M20580 L.A. and D.E. Tutorial

Worksheet 3

1. Describe all solutions of $A \mathbf{x}=\mathbf{0}$ in parametric form, where

$$
A=\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
2 & -6 & 0 & -8 \\
0 & 0 & -1 & -1
\end{array}\right]
$$

Solution: To solve the linear system, we will reduce the augmented matrix to the reduced echelon form.

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
1 & -2 & -1 & -5 & 0 \\
2 & -6 & 0 & -8 & 0 \\
0 & 0 & -1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & -2 & 2 & 2 \\
0 \\
0 & 0 & -1 & -1
\end{array} 0\right] \sim\left[\begin{array}{cccc}
1 & -2 & -1 & -5 \\
0 & 1 & -1 & -1
\end{array} 0\right.} \\
0
\end{array} 0 \begin{array}{lll}
0 & -1 & -1
\end{array}\right]
$$

Hence we have

$$
\left\{\begin{array}{l}
x_{1}=4 x_{4} \\
x_{2}=0 \\
x_{3}=-x_{4} \\
x_{4} \text { is a free variable. }
\end{array}\right.
$$

Finally, the parametric form is given by $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=a\left[\begin{array}{c}4 \\ 0 \\ -1 \\ 1\end{array}\right]$
2. Are the columns of B linearly independent vectors? (Show all work)

$$
B=\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 2 & 10 \\
-2 & -3 & -3
\end{array}\right]
$$

Solution: Let \mathbf{b}_{i} be the $i^{\text {th }}$ column vector of B. To see if $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ are linearly independent we check if there is a nontrivial solution to $x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+x_{3} \mathbf{b}_{3}=\mathbf{0}$. Thus, we will reduce the augmented matrix $[B \mid \mathbf{0}]$.

$$
\left[\begin{array}{cccc}
1 & 2 & 4 & 0 \\
0 & 2 & 10 & 0 \\
-2 & -3 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 4 & 0 \\
0 & 2 & 10 & 0 \\
0 & 1 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 4 & 0 \\
0 & 1 & 5 & 0 \\
0 & 1 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -6 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Indeed this has nontrivial solutions, one of which is $x_{1}=6, x_{2}=-5, x_{3}=1$. Therefore the columns of B are NOT linearly independent.

