Exam 2D solutions

Multiple choice.

(1) $[x]_{B}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ where $c_{1} b_{1}+c_{2} b_{2}=x$. So $c_{1}[21]^{T}+c_{2}[-11]^{T}=[45]^{T}$ where T denotes transpose. That is, $2 c_{1}-c_{2}=4, c+c_{2}=5$. Adding, $3 c_{1}=9, c_{1}=3$, so $c_{2}=2$ and $[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ (or solve by row-reducing the augmented matrix of the system).
(2) The product of the complex eigenvalues (with their multiplicities) is the determinant, which is $2 \cdot 2-(-2) \cdot 2=8$. Or: the characteristic polynomial is $\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)$ where A is the matrix. This is $\lambda^{2}-4 \lambda+8$ with roots $2 \pm 2 i$ (by quadratic formula) and product $(2+2 i)(2-2 i)=2^{2}+2^{2}=8$.
(3) The orthogonal complement of a set A of vectors is the set of all vectors orthogonal to each vector in A; it is always a subspace. Upper half plane is not closed under multiplication by negative scalars. Union of two (distinct) lines is not closed under addition. If a 2×2 matrix has two distinct real eigenvalues, the set of all eigenvectors is a union of two (distinct) lines and so is not closed under addition. Obviously, only one of these is a subspace. the last matrix (first, second, third) give the desired basis (note rows are written as column vectors in the answers).
(5) Let $\mathcal{E}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ be the standard basis. Then $P=P_{\mathcal{E} \leftarrow \mathcal{B}}=$ $\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right], P_{\mathcal{B} \leftarrow \mathcal{E}}=P^{-1}=\left[\begin{array}{cc}-4 & 3 \\ 3 & -2\end{array}\right]$. Note A is the \mathcal{E}-matrix of the linear transformation, so $P^{-1} A P=\left[\begin{array}{cc}-4 & 3 \\ 3 & -2\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$ is the \mathcal{B}-matrix. This simplifies to $\left[\begin{array}{cc}-4 & 3 \\ 3 & -2\end{array}\right]\left[\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right]=\left[\begin{array}{cc}-6 & -7 \\ 5 & 6\end{array}\right]$.
(6) Start row-reducing: $\left[\begin{array}{rrrrr}1 & 3 & -2 & 5 & 3 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 1 & 1 & 2 & 3\end{array}\right]\left[\begin{array}{rrrrr}1 & 3 & -2 & 5 & 3 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 5 & -5 & 8 & 3\end{array}\right]\left[\begin{array}{rrrrr}1 & 3 & -2 & 5 & 3 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 0 & -2 & 2\end{array}\right]$

This is in echelon form (though not row-reduced) and has 3 pivot positions; the row-reduced echelon form will have (the same) 3 pivot positions so the rank is 3 .
(7) $u \cdot u=\|u\|^{2}$, and this is the only correct statement.
(8) Let $u=\left[\begin{array}{l}1 \\ 7\end{array}\right], v=\left[\begin{array}{c}-4 \\ 2\end{array}\right]$. The projection is $x=\frac{u \cdot v}{v \cdot v} v$. Here, $u \cdot v=1 \cdot(-4)+7 \cdot 2=10, v \cdot v=(-4)^{2}+2^{2}=20$ and $x=\frac{1}{2} v=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
(9) If $\operatorname{det}(A)=0$, then A is not invertible, A has rank less than n, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=0, \lambda=0$ is a root of the characteristic polynomial $\operatorname{det}(A-\lambda I)$ and hence is an eigenvalue of A, and the columns of A don't span \mathbb{R}^{n}.

$$
\begin{gathered}
\text { (10) } P_{\mathcal{E} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
7 & -3 \\
5 & -1
\end{array}\right] \text { and } P_{\mathcal{E} \leftarrow \mathcal{C}}=\left[\begin{array}{cc}
1 & -2 \\
-5 & 2
\end{array}\right] . \text { So } P_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{C} \leftarrow \mathcal{E}} P_{\mathcal{E} \leftarrow \mathcal{B}}= \\
\left(P_{\mathcal{E} \leftarrow \mathcal{C}}\right)^{-1} P_{\mathcal{E} \leftarrow \mathcal{B}}=\frac{1}{-8}\left[\begin{array}{ll}
2 & 2 \\
5 & 1
\end{array}\right]\left[\begin{array}{ll}
7 & -3 \\
5 & -1
\end{array}\right]=-\frac{1}{8}\left[\begin{array}{cc}
24 & -8 \\
40 & -16
\end{array}\right]=\left[\begin{array}{ll}
-3 & 1 \\
-5 & 2
\end{array}\right] .
\end{gathered}
$$

Partial credit.

$$
\text { (11)(a) } A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{array}\right] \text {. The characteristic polynomial is } \operatorname{det}(A-\lambda I)
$$

which is $\operatorname{det}\left[\begin{array}{ccc}3-\lambda & 0 & 0 \\ 0 & 1-\lambda & 2 \\ 0 & 2 & 1-\lambda\end{array}\right]=(3-\lambda) \operatorname{det}\left[\begin{array}{cc}1-\lambda & 2 \\ 2 & 1-\lambda\end{array}\right]$. This equals $(3-\lambda)\left((1-\lambda)^{2}-4\right)=-(\lambda-3)^{2}(\lambda+1)$. Its roots, the eigenvalues of A, are $\lambda=3,3,-1$. Now $A-3 I=\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & -2 & 2 \\ 0 & 2 & -2\end{array}\right]$. A column vector $[x, y, z]^{T}$ is in the nullspace of $A-3 I=$ if x is arbitrary and $y=z$. Hence $[1,0,0]^{T}$ and $[0,1,1]^{T}$ forms a basis for the 3 -eigenspace. Similarly, $A-(-1) I=A=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2\end{array}\right]$. A vector $[x, y, z]^{T}$ is in the nullspace of $A+I=$ if $x=0$ and $y=-z$. Hence $[0,-1,1]^{T}$ forms a basis for the -1 -eigenspace.
(b) Let $P=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]$ have the eigenvectors as columns and $D=$ $\left[\begin{array}{rrr}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1\end{array}\right]$ have the corresponding eigenvalues as diagonal entries. Then $A P=P D$ and $A=P D P^{-1}$.
(12)(a) Gram-Schmidt produces from a linearly independent set v_{1}, \ldots, v_{n} an orthogonal set w_{1}, \ldots, w_{n} where $w_{1}=v_{1}$ and

$$
w_{i}=v_{i}-\frac{v_{i} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}-\ldots-\frac{v_{i} \cdot w_{i-1}}{w_{i-1} \cdot w_{i-1}} w_{i-1}
$$

for $i>1$. Here,

$$
\begin{gathered}
w_{1}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right], \quad w_{2}=\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right]-\frac{4}{8}\left[\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
-1 \\
0
\end{array}\right], \\
w_{3}=\left[\begin{array}{r}
0 \\
-2 \\
-2 \\
4
\end{array}\right]-\frac{4}{8}\left[\begin{array}{l}
0 \\
2 \\
0 \\
2
\end{array}\right]-\frac{2}{2}\left[\begin{array}{r}
-1 \\
0 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 \\
-3 \\
-1 \\
3
\end{array}\right],
\end{gathered}
$$

(13)(a) $u_{1} \cdot u_{2}=3 \cdot(-4)+4 \cdot(-3)+0 \cdot 0=0$
(b)

$$
w=\frac{y \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}+\frac{y \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}=\frac{30}{25} u_{1}+\frac{-15}{25} u_{2}=\left[\begin{array}{l}
6 \\
3 \\
0
\end{array}\right]
$$

(c) $z=y-w=\left[\begin{array}{r}0 \\ 0 \\ -2\end{array}\right]$
(d) $\|y\|^{2}=6^{2}+(-2)^{2}=49,\|w\|^{2}=6^{2}+3^{2}+0^{2}=45$ and $\|z\|^{2}=$ $0^{2}+0^{2}+(-2)^{2}=4$. One has $\|y\|^{2}=\|z\|^{2}+\|w\|^{2}$ by Pythagoras' theorem, since the difference $z=y-w$ between y and its projection w on the span of u_{1} and u_{2} is orthogonal to each vector (such as w) in that span.

