
Exam 3D solutions

Multiple choice.
(1) Separating variables in dy

dx
= 1−x2

y
gives y dy = (1 − x2) dx so∫

y dy =
∫

(1− x2) dx, 1
2
y2 = x− 1

3
x3 +C and y = ±

√
2x− 2

3
x3 + 2C.

When x = 0, y(0) = 4 = ±
√

2C so C = 8 and the sign is “+”. Thus,

φ(x) =
√

2x− 2
3
x3 + 16. So φ(3) =

√
6− 18 + 16 =

√
4 = 2.

(2) e
∫
−2x dx = e−x

2

(3) Note f(y) = y − y3 = y(1− y)(1 + y). So the critical points are
y = −1, 0, 1. For y < −1 (e.g. y = −2) or 0 < y < 1 (e.g. y = 1

2
) one

has f(y) > 0. For −1 < y < 0 (e.g. y = −1
2
) or y > 1 (e.g. y = 2),

one has f(y) < 0. The stable equilibria occur at critical points c where
f(y) > 0 for y < c and f(y) < 0 for y > c i.e. at y = 1 and y = −1.

(4) The solution for the IVP y′ = f(x, y), y′(x0) = y0 will be unique
provided f and ∂f

∂y
are defined and continuous on an open rectangle

containing (x0, y0). For the equation y′ = (y − 1)1/5 with y(1) = 0,

one has f(x, y) = (y − 1)1/5, ∂f
∂y

= 1
5
(y − 1)−

4
5 , and (x0, y0) = (1, 0),

which satisfies these conditions. For the other equations, the partial
derivative with respect to y does not exist at (x0, y0) so uniqueness is
not guaranteed.

(5) The IVP is y′ −
√
t+4

9−t2 y = ln(2−t)
9−t2 with y(−2) = 0. This is y′ +

p(y)y = g(t) where p(t) = −
√
t+4

9−t2 and q(t) = ln(2−t)
9−t2 . The solution will

exist on any open interval containing −2 on which p(t) and g(t) are
defined and continuous i.e. not containing any point t with t ≤ −4,
t2 = 9 (i.e. t = ±3) or t ≥ 2. The maximum such interval is −3 < t <
2.

(6) A least squares solution is given by solving ATAx = AT b. Here,

ATA =

[
1 −1 1
2 4 2

] 1 2
−1 4

1 2

 =

[
3 0
0 24

]
, AT b =

[
1 −1 1
2 4 2

] 3
−1

5

 =[
9

12

]
Since ATA is invertible, the unique least squares solution is x =

(ATA)−1(AT b) =

[
1
3

0
0 1

24

] [
9
24

]
=

[
3
1
2

]
.

(7) If y = e−2t + c, then y′ = −2e−2t and y′ + 2y = 2c which is not
zero for arbitrary c. The other parts are all true.

(8) The IVP is y′+ 1
2
y = 3. An integrating factor is e

∫
1
2
dt = e

1
2
t. Mul-

tiplying by e
1
2
t gives d

dt
(e

1
2
ty) = 3e

1
2
t. Integrating, e

1
2
ty =

∫
3e

1
2
t dt =

1



2

6e
1
2
t + C and y(t) = 6 + Ce−

1
2
t. So 1 = y(0) = 6 + C, C = −5 and

y(t) = 6− 5e−
1
2
t.

(9) Substituting the points in the equation of the line gives equa-
tions 2 = a0 − 2a1, 3 = a0 and 1 = a0 + 2a1. These are inconsis-
tent so we calculate a least squares solution. The system is Au = b

where A =

1 −2
1 0
1 2

, u =

[
a1
a2

]
, b =

2
3
1

. We calculate ATA =

[
1 1 1
−2 0 2

]1 −2
1 0
1 2

 =

[
3 0
0 8

]
, AT b =

[
1 1 1
−2 0 2

]2
3
1

 =

[
6
−2

]
, and

u = (ATA)−1(AT b) =

[
1
3

0
0 1

8

] [
6
−2

]
=

[
2
−1

4

]
. So a0 = 2, a1 = −1

4
.

(10) Let V = 120 denote the volume, Q(t) denote quantity of salt.
Concentration of salt at time t is Q/120, so the ODE is dQ

dt
= 60(2t +

4) − Q
120

60 i.e. dQ
dt

+ 1
2
Q = 120(t + 2). Mutiplying by integrating

factor e
∫

1
2
dt = e

1
2
t gives d

dt
(e

1
2
tQ) = 120(t+ 2)e

1
2
t. Integrating, e

1
2
tQ =∫

120(t + 2)e
1
2
t dt. Using integration by parts, the right hand side is

120[(t+ 2)2e
1
2
t−
∫

2e
1
2
t dt] = 120[2(t+ 2)e

1
2
t− 4e

1
2
t] +C = 240te

1
2
t +C.

Hence Q(t) = 240t + Ce−
1
2
t. Putting t = 0, 0 = Q(0) = 0 + C and

C = 0. So Q(t) = 240t.
(11)(a) Separating variables, −

∫
1

y(y−2) dy =
∫
dx+c. The integrand

on the left is of the form 1
y(y−2) = A

y
+ B

(y−2) . So 1 = A(y − 2) +

By. Putting y = 2 gives B = 1
2
. Putting y = 0 gives A = −1

2
. So

−
∫

1
y(y−2) dy =

∫
− 1

2(y−2) + 1
2y
dy = 1

2
(ln |y|− ln |y−2|) = 1

2
ln | y

y−2 |. So

the solution is 1
2

ln | y
y−2 | = x + c, ln | y

y−2 | = 2x + 2c or | y
y−2 | = e2x+2c.

So y
y−2 = ±e2ce2x = Ce2x where C = ±e2c is another constant. That is

y−2
y

= Ce−2x, 1− 2
y

= Ce−2x, y
2

= 1
1−Ce−2x and y = 2

1−Ce−2x .

(b) f(y) = y(2− y) = 0 when y = 0, 2. So the equilibrium solutions
are y = 0, y = 2. For y < 0 or y > 2, f(y) < 0, while for 0 < y < 2,
f(y) > 0. Hence only y = 2 is stable.

(c) y(0) = 1 = 2
1−Ce0

so C = −1 and the solution is y = 2
1+e−2x .


