R}^{10}$ and the null space has dimension 3. Hence column space has dimension 9 and is not all of \mathbb{R}^{10} . The rank of A is 9, the row space has dimension 9 and the column space of A^T has dimension 9. Hence null space of A^T has dimension 1.

6.

$$P_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{e}_1 = \begin{bmatrix} 3\\-5 \end{bmatrix} P_{\mathcal{C}\leftarrow\mathcal{B}}\mathbf{e}_2 = \begin{bmatrix} 2\\-4 \end{bmatrix} \text{ so } P = \begin{bmatrix} 3 & 2\\-5 & -4 \end{bmatrix} \text{ so } p_{12} = 2.$$

7.

$$\det \begin{vmatrix} 2-\lambda & 0 & 3\\ -1 & 2-\lambda & 4\\ -3 & 0 & 8-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 2-\lambda & 3\\ -3 & 8-\lambda \end{vmatrix} = (2-\lambda)((2-\lambda)(8-\lambda)+9) = (2-\lambda)(16-10\lambda+\lambda^2+9) = (2-\lambda)(25-10\lambda+\lambda^2) = (2-\lambda)(5-\lambda)^2.$$

8. The null space of A has dimension 2. Hence A has rank 5 - 2 = 3. Since 1 is a root of multiplicity 2 but the eigenspace only has dimension 1, the matrix cannot be diagonalized. Since 2 is an eigenvalue A - 2I can not be inverted. The eigenspace of 2 is one dimensional. Since 3 is not an eigenvalue A - 3I can be inverted.

9.

$$\det \begin{vmatrix} 3-\lambda & -2\\ 1 & 1-\lambda \end{vmatrix} = 3-4\lambda+\lambda^2+2 = \lambda^2-4\lambda+5 \text{ so eigenvalues are } \lambda = \frac{4\pm\sqrt{16-20}}{2} = 2\pm i.$$
Null space for eigenvalue $2+i$: $\begin{bmatrix} 1-i & -2\\ 1 & -1-i \end{bmatrix}$ so eigenvector is $\begin{bmatrix} 1+i\\ 1 \end{bmatrix}$ other eigenvector is $\begin{bmatrix} 1-i\\ 1 \end{bmatrix}$

10. The pivot columns are 1, 3 and 4.

A basis for the row space is
$$\begin{bmatrix} 1\\2\\4\\6 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\2\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\0\\0\\0\\3 \end{bmatrix}$.
A basis for the column space is $\begin{bmatrix} 2\\1\\3\\-1 \end{bmatrix}$, $\begin{bmatrix} 8\\4\\0\\5 \end{bmatrix}$ and $\begin{bmatrix} 12\\6\\5\\4 \end{bmatrix}$.
To get a basis for the null space we need reduced row echelon form.
 $\begin{bmatrix} 1 & 2 & 4 & 6\\0 & 0 & 2 & 0\\0 & 0 & 2 & 0\\0 & 0 & 0 & 3\\0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 0\\0 & 0 & 2 & 0\\0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 0 \end{bmatrix}$
Therefore a basis is $\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$.

11.

 $\det \begin{vmatrix} 2-\lambda & 1\\ 0 & 3-\lambda \end{vmatrix} = (2-\lambda)(3-\lambda) \text{ so the eigenvalues are 2 and 3.}$ The eigenspace for $\lambda = 2$ is the null space of $\begin{bmatrix} 0 & 1\\ 0 & 1 \end{bmatrix}$ which has basis $\begin{bmatrix} 1\\ 0 \end{bmatrix}$.
The eigenspace for $\lambda = 3$ is the null space for $\begin{bmatrix} -1 & 1\\ 0 & 0 \end{bmatrix}$ which has basis $\begin{bmatrix} 1\\ 1 \end{bmatrix}$.

If
$$P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
. If you chose $P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, then $D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$.

12.

$$T(1) = 0 \text{ so column 1 is } \begin{bmatrix} 0\\0\\0\\\end{bmatrix}.$$
$$T(t) = t + 2 \text{ so column 2 is } \begin{bmatrix} 2\\1\\0\\\end{bmatrix}.$$
$$T(t^2) = 4t + 2t^2 \text{ so column 3 is } \begin{bmatrix} 0\\4\\2\\\end{bmatrix}.$$
The matrix is
$$\begin{bmatrix} 0 & 2 & 0\\0 & 1 & 4\\0 & 0 & 2\\\end{bmatrix}.$$

Columns 2 and 3 are pivots. Hence the null space has dimension 1 and the range (or column space) has dimension 2. It remains to determine the null space or kernel. Put $\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$
 into reduced row echelon form.
$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 and hence
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 or the polynomial 1 or the polynomial 1 + 0t + 0t² is a basis for the null space.

12