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Abstract

Citizen Engineering seeks to leverage a large number
of ordinary citizens to solve real-world problems. Emerg-
ing information technologies provide us with opportunities
to answer a long-standing challenge in citizen engineering
– can we effectively extract reliable results from a myriad
of crowd inputs of varying quality? To investigate efficient
approaches to achieving this “wisdom of crowds”, we es-
tablished a prototype site, where 242 students, acting as
surrogate citizen engineers, signed up, logged in, and per-
formed engineering tasks – tagging photographs of earth-
quake damage. Based on the analysis of user online behav-
iors, we developed an operable data mining algorithm to
retrieve highly trustworthy results from thousands of limited
size submissions collected from a cohort of contributors. By
converging weight assignments and crowd consensus step-
by-step, this extraction algorithm improves the quality of
the results over time.

1. Introduction

Emerging information technologies provide us with un-
precedented opportunities to build transformative cyber-
infrastructures. Characterized by broadband networks, re-
mote and shared computational facilities, and large storage
capacities, these new technologies can deepen and broaden
participation by users scattered across different locations.
As such, citizen engineering, where educationally diverse
and physically dispersed users perform tasks, can exploit
these new advances of information technology.

Meanwhile, in the domain of civil engineering, re-
searchers and engineers are still restricted by yesterday’s
compartmentalized resources and solitary strategies, while
facing today’s multi-dimensional challenges – the informa-
tion and expertise for complex system design like buildings,
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bridges and other civil infrastructure are usually trapped in-
side proprietary systems, and thus these projects rarely ben-
efit from the full capabilities already available in the larger
engineering community [11]. At the same time, the aging
civil infrastructure of the developed counties, and the un-
derdeveloped infrastructures of the developing countries re-
quires more engineering efforts, such as regular inspections.

We are thus motivated to investigate citizen engineering
systems that address these challenges. We designed a pro-
totype web-based system that channels individual efforts to
crowdsource a broad range of tasks to Citizen Engineers
– web-connected professionals, researchers, students, and
even the public at large. However, given diverse education
backgrounds and expertise of citizen contributors, we need
to provide methods and algorithms to handle collective in-
puts that may have variable quality.

In this paper, we present a prototype citizen engineer-
ing photo-tagging site built to investigate the “wisdom of
crowds” [22], with the vision of providing guidelines for
successful future citizen engineering and aggregation sys-
tems.

After the 2011 Haiti Earthquake, to help local residents
rebuild their homeland, civil engineers visited the country
and took many photos of damage to various buildings to
inform redesign and rebuilding efforts [18]. However, the
number of these photos exceeded their capacity to classify
the damage displayed in each scene. This motivated us to
design a web platform that is able to leverage an online
crowd to fulfill this photo classification task, which was pre-
viously only done by experienced professionals.

Based on the analysis of the data collected from this
citizen engineering site, a data mining algorithm is devel-
oped that can provide researchers in related areas with a
method for aggregating a myriad of limited size submis-
sions and extracting highly trustworthy results from those
inputs. Applying the algorithm to the data set derived from
the crowds’ work, it shows that the algorithm yields sub-
stantial improvements in photo classification accuracy.

Given the fact that our prototype citizen engineering site
aims to solve a photo classification problem in the area of
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civil engineering, it should be acknowledged that there are
special requirements on highly reliable results in civil engi-
neering projects.

2. Related Work

In developed economies, many people enjoy more spare
time than ever before. However, much of that spare time
is often spent on unproductive activities. This Cognitive
Surplus [20] makes the idea of Citizen Engineering feasi-
ble, where well-designed mechanisms can engage and chan-
nel distributed human brainpower to solve time consuming
problems that computers cannot yet handle well.

Open source software projects (e.g., Linux and Apache)
serve as successful examples of citizen engineering, demon-
strating that voluntary, collective, human effort of loosely
organized individuals can generate useful intellectual prod-
ucts [17]. In such projects we see the power of collective
intelligence [14], where crowds gradually enhance product
quality over time. Such a harnessing of collective intelli-
gence to achieve a common research or education purpose
has many examples [23]: eBird [21], Galaxy Zoo [19], Star-
dust@home [4], and Foldit [9].

Public engagement in citizen-based projects has a long
history, but new advances in information technology enable
novel approaches and applications, such as urban planning
[5], astronomical data analyzing [4][19], civil infrastruc-
ture flaw detecting [1][7], environment protecting [13], and
socio-political movements [8][6].

On the other hand, a challenge in citizen engineering
is the vastly diverse backgrounds of users. Some proba-
bly have many years of professional training, others may be
amateurs or hobbyists. There are possibly even a few with
malicious intent. This raises challenges concerning qual-
ity control, motivation and result aggregation. To motivate
a large number of citizen engineers to perform meaningful
tasks, it is essential to develop a practicable workflow to se-
cure product quality and achieve highly trustworthy results,
but not be so restrictive as to quench citizen engineers’ en-
thusiasm to participate.

3. The Experimental Investigation

This research is part of a study named Open Sourcing
the Design of Civil Infrastructure (OSD-CI) [12]. In one
OSD-CI citizen engineering investigation, we designed a
web platform to attract citizen engineers and facilitate their
contributions classifying earthquake damage photos. Col-
lege students were recruited using announcements on mail
lists and school-wide posters, resulting in 242 students par-
ticipating in the experiment as surrogates for citizen engi-
neers. Their work and online activities were recorded, in-
cluding photo tagging classifications, the time spent tagging

each photo, and login/logout timestamps.1

During a 17 day period, Nov. 21, 2010 - Dec. 7, 2010,
we received 9318 photo classifications of 400 photos (over
23 classifications per photo). Variable quality of these clas-
sifications was observed as the students displayed varying
levels of seriousness on the tasks, and came from a broad
range of backgrounds – some of the contributors were civil
engineering majors, while others had little knowledge of en-
gineering. This heterogeneity in expertise mimics what is
commonly observed in crowdsourcing projects – highly di-
verse education levels of users and variable quality of work.
In this study, we designed a data mining workflow, aim-
ing to detect inputs from careless users, prune noising in-
puts, integrate valid inputs, and achieve highly trustworthy
results from crowd classifications.

Using the typology of Malone et al. [16], our prototype
system utilizes a cohort of online users, incentivized by fi-
nancial rewards or moral motivations, to collaboratively tag
damage building photos, where results are aggregated and
retrieved automatically by computers.

This study also investigated the efficacy of different in-
centives on the quality and quantity of the work performed
by citizen engineers. However, in this paper we ignore those
experimental conditions and consider all the inputs from our
subjects irrespective of their experimental treatment; those
other results are reported elsewhere [10].

4. Experiment Procedures

4.1. Brief Description

Upon agreeing to a consent form, subjects were directed
to a sign-up page, and asked to create their login creden-
tials, where their campus login was verified to confirm that
they are students. If the personal information entered was
valid, a new account was created and a confirmation email
was sent to his/her email address.2 After viewing the in-
troduction page, subjects were directed to a tutorial. They
then proceeded to the task of classifying photographs. They
could tag as many of the photographs as they wanted to
within a seven-day period. The photographs depicted dam-
age to buildings as a result of the Haitian earthquake.

4.2. Detailed Procedures

The web site consists of several components, including
registration, an entry survey, tutorial, photograph classifica-
tion, and an exit survey. The design goal was to let subjects

1The procedure for photo classification was developed by researchers
from the Departments of Sociology, and Civil Engineering and Geological
Sciences, University of Notre Dame.

2All subjects were recruited from the student population of the Univer-
sity of Notre Dame.
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participate in the experiment from any place and at any time
they chose.

1. Registration After subjects logged into the website,
they saw a consent form with a brief description of the
experiment: The task was to classify the type of earth-
quake damage depicted in 400 photos. Participants had
the right to withdraw from the experiment at any time.

2. Entry Survey The purpose of this questionnaire was
to collect demographic and attitudinal data from the
subjects. Survey questions include: Gender, Ethnic-
ity, Moral Views, Voluntarism (Attitude, Practice, etc.),
Education (GPA, Major, etc.), Workload (Free time,
Web-surfing time, etc.), Religious background (Affili-
ation, Religiosity, etc.).

3. Tutorial The goal of the online tutorial, which also em-
beds several self-quizzes, was to ensure that subjects
had full information about the assigned tasks. The tu-
torial provides detailed information about how to suc-
cessfully classify the damage depicted in a photo, and
by using hyper-links, subjects could return to this tu-
torial to deepen their understanding as many times as
they wish during the tagging process.

4. Damage Classification Subjects received a single, ran-
domly chosen photo at a time, until they completed all
the 400 photos in the database or the allocated time
period expired. After submitting a classification of a
photo they were not able to modify it. However, they
could save their progress and return to the experiment
at a later time until their time ran out (7 days after fin-
ishing the tutorial) or until they decided to opt out.

5. Exit Survey At the end of the seven-day period sub-
jects were asked to complete a brief exit survey. We
asked questions like why subjects decided to allocate
time to classification work (motivation), the difficulty
in classifying photos, the degree to which they found
this to be an interesting task, and if they discussed the
experiment with others.

4.3. Tagging Questions

As shown in Fig. 1, to classify a photo, subjects followed
a five-step damage assessment process. These steps are:

1. Image Content Determine if an entire structure or only
a part of the structure is visible in the image.

2. Element Visibility Identify which elements (beams,
columns, slabs, walls) of the building are visible and
can be assessed.

3. Damage Existence For each of these visible elements,
determine if any of those elements are damaged.

4. Damage Pattern For each of the elements identified as
damaged, identify the damage pattern.

5. Damage Severity For each of the elements identified
as damaged, assess the severity of the damage (Yellow
or Red).

Since we ask at most 25 classification questions for each
photo, a user can get 25 points maximally from one photo.
In particular, for each question, if this user’s answer is same
as the crowd consensus (defined using the algorithm dis-
cussed in Section 6), s/he receives one point. Otherwise,
this user does not earn a point on the question. If the crowd
consensus is that there is no damage on a certain element
of the building, we do not further consider the user’s inputs
about the damage pattern and severity of that building ele-
ment. As such, no matter what answers the user provides to
the questions asking about the pattern and severity in that
element, no points are assigned. In this regard, the maximal
score a user can get from a photo is usually less than 25.

Compared to the similar image classification work con-
ducted in [2], this paper presents a more sophisticated photo
tagging schema with great potential to generate new knowl-
edge because of its detail.

5. Data Collection and Cleaning

5.1. Data Collection

Fig. 2 shows the daily number of new registered users
and the cumulative number of users. Also, the daily new
classifications and cumulative number of classifications are
shown in Fig. 3. The peaks correspond to Thanksgiving
break in 2010, when students had more time to participate.

5.2. Data Cleaning

The first challenge we encountered was that there were
some freeloaders, who just clicked through all the photos
without seriously thinking about their answers. To identify
these users, we evaluated several noise-pruning methods,
finally using the average time spent on each photo for the
following reasons.

It takes roughly 40 seconds to classify one photo. For
an unambiguous photo taken from a close-up position, 20
seconds is enough to obtain an accurate answer, while more
ambiguous ones may take as long as 3 minutes. In the ex-
periment, users saw these photos in a random order, and as
such the average tagging time fell in the range of 20-60 sec-
onds. Given these averages, if a user’s average tagging time
was less than 15 seconds, we were highly doubtful that s/he
was a serious photo tagger.

Another complication is that some photo classifications
had abnormally long tagging times, such as the ones in the

3408



Figure 1. Classification schema. As online users went deeper along the tree, their answers diversified.

rightmost bin shown in Fig. 4. Causes of these outliers may
be that users may also conduct other activities while classi-
fying photos. For example, replying to emails and talking
on the phone may be going on, resulting in photo tagging
time being artificially prolonged. For the analysis reported
in the paper, we consider tagging periods longer than 300
seconds as outliers, and do not take them into account when
calculating the user average tagging time.

After pruning these outliers, the average tagging time is
depicted in Fig. 5, from which we can observe that 8 sub-
jects fall into the first bin, which means they spent less
than 10 seconds classifying a photo on average. These 8
subjects and 2 additional from the second bin, which have
much lower tagging time than others, are identified as mis-
chievous clickers, and their inputs are removed from the ag-
gregation table in the database. After data cleaning, we ob-
tained 6186 valid photo classifications from 194 users.

6. Result Extraction Algorithm

6.1. Algorithm Principles

Our ultimate goal is to obtain trustworthy results from
crowdsourced efforts. In this study, the workflow we de-

signed for determining the crowd consensus is shown in
Fig. 6, and, similar to Galaxy Zoo, our strategy is to pay
more attention to inputs from users who tend to agree
with the crowd consensus [15]. Specifically, the algorithm
progressively increases skillful users’ weights over low-
performers by assigning them into different rating groups.
Within each group all users have the same weight, and dif-
ferent groups have unequal weights. In this manner, by tak-
ing into consideration not only the number of users, but also
their weights, we make crowd consensus tilt towards to the
opinion of the more reliable users, who are from heavier-
weighted groups.

6.2. Algorithm Implementations

6.2.1 Crowd Consensus Calculation

At the very beginning, we assign equal weights, say 1, to
all users. In the first iteration, since all 194 users have the
same weight, the value of the weight actually does not have
an effect on the crowd consensus calculation. To determine
the crowd consensus, the basic guideline is that the higher
the weight a user has, the larger proportion his or her opin-
ion will take in the calculation. Every photo has up to 25
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Figure 2. Daily and cumulative number of users.
The peak corresponds to Thanksgiving vacation,
2010.

Table 1. Group assignment
Group Index Number of Users Weight

1 40 5
2 40 4
3 40 3
4 40 2
5 34 1

questions, with each of them having 2 or 3 candidate op-
tions. To determine which option crowds converged on, we
need to calculate how many votes each option obtained by
using Equ. (1), where Option i from Question j on Photo k
receives V k

ij votes in total.

V k
ij =

n∑

m=1

(Nm ∗Wm) (1)

Nm represents the number of users in Group m that vote
for Option i from Question j on Photo k, and Wm is the
weight of Group m. All users within the same group have
an equal weight.

Here is another example illustrating the consensus calcu-
lation: for instance, 4 users classified Photo k, where user A
has weight 2, user B has 4, user C has 6, and user D has 8.
When answering Question i, user A and B selected Option x
as their answers, and user C and D selected Option y. In this
manner, Option x will get (1*2+1*4) = 6 votes, and Option
y gets (1*6+1*8) = 14 votes. Therefore, the crowd consen-
sus on Question i of Photo k is Option y, since Option y
obtained more votes than Option x.

If the numbers of votes that Options x and y obtained
are equal, there would be a two-way tie. In this case, both
Option x and y are considered to be the crowd consensus.

Figure 3. Daily and cumulative number of classi-
fications. The peak corresponds to Thanksgiving
vacation, 2010.

Figure 4. Photo tagging time (equal-width dis-
cretization).

Figure 5. Subject distribution on average tagging
time.
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Figure 6. The result extraction algorithm.

Figure 7. The number of weight changes between
iterations.

6.2.2 Individual Score

After determining the crowd consensus for each item in the
photo, we calculate the number of points a user obtained
from each photo classified. For a question, if the user an-
swer agrees with the crowd consensus, s/he is given one
point. Otherwise, this user does not receive any points from
this question.

The overall score for an individual is calculated by Equ.
(2), where Su is the overall score of User u, sku is the num-
ber of points User u obtained from a single Photo k, and p
is the total number of photos classified by User u.

Su =
p∑

k=1

sk (2)

6.2.3 Individual Accuracy

Since we knew which user classified which photo, namely
user-photo pair in the data collection step, we are able to
calculate a user’s accuracy by dividing the total points s/he
accumulated over the maximal points this user could have
possibly obtained across all photos that s/he classified if all
her/his answers were the same as the crowd’s consensus.

For example, if user Alice tagged 2 photos, and got 13
points out of 20 in photo A, and 2 points out of 10 in photo
B, her accuracy will be 50% , since (13+2)/(20+10)=50%.

We believe this is an effective way to do the accuracy
calculation, since different photos have variable difficulties.
In a pancake collapse 3, which is believed to be the sim-
plest case, one just needs to answer the first question: Can-

3The entire building was badly damaged, and no single building ele-
ment can be accurately assessed.
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not Determine. On the other hand, for some complicated
scenarios, users had to identify damage patterns associated
with each building part. Therefore, photos with different
levels of difficulty should have different weights in the fi-
nal accuracy calculation. So, in the above example, it is not
proper for us do the calculation this way: ((13/20)+(2/10))/2
= 35%, where all photos have equal weights in the determi-
nation the overall accuracy.

6.2.4 Group Assignment

Based on the user accuracy, the 194 valid users can be di-
vided into 5 groups, with around 40 users in each group,
except for the Group V, which has 34 group members. The
top-performing group, Group I, has the highest weight, 5,
and the low-end group, Group V, has the lowest weight, 1.
The 3 groups in between have weights 2-4 in the next it-
eration, as shown in Table 1. In this example, users are
presumably divided into 5 groups, but later we also investi-
gated different group sizes to achieve better results (Fig. 8).

6.2.5 Next Iteration

After reassigning weights, we go to the second iteration.
Based on the new weight assignment, a new crowd consen-
sus, new individual scores and accuracies, and new group
assignments are calculated. As shown in Fig. 6, this loop
continues until the stop criterion is met.

6.2.6 Stop Criterion

Between two consequent iterations, if there are few changes
on users weights, that means crowds consensus and user
scores are stable. In practice, we set the stop criterion with
a 1% User Rule, which means if there are less than 1%
of users who have to change their weight assignments be-
tween two consequent iterations, then the loop terminates,
and eventually the algorithm outputs the crowd consensus
as the final result.

Implemented in Matlab, when we ran the program, this
procedure terminated at the end of the sixth iteration where
there were 5 groups. The number of users who changed
weights between iterations is shown in Fig. 7.

7. Experimental Results

7.1. Ground Truth

Intuitively, the more votes one option gets, the more
likely it is correct. We expect a high quality in the crowd
consensus generated from the result retrieval algorithm. To
evaluate the crowd consensus, we employed 3 graduate stu-
dents from the Department of Civil Engineering to provide

professional classifications of all 400 photos. Those 3 ex-
perts were asked to classify those 400 photos following the
exact same procedure as used in the experiment. We col-
lected this authoritative data with 3 foci:

• What is the correct answer for each question on each
photo?

• What is the number of maximal points crowds can ob-
tain on each photo?

• What is the normal average classification duration
across all photos?

The classifications of the professional taggers is considered
as the ground truth when they agree. We disregarded the
ambiguous questions on which 3 experts did not agree with
one another. Based on this ground truth, the number of max-
imal points across all 400 photos is 4905. At this point, to
compute crowd scores, we can compare the answers from
the crowd and the assessed ground truth after each iteration.
It is similar to the way we calculated individual scores be-
fore: for each question, if the crowd consensus and the pro-
fessional taggers’ answer are the same, the crowd receives
one point. Otherwise, they do not receive a point on this
question. If there is a 2-way tie in the crowd consensus,
crowds will receive a half point, and if there is a 3-way tie,
the crowds will receive one third point.

According to these evaluating metrics, the ideal scenario
of crowd performance will be like this: crowd scores pro-
gressively improve, as the crowd consensus gradually gets
closer to the ground truth by focusing on the inputs from
more skillful photo taggers, who achieved high scores in
the previous iteration.

7.2. Crowd Performance

The actual crowd scores are shown in Fig. 8, where we
also varied the group size to investigate the best group de-
nomination. In 4 separate runs, 194 users are divided into
5, 10, 20, and 40 groups respectively.

• 5-Group: 194 users are divided into 5 groups, and ap-
proximately 40 users in each group; the highest group
weight is 5, and the lowest group weight is 1.

• 10-Group: 194 users are divided into 10 groups, and
approximately 20 users in each group; the highest
group weight is 10, and the lowest group weight is 1.

• 20-Group: 194 users are divided into 20 groups, and
approximately 10 users in each group; the highest
group weight is 20, and the lowest group weight is 1.

• 40-Group: 194 users are divided into 40 groups, and
approximately 5 users in each group; the highest group
weight is 40, and the lowest group weight is 1.
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Table 2. User statistics according to classification
accuracy - Top group.

Rank Num. of Avg. Time Accuracy
Photos (Sec.) (%)

1 6 51.5 95.4
2 4 45.0 94.3
3 4 37.0 89.1
4 13 68.4 89.1
5 10 55.9 89.0
6 62 85.8 88.6
7 23 64.2 88.2
8 25 35.0 87.8
9 9 79.3 87.5

10 12 81.1 86.2

Table 3. User statistics according to classification
accuracy - Bottom group.

Rank Num. of Avg. Time Accuracy
Photos (Sec.) (%)

1 27 22.1 46.5
2 10 26.7 45.0
3 37 12.8 44.3
4 14 13.7 43.6
5 9 18.3 41.9
6 39 13.4 40.5
7 15 27.0 39.3
8 15 26.9 37.3
9 41 28.3 31.0

10 4 19.5 21.9

From Fig. 8, we observe that the highest crowd accu-
racy is achieved when 194 users are divided in 5 groups
after the second iteration. So, hereafter the discussion will
be based on the 5-group division. As Fig. 8 shows, in the
beginning, the crowd score does increase as we predicted.
However, starting from the third iteration, the score flattens
out and slightly declines in later iterations. As we interpret
it, after the second iteration, the opinions of top performers
are over-represented by being assigned exceedingly heavy
weights. Since we overlooked other users’ inputs, the “wis-
dom of crowds” is insufficiently harnessed.

8 Discussion

Our citizen engineer surrogates are college students, who
may be collection of citizens with above average aptitude,

so our experimental results should be further evaluated be-
fore being generalized to average online crowds. Also, we
find other interesting research questions suggested by the
data:

• Is the average tagging time spent on photos signifi-
cantly correlated with user performance (score)?

Average tagging time may be a good indicator of clas-
sification quality; if users spend more time on each photo,
they may be more careful and responsible about their inputs.
However, there is a complication; spending more time may
imply that those users are inefficient, and often have to con-
sult tutorials or reference books to confirm their solutions.

• Is the number of photos a user classifies significantly
correlated with user performance (score)?

Intuitively, we would think users who have classified more
photos are more enthusiastic, and thus more serious about
the project. However, another possibility is that users who
classify large numbers of photos are not essentially inter-
ested in the project, and they are just curious about what
those photos are, and therefore simply make some random
selections to get through, which leads to an artificially high
number of classifications.

To address these two questions, we conduct a Student’s
t-test. We sort users according to their classification ac-
curacies. We disregard the users who classified less than
3 photos, since their accuracies and average tagging times
may be deemed as unstable. After data pruning, all photo
taggers are sorted by their individual accuracies, and then
stratified into two layers – High-accuracy layer and Low-
accuracy layer, with equal number in each layer. Then
10 taggers from the high-accuracy layer are selected into
the Top group, and 10 taggers from the low-accuracy layer
are sampled into the Bottom group. The user statistics of
the Top and Bottom groups are shown in Table 2 and Ta-
ble 3, and the following unpaired student’s t-test is con-
ducted based on this 20-user sample, from which we make
inferences about the entire population.

8.1. Average Tagging Time vs. Accuracy

The student’s t-test is a technique to test if there is a sta-
tistically significant difference between the means of two
populations. With the users in the High-accuracy and Low-
accuracy layers as the two targeted populations, we have
two hypotheses:

• Null Hypothesis There is no statistically significant dif-
ference between the average photo tagging times as-
sociated with users from the High-accuracy layer and
Low-accuracy layer.

• Alternative Hypothesis There is a statistically signif-
icant difference between the average photo tagging
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Figure 8. The crowd score after each iteration.

Figure 9. Average tagging time vs. classification
accuracy. Each point represents one user (n=194).

times associated with users from the High-accuracy
layer and Low-accuracy layer.

In Fig. 9, the scatter plot shows the distribution of data
points representing the average tagging time vs. classifi-
cation accuracy. Testing with the statistical tool R [3], we
conclude at the 95% significance level that we have enough
evidence to reject the null hypothesis that there is no sig-
nificant difference between the average photo tagging times
in users from High-accuracy layer and Low-accuracy layer,
and accept the alternative hypothesis, that there is signifi-
cant difference between the two layers. In other words, av-
erage tagging time is likely a meaningful indicator of clas-
sification accuracy.

Figure 10. Number of classifications vs. accuracy.
Each point represents one user (n=194).

8.2. Number of photos classifications vs.
Accuracy

We conducted another t-test following similar proce-
dures on the parameters of the number of photos vs. ac-
curacies, where two hypotheses are established:

• Null Hypothesis There is no statistically significant dif-
ference between the average number of photo classifi-
cations associated with users from the two layers.

• Alternative Hypothesis There is a statistically signifi-
cant difference between the average number of photo
classifications associated with users from the two lay-
ers.

In this testing, at the 95% significance level we have no
sufficient evidence to reject the null hypothesis that there
is no significant difference between the average number of
photo classifications from the users in the two different lay-
ers, which we may intuitively observe in Fig. 10.

9 Conclusions and Future Work

To design and deploy more effective citizen engineering
projects, we developed a robust and operable workflow to
effectively aggregate users inputs and extract highly trust-
worthy results from the “wisdom of crowds.” Based on
these initial results, we find that some interesting research
topics are worth further investigation. For example, what
are the motivations behind users’ volunteer work? What is
the optimal number of users to work on the same photo to
secure a quality result? How should we rate and group on-
line users based on their performance? Answers to these
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questions could help to guide future research and develop-
ment on how best to extract the wisdom of the crowd from
large numbers of inputs that vary in their quality.
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