Lecture 3: Competitive Equilibrium

Professor Eric Sims

University of Notre Dame

Fall 2009
Continue with two period endowment framework
- Continue with two period endowment framework
- Before we took real interest rate as given
Continue with two period endowment framework
Before we took real interest rate as given
Now we determine real interest rate
Fundamentally, the real rate of return measures the relative price of consumption today and tomorrow.
Fundamentally, the real rate of return measures the relative price of consumption today and tomorrow.

In micro, prices adjust to “clear” markets in equilibrium.
Real Rate of Return as a Price

- Fundamentally, the real rate of return measures the relative price of consumption today and tomorrow.
- In micro, prices adjust to “clear” markets in equilibrium.
- That’s exactly the role that the real interest rate is going to play here.
Definition:

A competitive equilibrium is a set of allocations and prices such that:
1. All agents are behaving optimally.

What are the allocations for which we're solving? What are the prices? What does it mean for agents to be behaving optimally? What does it mean for markets to clear?
Definition:

A competitive equilibrium is a set of allocations and prices such that (a) all agents are behaving optimally and (b) markets clear.
Definition:

- A competitive equilibrium is a set of allocations and prices such that (a) all agents are behaving optimally and (b) markets clear.

What are the allocations for which we’re solving? What are the prices? What does it mean for agents to be behaving optimally? What does it mean for markets to clear?
Optimal behavior: Euler equation holds

- **Demand:** consumption function, which is derived from optimal behavior (the Euler equation)
- **Supply:** exogenously given endowment pattern

Solve for the price where demand=supply, and compute the allocations.
Terminology

- Optimal behavior: Euler equation holds
- Price: real interest rate
Terminology

- Optimal behavior: Euler equation holds
- Price: real interest rate
- “Demand”: consumption function, which is derived from optimal behavior (the Euler equation)
Terminology

- Optimal behavior: Euler equation holds
- Price: real interest rate
- “Demand”: consumption function, which is derived from optimal behavior (the Euler equation)
- “Supply”: exogenously given endowment pattern
Terminology

- Optimal behavior: Euler equation holds
- Price: real interest rate
- “Demand”: consumption function, which is derived from optimal behavior (the Euler equation)
- “Supply”: exogenously given endowment pattern
- Solve for the price where demand = supply, and compute the allocations
Suppose the economy is populated by N identical households.
Example

- Suppose the economy is populated by N identical households.
- Preferences given by (no discounting for simplicity):

$$U = \ln c + \ln c'$$
Suppose the economy is populated by N identical households.

Preferences given by (no discounting for simplicity):

$$U = \ln c + \ln c'$$

Endowment for each household is given exogenously at (y, y').
Example

Suppose the economy is populated by N identical households

Preferences given by (no discounting for simplicity):

$$U = \ln c + \ln c'$$

Endowment for each household is given exogenously at (y, y')

IBC is standard
Work out solution algebraically
• Work out solution algebraically

• Walras’ Law: if there are \(S \) total markets, and \(S - 1 \) markets clear, then the last market also clears
Work out solution algebraically

Walras’ Law: if there are S total markets, and $S - 1$ markets clear, then the last market also clears

Equilibrium allocations for everyone: $c = y$, $c' = y'$. Equilibrium price: $1 + r = \frac{y'}{y}$
Demand/supply interpretation
Graphical Interpretation

- Demand/supply interpretation
- Two ways to think about it – demand/supply of goods or demand/supply of savings. Either fine
Change y and y'
Comparative Statics

- Change y and y'
- How do allocations and prices change?
Comparative Statics

- Change y and y'
- How do allocations and prices change?
- Intuition
Suppose now there are two types of households, A and B. N_A and N_B of each type
Suppose now there are two types of households, A and B. \(N_A \) and \(N_B \) of each type.

Same preferences, but different endowment patterns:

\[
(y_A, y'_A) = (1, 0) \\
(y_B, y'_B) = (0, 1)
\]
Adding a government to this framework is straightforward.