1. Find the reduced echelon form of the matrix
$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 2 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$
.

Solution.
$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 2 & 2 \\ 3 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 3 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
 where \sim denotes row equivalence.

2. Determine by inspection which one of the following sets of vectors is linearly independent.

(a)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right\}$$
 (b) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\4\\6 \end{bmatrix}, \begin{bmatrix} 1\\2\\-4 \end{bmatrix}, \right\}$ (c) $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\2 \end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\-2 \end{bmatrix} \right\}$ (e) $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$

Solution. First vector in (a) is non-zero and second is not a scalar multiple of it; so they are linearly independent.

- (b) Not linearly independent; $3\mathbf{v}_2 2\mathbf{v}_1 = \mathbf{0}$.
- (c) Four vectors in \mathbb{R}^3 must be linearly dependent.
- (d) Not linearly independent; $\mathbf{v}_3 = 3\mathbf{v}_1 2\mathbf{v}_2$
- (e) Not linearly independent; contains the zero vector.

3. For which value of
$$h$$
 is the vector $\begin{bmatrix} 1 \\ h \\ 2 \end{bmatrix}$ in the span of the vectors $\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$?

(a)
$$h = 0$$

(b)
$$h = 1$$

(c)
$$h = 2$$

(d)
$$h = 3$$

(e)
$$h = 4$$

Solution. The first vector is in the span of the other two exactly when the linear system with augmented matrix $\begin{bmatrix} 1 & 2 & 1 \\ -3 & 3 & 1 & h \\ 4 & 2 & 1 & 2 \end{bmatrix}$ is consistent. Row reduce: $\begin{bmatrix} 1 & 2 & 1 \\ -3 & 3 & 1 & h \\ 4 & 2 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 9 & 1 & h + 3 \\ 0 & -6 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & (h+3)/9 \\ 0 & -6 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1/3 - 2h/9 \\ 0 & 1 & 1 & h/9 + 1/3 \\ 0 & 0 & 1 & 2h/3 \end{bmatrix}$. The system is consistent exactly when 2h/3 = 0; that is, when h = 0.

4. Let A be a 3×5 matrix A and \mathbf{b} in \mathbb{R}^3 . Which of the following statements about the matrix equation $A\mathbf{x} = \mathbf{b}$ for $\mathbf{x} \in \mathbb{R}^5$, and the corresponding homogeneous equation $A\mathbf{x} = \mathbf{0}$, could be true?

- (a) $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- (b) $A\mathbf{x} = \mathbf{0}$ is inconsistent.
- (c) $A\mathbf{x} = \mathbf{0}$ has exactly two solutions.
- (d) $A\mathbf{x} = \mathbf{0}$ has a unique solution and $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions.
- (e) $A\mathbf{x} = \mathbf{b}$ has a unique solution and $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions.

Solution. $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions if it is consistent and the reduced echelon form of A has at least one free variable, so (a) could be true. A linear system can have (only) 0, 1 or infinitely many solutions and a homogeneous system $A\mathbf{x} = \mathbf{0}$ is always consistent (with solution $\mathbf{x} = \mathbf{0}$) so (c) and (b) are false. If $A\mathbf{x} = \mathbf{b}$ is consitent, all its solutions are obtained by adding a solutions of the homogeneous system to a particular solution of $A\mathbf{x} = \mathbf{b}$, so $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$ have exactly the same number of solutions in that case; (d) and (e) are therefore also false.

- **5.** Recall that an $m \times n$ matrix has m rows and n columns. Let $T: \mathbb{R}^6 \to \mathbb{R}^8$ be a linear transformation. What is the size of the standard matrix A for T?
 - (a) 8×6
- (b) 6×6
- (c) 8×8
- (d) 6×8
- (e) There is not enough information to determine the answer.

Solution. Since T sends vectors in \mathbb{R}^6 to vectors in \mathbb{R}^8 , the standard matrix A must be 8×6 .

- **6.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $T\begin{pmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 7 \\ -2 \end{bmatrix}$. What is the standard matrix A for T?
 - (a) $A = \begin{bmatrix} 1 & 6 \\ 2 & -4 \end{bmatrix}$ (b) $A = \begin{bmatrix} 1 & 2 \\ 7 & -2 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 2 \\ 6 & -4 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & 6 \\ 2 & 5 \end{bmatrix}$

- (e) Since we do not know $T \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, there is not enough information to determine the answer.

Solution. The standard matrix for the linear transformation is the matrix $[T(\mathbf{e}_1) \ T(\mathbf{e}_2)]$, where e_1 is the first column of the 2×2 identity matrix and e_2 is the second column of the 2 × 2 identity matrix. By linearity, we have that $T\begin{pmatrix} 0\\1 \end{pmatrix} = T\begin{pmatrix} 1\\1 \end{pmatrix} - T\begin{pmatrix} 1\\0 \end{pmatrix} =$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -4 \end{bmatrix}$, thus the standard matrix $A = \begin{bmatrix} 1 & 6 \\ 2 & -4 \end{bmatrix}$.

- 7. Which of the following is a subspace of \mathbb{R}^3 ?

 - (1) The set of all vectors, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$, where a, b, c are positive.

 (2) The set of all vectors, $\begin{bmatrix} a \\ b \\ 1 \end{bmatrix}$, where a, b are any numbers.

 (3) The set of all vectors, $\begin{bmatrix} a \\ 0 \\ c \end{bmatrix}$, where a, c are any numbers.

 (4) The set of all vectors, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$, where a, b, c are integers.
 - (5) The set of all vectors, $\begin{bmatrix} a \\ 2a \end{bmatrix}$, where a is a real number.
 - (a) (3) and (5) (b) Only (3) (c) Only (5) (d) (4) and (5)(e) Only (4)

Solution. (1) is not a subspace since it is not closed under multiplication by scalars. For instance, $-2\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}-2\\-2\\-2\end{bmatrix}$ is not in the set. (2) is not a subspace since the zero vector, is not in the set. (4) is not a subspace since it is not closed under multiplication by scalars.

For instance, $.5\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} .5\\.5\\.5 \end{bmatrix}$ is not in the set. (3) and (5) satisfy all of the properties of a subspace.

8. Which matrix below is invertible?

(a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 & 4 & 2 \\ 8 & 0 & 6 & 3 \\ -1 & 2 & 7 & 1 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 3 & -1 \\ -4 & -8 & 2 \\ 2 & 2 & 0 \end{bmatrix}$

Solution. $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ so all columns are pivots so invertible.

 $\begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ columns 1 and 2 are dependent so not invertible.

 $\begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & 4 & 2 \\ 8 & 0 & 6 & 3 \\ -1 & 2 & 7 & 1 \end{bmatrix} \text{ are not square matrices and hence not invertible.}$ $\begin{bmatrix} 1 & 3 & -1 \\ -4 & -8 & 2 \\ 2 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & 0 & 0 \end{bmatrix} \text{ so not invertible.}$

$$\begin{bmatrix} 1 & 3 & -1 \\ -4 & -8 & 2 \\ 2 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
so not invertible

- **9.** Let A be a 3×2 , B be a 3×5 matrix, and C be a 2×5 matrix. Which of the following expressions make sense?
 - (1) AB
 - (2) BA
 - (3) A + B
 - $(4) A^T B + C$
 - (5) $A(B^T) + C$
 - (a) (4) (b) (2) and (3) (c) (1) and (4) (d) (5) (e) (1) and (5)

Solution. AB does not make sense since the number of columns of A is not equal to the number of rows of B. For the same reason, BA also does not make sense. A+B does not make sense because we cannot sum matrices of different sizes. A^TB is a 2×5 matrix, which can be added to C, since C is a 2×5 matrix. So A^TB+C makes sense. $A(B^T)+C$ does not make sense since the number of columns of A is not the same as the number of rows of B^T . So $A(B^T)+C$ does not make sense.

10. Express the solution set of the homogeneous linear system

$$x_1 + x_2 - x_3 + x_4 + 5x_5 = 0$$

 $2x_1 + x_2 - 2x_3 + 4x_4 = 0$
 $3x_1 + 2x_2 - 3x_3 + 5x_4 + 6x_5 = 0$

in parametric vector form.

Solution. Row reduce the coefficient matrix:
$$\begin{bmatrix} 1 & 1 & -1 & 1 & 5 \\ 2 & 1 & -2 & 4 & 0 \\ 3 & 2 & -3 & 5 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 1 & 5 \\ 0 & -1 & 0 & 2 & -10 \\ 0 & -1 & 0 & 2 & -9 \end{bmatrix} \sim$$

Solution. Row reduce the coefficient matrix:
$$\begin{bmatrix} 1 & 1 & -1 & 1 & 5 \\ 2 & 1 & -2 & 4 & 0 \\ 3 & 2 & -3 & 5 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 1 & 5 \\ 0 & -1 & 0 & 2 & -10 \\ 0 & -1 & 0 & 2 & -9 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 1 & 5 \\ 0 & 1 & 0 & -2 & 10 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 1 & 5 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 3 & 0 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

The bound variables are x_1 , x_2 and x_5 (corresponding to pivot columns) and the free variables x_3, x_4 can take arbitrary values. Rewriting with free variables on the right,

(we include the equation $x_i = x_i$, for i = 3 or 4, to indicate that the free variable x_i can take arbitrary values). In parametric form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

or writing $x_3 = r$, $x_4 = s$,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = r \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

11. Find the inverse of $A = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.

Solution. Row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$: $\begin{bmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 5 & 1 & 0 & 0 \\ 0 & -1 & -6 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & -1 & 1 & 6 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & -1 & 1 & 6 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & -1 & -6 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$ So $A^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & -6 \\ 0 & 0 & 1 \end{bmatrix}$.

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 & -6 \\ 0 & 0 & 1 \end{bmatrix}.$$

12. Find a basis for the column space of $A = \begin{bmatrix} 1 & 0 & -3 & 1 \\ -2 & -2 & 4 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix}$. What is the rank of A?

Solution. Row-reduce
$$\begin{bmatrix} 1 & 0 & -3 & 1 \\ -2 & -2 & 4 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & -2 & -2 & 2 \\ -1 & -1 & -1 & 1 \end{bmatrix} \sim$$

Solution. Row-reduce
$$\begin{bmatrix} 1 & 0 & -3 & 1 \\ -2 & -2 & 4 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & -2 & -2 & 2 \\ -1 & -1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & -2 & -2 & 2 \\ 0 & -1 & -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & -1 & -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & -3 & 1 \end{bmatrix}.$$
 From this we see that the pivot solutions of A are the first three solutions and thus a basis for $ColA$ is

$$\left\{ \begin{bmatrix} 1\\-2\\-1 \end{bmatrix}, \begin{bmatrix} 0\\-2\\-1 \end{bmatrix}, \begin{bmatrix} -3\\4\\-1 \end{bmatrix} \right\}. \text{ Alternatively, since } \operatorname{Col} A = \mathbb{R}^3, \text{ any basis of } \mathbb{R}^3 \text{ would do. The}$$

rank of \overline{A} is the dimension of ColA, which is 3.