1.(5pts) Let U be an $m \times n$ matrix with orthonormal columns and let $W=\operatorname{Col} U$. Determine which statement is not always true.
(a) $\|U \mathbf{x}\|=1$ for $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}
(b) $U^{T} U=I$
(c) $(U \mathbf{x}) \cdot(U \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for \mathbf{x}, \mathbf{y} in \mathbb{R}^{n}
(d) $\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y}$ for \mathbf{y} in \mathbb{R}^{m}
(e) The columns of U form a basis for W.
2.(5pts) Find the orthogonal projection of $\mathbf{y}=\left[\begin{array}{r}-2 \\ 4 \\ 3\end{array}\right]$ onto the subspace W spanned by $\mathbf{u}_{1}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.
(a) $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{r}1 \\ 1 \\ -4\end{array}\right]$
(d) $\left[\begin{array}{l}3 \\ 3 \\ 0\end{array}\right]$
(e) $\left[\begin{array}{r}7 \\ 7 \\ 17\end{array}\right]$
3.(5pts) Use the Gram-Schmidt process to find an orthogonal basis for the span of the vectors $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
(a) $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 2 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$
4. (5pts) Classify the differential equation $y^{\prime}=\frac{\cos (x)+y \sin (x)}{\ln (x)}, \quad x>0$.
(a) linear
(b) separable
(c) exact
(d) autonomous
(e) none of the above
5. (5pts) Solve the differential equation $y^{\prime}+2 y=3 e^{t}$ subject to the initial condition $y(1)=0$.
(a) $y=e^{t}-e^{3-2 t}$
(b) $y=e^{3 t}-e^{3}$
(c) $y=e^{2 t}-e^{3-t}$
(d) $y=e^{t}-1$
(e) $y=e^{t}$
6. (5pts) Let $\phi(x)$ be the solution of the differential equation $y^{\prime}=x y^{2}$ satisfying $\phi(0)=2$. Find $\phi(3)$.
(a) $-1 / 4$
(b) 0
(c) $2 / 9$
(d) $1 / 3$
(e) $-2 / 5$
7.(5pts) Determine the interval where the solution to the initial value problem is guaranteed to exist.

$$
\cos (t) y^{\prime}=y+e^{1 / t}, \quad y(\pi)=0
$$

(a) $(\pi / 2,3 \pi / 2)$
(b) $(0, \infty)$
(c) $(0,3 \pi / 2)$
(d) $(-\pi / 2, \pi / 2)$
(e) (π, ∞)
8. (5pts) Suppose a certain population of red squirrels satisfies the differential equation

$$
\frac{d N}{d t}=-0.05\left(1-\frac{N}{700}\right)\left(1-\frac{N}{2000}\right) N
$$

If the current population is 600 , determine the long-term population of red squirrels predicted by this model.
(a) 0
(b) 700
(c) 2000
(d) $\ln (700) / 0.05$
(e) $\ln (2000) / 0.05$
9. (5pts) Find the solution to the initial value problem $y^{\prime \prime}-5 y^{\prime}-6 y=0, y(0)=0, y^{\prime}(0)=1$.
(a) $y=\frac{1}{7}\left(e^{6 t}-e^{-t}\right)$
(b) $y=e^{-2 t}-e^{-3 t}$
(c) $y=-\frac{1}{5}\left(e^{-2 t}+e^{-3 t}\right)$
(d) $y=\frac{1}{7}\left(e^{t}-e^{-6 t}\right)$
(e) $y=\frac{1}{5}\left(e^{3 t}+e^{2 t}\right)$
10. (5pts) Find a value for r such that $y=t^{r}$ is a solution of the differential equation $9 t^{2} y^{\prime \prime}+$ $12 t y^{\prime}-2 y=0$.
(a) $-2 / 3$
(b) 2
(c) 3
(d) $-1 / 6$
(e) $3 / 4$
11. (10pts) Find the least-squares solution $\hat{\mathbf{x}}$ to $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}7 \\ -2 \\ 3 \\ 5\end{array}\right]$.
12. (10pts) Gases from the ground below a house seep into its $3000 \mathrm{ft}^{3}$ basement at the rate of $2 \mathrm{ft}^{3}$ per day. Air leaves the basement at the same rate. The incoming gases contain 5% radon. Assuming the basement is initially clear of radon gas, calculate how many days it will take for the basement to reach the dangerous level of 1% radon gas.
13.(10pts) Solve the initial value problem by first finding an integrating factor.

$$
y \tan (x) d x+(y \sec (x)-1) d y=0, \quad y(\pi)=2
$$

Solutions

${ }^{1 .}$ Since $\|U c \mathbf{x}\|=c\|U \mathbf{x}\|$ (a) is not always true.
2.
\mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal so

$$
\begin{gathered}
\operatorname{proj}_{W}\left(\left[\begin{array}{r}
-2 \\
4 \\
3
\end{array}\right]\right)=\frac{\left[\begin{array}{r}
-2 \\
4 \\
3
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]}{\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right] \bullet\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]+\frac{\left[\begin{array}{r}
-2 \\
4 \\
3
\end{array}\right] \bullet\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \bullet\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]= \\
\frac{-1}{3}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]+\frac{8}{6}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\frac{1}{6}\left(\left[\begin{array}{r}
-2 \\
-2 \\
2
\end{array}\right]+\left[\begin{array}{r}
8 \\
8 \\
16
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]
\end{gathered}
$$

$3 .{ }_{\mathbf{v}_{1}}=\mathrm{x}_{1}$

$$
\begin{aligned}
& \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]-\frac{\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] \bullet\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \bullet\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

${ }^{4}$. Write it as

$$
y^{\prime}+\frac{-\sin (x)}{\ln (x)} y=\frac{\cos (x)}{\ln (x)}
$$

shows that it is linear.
5.

The equation is linear first order so $\int 2 d t=2 t$ so $\mu=e^{2 t}$ and we need to do $\int 3 e^{t} e^{2 t} d t=$ $\int 3 e^{3 t} d t=e^{3 t}+C$ and the general solution is $y=e^{-2 t}\left(e^{3 t}+C\right)$. Since $y(1)=0,0=$ $e^{-2}\left(e^{3}+C\right)$ so $C=e^{-3}$ and $y=e^{-2 t}\left(e^{3 t}-e^{3}\right)$.
6.

The equation is separable so $\frac{d y}{y^{2}}=x d x$ or $-y-1=x^{2} / 2+C$. Since $y(0)=2,-1 / 2=0+C$ so $-\frac{1}{y}=\frac{x^{2}-1}{2}$ or $y=\frac{2}{1-x^{2}} . \phi(3)=\frac{2}{1-3^{2}}=\frac{2}{-8}=-1 / 4$
${ }^{7}$. The equation is linear and the standard form is

$$
y^{\prime}+\frac{-1}{\cos (t)} y=\frac{e^{1 / t}}{\cos (t)}, \quad y(\pi)=0
$$

We are looking for the largest open interval containing π such that $t \neq 0$ and $\cos (t) \neq 0$. That interval is $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$.
8.

The equation is autonomous and the zeros of the function are $N=0, N=700$ and $N=2000$. At $N=600, \frac{d N}{d t}<0$ so N is decreasing. For all N between 0 and $700, \frac{d N}{d t}<0$ so N eventually goes to 0 .
9.

2 nd order linear with constant coefficients so solve $r^{2}-5 r-6=(r-6)(r+1)=0$ so the roots are 6 and $_{2}$ so the general solution is $y=c_{1} e^{-t}+c_{2} e^{6 t}$ and then $y^{\prime}=-c_{1} e^{-t}+6 c_{2} e^{6 t}$ so $0=y(0)=c_{1}+c_{2}$ and $1=y^{\prime}(0)=-c_{1}+6 c_{2}$. Hence $c_{2}=1 / 7$ and $c_{1}=-1 / 7$.
10.
$y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$ so

$$
9 r(r-1) t^{r}+12 r t^{r}-2 t^{r}=\left(9 r^{2}-9 r+12 r-2\right) t^{r}
$$

which vanishes if and only if $9 r^{2}+3 r-2=(3 r-1)(3 r+2)=0$ Hence two values of r work, $r=1 / 3$ and $r=-2 / 3$.
11.

Solve $A^{T} A \mathbf{x}=A^{T} \mathbf{b} . A^{T}=\left[\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
7 \\
-2 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
15 \\
10
\end{array}\right]}
\end{aligned}
$$

so solve

$$
\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \hat{x}=\left[\begin{array}{l}
15 \\
10
\end{array}\right]
$$

By inspection $\hat{x}=\left[\begin{array}{l}5 \\ 0\end{array}\right]$.
12.

Let $R(t)$ denote the total amount of radon in the air in ft^{3}. A cubic foot of incoming gas contains $0.05 \mathrm{ft}^{3}$ of radon. A cubic foot of outgoing gas contains $\frac{R}{3000} \mathrm{ft}^{3}$ of radon.

Hence $0.1 \mathrm{ft}^{3} /$ day is the amount of incoming radon per day and $\frac{2 R}{3000} \mathrm{ft}^{3}$ is the amount of outgoing radon per day. Hence

$$
\frac{d R}{d t}=0.1-\frac{R}{1500}
$$

This equation is linear and in standard form is

$$
R^{\prime}+\frac{1}{1500} R=0.1
$$

Hence $\mu=e^{t / 1500}$ and $\int 0.1 e^{-t / 1500} d t=150 e^{-t / 1500}+C$ so $R=150+C e^{-t / 1500}$.

Since the basement is initially clear of radon $R(0)=0$ and $C=-150$ and so $R=$ $150\left(1-e^{-t / 1500}\right)$.

We are looking for the time t for which $R(t)=0.01 \cdot 3000=30$ so $150\left(1-e^{-t / 1500}\right)=30$ or $1-e^{-t / 1500}=0.2$ or $0.8=e^{-t / 1500}$ or $-t / 1500=\ln (0.8)$ or

$$
t=\frac{-\ln (0.8)}{1500} \quad \text { days }
$$

With a calculator this is about 335 days.
13.
$M=y \tan (x)$ and $N=y \sec (x)-1$ so $M_{y}=\tan (x)$ and $N_{x}=y \tan (x) \sec (x)$ so $M_{y}-N_{x}=$ $\tan (x)-y \tan (x) \sec (x)=\tan (x)(1-y \sec (x))=-\tan (x) N$. Hence $\frac{\mu^{\prime}}{\mu}=-\tan (x)$ or $\ln |\mu|=-\ln |\cos (x)|$ so we may take $\mu=\cos (x)$. The new equation is

$$
y \cos (x) \tan (x) d x+\cos (x)(y \sec (x)-1) d y=0, \quad y(\pi)=2
$$

or

$$
y \sin (x) d x+(y-\cos (x)) d y=0, \quad y(\pi)=2
$$

$\frac{\partial \psi}{\partial x}=y \sin (x)$ so $\psi=-y \cos (x)+g(y)$.
Then $\frac{\partial \psi}{\partial y}=-\cos (x)+g^{\prime}(y)=y-\cos (x)$ so $g^{\prime}(y)=y$ and $\psi=-y \cos (x)+y^{2} / 2$ Since $y(\pi)=2$, the value of the level curve is $-2 \cos (\pi)+2^{2} / 2=2+2=4$ so $-y \cos (x)+y^{2} / 2-=4$ or

$$
y^{2}-2 y \cos (x)-8=0
$$

You can solve for y using the quadratic formula although you were not asked for this. If you do proceed however,

$$
y=\frac{2 \cos (x) \pm \sqrt{4 \cos ^{2}(x)+32}}{2}
$$

When $x=\pi, y=\frac{-2 \pm \sqrt{4+32}}{2}=\frac{-2 \pm 6}{2}=2$ or -4 . Since we are looking for the solution with $y(\pi)=2$, the unique solution is

$$
y=\frac{2 \cos (x)+\sqrt{4 \cos ^{2}(x)+32}}{2}
$$

