1. Find the reduced echelon form of the matrix $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 2 & 2 \\ 3 & 4 & 2\end{array}\right]$.
(a) $\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{rrr}1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

Solution. $\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 2 & 2 \\ 3 & 4 & 2\end{array}\right] \sim\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 2 & 2 \\ 3 & 4 & 2\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 4 & -4\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 4 & -4\end{array}\right] \sim\left[\begin{array}{rrr}1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$ where \sim denotes row equivalence.
2. Determine by inspection which one of the following sets of vectors is linearly independent.
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -4\end{array}\right],\right\}$
(c) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ 0 \\ -2\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$

Solution. First vector in (a) is non-zero and second is not a scalar multiple of it; so they are linearly independent.
(b) Not linearly independent; $3 \mathbf{v}_{2}-2 \mathbf{v}_{1}=\mathbf{0}$.
(c) Four vectors in \mathbb{R}^{3} must be linearly dependent.
(d) Not linearly independent; $\mathbf{v}_{3}=3 \mathbf{v}_{1}-2 \mathbf{v}_{2}$
(e) Not linearly independent; contains the zero vector.
3. For which value of h is the vector $\left[\begin{array}{l}1 \\ h \\ 2\end{array}\right]$ in the span of the vectors $\left[\begin{array}{r}1 \\ -3 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 3 \\ 2\end{array}\right]$?
(a) $h=0$
(b) $h=1$
(c) $h=2$
(d) $h=3$
(e) $h=4$

Solution. The first vector is in the span of the other two exactly when the linear system with augmented matrix $\left[\begin{array}{rr|r}1 & 2 & 1 \\ -3 & 3 & h \\ 4 & 2 & 2\end{array}\right]$ is consistent. Row reduce: $\left[\begin{array}{rr|r}1 & 2 & 1 \\ -3 & 3 & h \\ 4 & 2 & 2\end{array}\right] \sim$ $\left[\begin{array}{rr|r}1 & 2 & 1 \\ 0 & 9 & h+3 \\ 0 & -6 & -2\end{array}\right] \sim\left[\begin{array}{rr|r}1 & 2 & 1 \\ 0 & 1 & (h+3) / 9 \\ 0 & -6 & -2\end{array}\right] \sim\left[\begin{array}{rr|r}1 & 0 & 1 / 3-2 h / 9 \\ 0 & 1 & h / 9+1 / 3 \\ 0 & 0 & 2 h / 3\end{array}\right]$. The system is consistent exactly when $2 h / 3=0$; that is, when $h=0$.
4. Let A be a 3×5 matrix A and \mathbf{b} in \mathbb{R}^{3}. Which of the following statements about the matrix equation $A \mathbf{x}=\mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^{5}$, and the corresponding homogeneous equation $A \mathbf{x}=\mathbf{0}$, could be true?
(a) $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
(b) $A \mathbf{x}=\mathbf{0}$ is inconsistent.
(c) $A \mathbf{x}=\mathbf{0}$ has exactly two solutions.
(d) $A \mathbf{x}=\mathbf{0}$ has a unique solution and $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
(e) $A \mathbf{x}=\mathbf{b}$ has a unique solution and $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.

Solution. $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions if it is consistent and the reduced echelon form of A has at least one free variable, so (a) could be true. A linear system can have (only) 0,1 or infinitely many solutions and a homogeneous system $A \mathbf{x}=\mathbf{0}$ is always consistent (with solution $\mathbf{x}=\mathbf{0}$) so (c) and (b) are false. If $A \mathbf{x}=\mathbf{b}$ is consitent, all its solutions are obtained by adding a solutions of the homogeneous system to a particular solution of $A \mathbf{x}=\mathbf{b}$, so $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{0}$ have exactly the same number of solutions in that case; (d) and (e) are therefore also false.
5. Recall that an $m \times n$ matrix has m rows and n columns. Let $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{8}$ be a linear transformation. What is the size of the standard matrix A for T ?
(a) 8×6
(b) 6×6
(c) 8×8
(d) 6×8
(e) There is not enough information to determine the answer.

Solution. Since T sends vectors in \mathbb{R}^{6} to vectors in \mathbb{R}^{8}, the standard matrix A must be 8×6.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{r}7 \\ -2\end{array}\right]$. What is the standard matrix A for T ?
(a) $A=\left[\begin{array}{rr}1 & 6 \\ 2 & -4\end{array}\right]$
(b) $A=\left[\begin{array}{rr}1 & 2 \\ 7 & -2\end{array}\right]$
(c) $A=\left[\begin{array}{rr}1 & 2 \\ 6 & -4\end{array}\right]$
(d) $A=\left[\begin{array}{ll}1 & 6 \\ 2 & 5\end{array}\right]$
(e) Since we do not know $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$, there is not enough information to determine the answer.

Solution. The standard matrix for the linear transformation is the matrix $\left.\left[T\left(\mathbf{e}_{\mathbf{1}}\right) T\left(\mathbf{e}_{\mathbf{2}}\right)\right)\right]$, where $\mathbf{e}_{\mathbf{1}}$ is the first column of the 2×2 identity matrix and $\mathbf{e}_{\mathbf{2}}$ is the second column of the 2×2 identity matrix. By linearity, we have that $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)-T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=$ $\left[\begin{array}{l}1 \\ 2\end{array}\right]-\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{r}6 \\ -4\end{array}\right]$, thus the standard matrix $A=\left[\begin{array}{rr}1 & 6 \\ 2 & -4\end{array}\right]$.
7. Which of the following is a subspace of \mathbb{R}^{3} ?
(1) The set of all vectors, $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, where a, b, c are positive.
(2) The set of all vectors, $\left[\begin{array}{l}a \\ b \\ 1\end{array}\right]$, where a, b are any numbers.
(3) The set of all vectors, $\left[\begin{array}{l}a \\ 0 \\ c\end{array}\right]$, where a, c are any numbers.
(4) The set of all vectors, $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, where a, b, c are integers.
(5) The set of all vectors, $\left[\begin{array}{r}a \\ 2 a \\ 3 a\end{array}\right]$, where a is a real number.
(a) (3) and (5)
(b) Only (3)
(c) Only (5)
(d) (4) and (5)
(e) Only (4)

Solution. (1) is not a subspace since it is not closed under multiplication by scalars. For instance, $-2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}-2 \\ -2 \\ -2\end{array}\right]$ is not in the set. (2) is not a subspace since the zero vector, $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, is not in the set. (4) is not a subspace since it is not closed under multiplication by scalars. For instance, $.5\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}.5 \\ .5 \\ .5\end{array}\right]$ is not in the set. (3) and (5) satisfy all of the propeties of a subspace.
8. Which matrix below is invertible?
(a) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 0\end{array}\right]$
(b) $\left[\begin{array}{lll}2 & 3 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
(d) $\left[\begin{array}{rrrr}1 & 1 & 4 & 2 \\ 8 & 0 & 6 & 3 \\ -1 & 2 & 7 & 1\end{array}\right]$
(e) $\left[\begin{array}{rrr}1 & 3 & -1 \\ -4 & -8 & 2 \\ 2 & 2 & 0\end{array}\right]$

Solution. $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 0\end{array}\right] \sim\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 3\end{array}\right] \sim\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ so all columns are pivots so invertible. $\left[\begin{array}{lll}2 & 3 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right]$ columns 1 and 2 are dependent so not invertible.
$\left[\begin{array}{ll}2 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{rrrr}1 & 1 & 4 & 2 \\ 8 & 0 & 6 & 3 \\ -1 & 2 & 7 & 1\end{array}\right]$ are not square matrices and hence not invertible.
$\left[\begin{array}{rrr}1 & 3 & -1 \\ -4 & -8 & 2 \\ 2 & 2 & 0\end{array}\right] \sim\left[\begin{array}{rrr}1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & -4 & 2\end{array}\right] \sim\left[\begin{array}{rrr}1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & 0 & 0\end{array}\right]$ so not invertible.
9. Let A be a $3 \times 2, B$ be a 3×5 matrix, and C be a 2×5 matrix. Which of the following expressions make sense?
(1) $A B$
(2) $B A$
(3) $A+B$
(4) $A^{T} B+C$
(5) $A\left(B^{T}\right)+C$
(a) (4)
(b) (2) and (3)
(c) (1) and (4)
(d) (5)
(e) (1) and (5)

Solution. $A B$ does not make sense since the number of columns of A is not equal to the number of rows of B. For the same reason, $B A$ also does not make sense. $A+B$ does not make sense because we cannot sum matrices of different sizes. $A^{T} B$ is a 2×5 matrix, which can be added to C, since C is a 2×5 matrix. So $A^{T} B+C$ makes sense. $A\left(B^{T}\right)+C$ does not make sense since the number of columns of A is not the same as the number of rows of B^{T}. So $A\left(B^{T}\right)+C$ does not make sense.
10. Express the solution set of the homogeneous linear system

$$
\begin{aligned}
x_{1}+x_{2}-x_{3}+x_{4}+5 x_{5} & =0 \\
2 x_{1}+x_{2}-2 x_{3}+4 x_{4} & =0 \\
3 x_{1}+2 x_{2}-3 x_{3}+5 x_{4}+6 x_{5} & =0
\end{aligned}
$$

in parametric vector form.

The system is equivalent to

$$
\begin{aligned}
x_{1}-x_{3} & +3 x_{4} & & =0 \\
& x_{2} & & -2 x_{4} \\
& & & x_{5}=
\end{aligned}
$$

The bound variables are x_{1}, x_{2} and x_{5} (corresponding to pivot columns) and the free variables x_{3}, x_{4} can take arbitrary values. Rewriting with free variables on the right,

$$
\begin{array}{rlrlr}
x_{1} & & & & =x_{3}
\end{array}-3 x_{4} .
$$

(we include the equation $x_{i}=x_{i}$, for $i=3$ or 4 , to indicate that the free variable x_{i} can take arbitrary values). In parametric form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-3 \\
2 \\
0 \\
1 \\
0
\end{array}\right]
$$

or writing $x_{3}=r, x_{4}=s$,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=r\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{r}
-3 \\
2 \\
0 \\
1 \\
0
\end{array}\right]
$$

11. Find the inverse of $A=\left[\begin{array}{rrr}1 & 1 & 5 \\ 1 & 0 & -1 \\ 0 & 0 & 1\end{array}\right]$.

Solution. Row reduce the augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]:\left[\begin{array}{rrrrrr}1 & 1 & 5 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrrrrr}1 & 1 & 5 & 1 & 0 & 0 \\ 0 & -1 & -6 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \sim$ $\left[\begin{array}{rrrrrr}1 & 1 & 0 & 1 & 0 & -5 \\ 0 & -1 & 0 & -1 & 1 & 6 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{rrrrrr}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & -1 & 1 & 6 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{llllrr}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & -1 & -6 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$. So $A^{-1}=$
$\left[\begin{array}{rrr}0 & 1 & 1 \\ 1 & -1 & -6 \\ 0 & 0 & 1\end{array}\right]$.
12. Find a basis for the column space of $A=\left[\begin{array}{rrrr}1 & 0 & -3 & 1 \\ -2 & -2 & 4 & 0 \\ -1 & -1 & -1 & 1\end{array}\right]$. What is the rank of A ?

Solution. Row-reduce $\left[\begin{array}{rrrr}1 & 0 & -3 & 1 \\ -2 & -2 & 4 & 0 \\ -1 & -1 & -1 & 1\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & -3 & 1 \\ 0 & -2 & -2 & 2 \\ -1 & -1 & -1 & 1\end{array}\right] \sim$ $\left[\begin{array}{rrrr}1 & 0 & -3 & 1 \\ 0 & -2 & -2 & 2 \\ 0 & -1 & -4 & 2\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & -3 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & -1 & -4 & 2\end{array}\right] \sim\left[\begin{array}{rrrr}1 & 0 & -3 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -3 & 1\end{array}\right]$. From this we see that the pivot columns of A are the first three columns and thus a basis for $\operatorname{Col} A$ is
$\left\{\left[\begin{array}{r}1 \\ -2 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ -2 \\ -1\end{array}\right],\left[\begin{array}{r}-3 \\ 4 \\ -1\end{array}\right]\right\}$. Alternatively, since $\operatorname{Col} A=\mathbb{R}^{3}$, any basis of \mathbb{R}^{3} would do. The rank of A is the dimension of $\operatorname{Col} A$, which is 3 .

