Exam 3D solutions

Multiple choice.

(1) Separating variables in $\frac{d y}{d x}=\frac{1-x^{2}}{y}$ gives $y d y=\left(1-x^{2}\right) d x$ so $\int y d y=\int\left(1-x^{2}\right) d x, \frac{1}{2} y^{2}=x-\frac{1}{3} x^{3}+C$ and $y= \pm \sqrt{2 x-\frac{2}{3} x^{3}+2 C}$. When $x=0, y(0)=4= \pm \sqrt{2 C}$ so $C=8$ and the sign is " + ". Thus, $\phi(x)=\sqrt{2 x-\frac{2}{3} x^{3}+16}$. So $\phi(3)=\sqrt{6-18+16}=\sqrt{4}=2$.
(2) $e^{\int-2 x d x}=e^{-x^{2}}$
(3) Note $f(y)=y-y^{3}=y(1-y)(1+y)$. So the critical points are $y=-1,0,1$. For $y<-1$ (e.g. $y=-2$) or $0<y<1$ (e.g. $y=\frac{1}{2}$) one has $f(y)>0$. For $-1<y<0$ (e.g. $y=-\frac{1}{2}$) or $y>1$ (e.g. $y=2$), one has $f(y)<0$. The stable equilibria occur at critical points c where $f(y)>0$ for $y<c$ and $f(y)<0$ for $y>c$ i.e. at $y=1$ and $y=-1$.
(4) The solution for the IVP $y^{\prime}=f(x, y), y^{\prime}\left(x_{0}\right)=y_{0}$ will be unique provided f and $\frac{\partial f}{\partial y}$ are defined and continuous on an open rectangle containing $\left(x_{0}, y_{0}\right)$. For the equation $y^{\prime}=(y-1)^{1 / 5}$ with $y(1)=0$, one has $f(x, y)=(y-1)^{1 / 5}, \frac{\partial f}{\partial y}=\frac{1}{5}(y-1)^{-\frac{4}{5}}$, and $\left(x_{0}, y_{0}\right)=(1,0)$, which satisfies these conditions. For the other equations, the partial derivative with respect to y does not exist at $\left(x_{0}, y_{0}\right)$ so uniqueness is not guaranteed.
(5) The IVP is $y^{\prime}-\frac{\sqrt{t+4}}{9-t^{2}} y=\frac{\ln (2-t)}{9-t^{2}}$ with $y(-2)=0$. This is $y^{\prime}+$ $p(y) y=g(t)$ where $p(t)=-\frac{\sqrt{t+4}}{9-t^{2}}$ and $q(t)=\frac{\ln (2-t) \text {. The solution will }}{9-t^{2}}$ exist on any open interval containing -2 on which $p(t)$ and $g(t)$ are defined and continuous i.e. not containing any point t with $t \leq-4$, $t^{2}=9$ (i.e. $t= \pm 3$) or $t \geq 2$. The maximum such interval is $-3<t<$ 2.
(6) A least squares solution is given by solving $A^{T} A x=A^{T} b$. Here, $A^{T} A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 2 & 4 & 2\end{array}\right]\left[\begin{array}{rr}1 & 2 \\ -1 & 4 \\ 1 & 2\end{array}\right]=\left[\begin{array}{rr}3 & 0 \\ 0 & 24\end{array}\right], A^{T} b=\left[\begin{array}{rrr}1 & -1 & 1 \\ 2 & 4 & 2\end{array}\right]\left[\begin{array}{r}3 \\ -1 \\ 5\end{array}\right]=$ $\left[\begin{array}{r}9 \\ 12\end{array}\right]$ Since $A^{T} A$ is invertible, the unique least squares solution is $x=$ $\left(A^{T} A\right)^{-1}\left(A^{T} b\right)=\left[\begin{array}{cc}\frac{1}{3} & 0 \\ 0 & \frac{1}{24}\end{array}\right]\left[\begin{array}{c}9 \\ 24\end{array}\right]=\left[\begin{array}{l}3 \\ \frac{1}{2}\end{array}\right]$.
(7) If $y=e^{-2 t}+c$, then $y^{\prime}=-2 e^{-2 t}$ and $y^{\prime}+2 y=2 c$ which is not zero for arbitrary c. The other parts are all true.
(8) The IVP is $y^{\prime}+\frac{1}{2} y=3$. An integrating factor is $e^{\int \frac{1}{2} d t}=e^{\frac{1}{2} t}$. Multiplying by $e^{\frac{1}{2} t}$ gives $\frac{d}{d t}\left(e^{\frac{1}{2} t} y\right)=3 e^{\frac{1}{2} t}$. Integrating, $e^{\frac{1}{2} t} y=\int 3 e^{\frac{1}{2} t} d t=$
$6 e^{\frac{1}{2} t}+C$ and $y(t)=6+C e^{-\frac{1}{2} t}$. So $1=y(0)=6+C, C=-5$ and $y(t)=6-5 e^{-\frac{1}{2} t}$.
(9) Substituting the points in the equation of the line gives equations $2=a_{0}-2 a_{1}, 3=a_{0}$ and $1=a_{0}+2 a_{1}$. These are inconsistent so we calculate a least squares solution. The system is $A u=b$ where $A=\left[\begin{array}{rr}1 & -2 \\ 1 & 0 \\ 1 & 2\end{array}\right], u=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right], b=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$. We calculate $A^{T} A=$ $\left[\begin{array}{rrr}1 & 1 & 1 \\ -2 & 0 & 2\end{array}\right]\left[\begin{array}{rr}1 & -2 \\ 1 & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 8\end{array}\right], A^{T} b=\left[\begin{array}{rrr}1 & 1 & 1 \\ -2 & 0 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]=\left[\begin{array}{r}6 \\ -2\end{array}\right]$, and $u=\left(A^{T} A\right)^{-1}\left(A^{T} b\right)=\left[\begin{array}{cc}\frac{1}{3} & 0 \\ 0 & \frac{1}{8}\end{array}\right]\left[\begin{array}{c}6 \\ -2\end{array}\right]=\left[\begin{array}{c}2 \\ -\frac{1}{4}\end{array}\right]$. So $a_{0}=2, a_{1}=-\frac{1}{4}$.
(10) Let $V=120$ denote the volume, $Q(t)$ denote quantity of salt. Concentration of salt at time t is $Q / 120$, so the ODE is $\frac{d Q}{d t}=60(2 t+$ 4) $-\frac{Q}{120} 60$ i.e. $\frac{d Q}{d t}+\frac{1}{2} Q=120(t+2)$. Mutiplying by integrating factor $e^{\int \frac{1}{2} d t}=e^{\frac{1}{2} t}$ gives $\frac{d}{d t}\left(e^{\frac{1}{2} t} Q\right)=120(t+2) e^{\frac{1}{2} t}$. Integrating, $e^{\frac{1}{2} t} Q=$ $\int 120(t+2) e^{\frac{1}{2} t} d t$. Using integration by parts, the right hand side is $120\left[(t+2) 2 e^{\frac{1}{2} t}-\int 2 e^{\frac{1}{2} t} d t\right]=120\left[2(t+2) e^{\frac{1}{2} t}-4 e^{\frac{1}{2} t}\right]+C=240 t e^{\frac{1}{2} t}+C$. Hence $Q(t)=240 t+C e^{-\frac{1}{2} t}$. Putting $t=0,0=Q(0)=0+C$ and $C=0$. So $Q(t)=240 t$.
(11)(a) Separating variables, $-\int \frac{1}{y(y-2)} d y=\int d x+c$. The integrand on the left is of the form $\frac{1}{y(y-2)}=\frac{A}{y}+\frac{B}{(y-2)}$. So $1=A(y-2)+$ $B y$. Putting $y=2$ gives $B=\frac{1}{2}$. Putting $y=0$ gives $A=-\frac{1}{2}$. So $-\int \frac{1}{y(y-2)} d y=\int-\frac{1}{2(y-2)}+\frac{1}{2 y} d y=\frac{1}{2}(\ln |y|-\ln |y-2|)=\frac{1}{2} \ln \left|\frac{y}{y-2}\right|$. So the solution is $\frac{1}{2} \ln \left|\frac{y}{y-2}\right|=x+c, \ln \left|\frac{y}{y-2}\right|=2 x+2 c$ or $\left|\frac{y}{y-2}\right|=e^{2 x+2 c}$. So $\frac{y}{y-2}= \pm e^{2 c} e^{2 x}=C e^{2 x}$ where $C= \pm e^{2 c}$ is another constant. That is $\frac{y-2}{y}=C e^{-2 x}, 1-\frac{2}{y}=C e^{-2 x}, \frac{y}{2}=\frac{1}{1-C e^{-2 x}}$ and $y=\frac{2}{1-C e^{-2 x}}$.
(b) $f(y)=y(2-y)=0$ when $y=0,2$. So the equilibrium solutions are $y=0, y=2$. For $y<0$ or $y>2, f(y)<0$, while for $0<y<2$, $f(y)>0$. Hence only $y=2$ is stable.
(c) $y(0)=1=\frac{2}{1-C e^{0}}$ so $C=-1$ and the solution is $y=\frac{2}{1+e^{-2 x}}$.

