A list of statements/theorems that you should be able to prove.

1. Let A, A_k be elementary subsets of $[0, 1] \times [0, 1]$, such that

$$A \subset \bigcup_{k=1}^{\infty} A_k$$

Then

$$\tilde{m}(A) \leqslant \sum_{k=1}^{\infty} \tilde{m}(A_k).$$

- 2. For every $A \subset [0,1] \times [0,1]$ we have $\mu_*(A) \leq \mu^*(A)$.
- 3. Suppose that $A, A_k \subset [0, 1] \times [0, 1]$, and $A \subset \bigcup_{k=1}^{\infty} A_k$. Then

$$\mu^*(A) \leqslant \sum_{k=1}^{\infty} \mu^*(A_k).$$

- 4. If $A \subset [0,1] \times [0,1]$ is an elementary set, then A is measurable and $\mu(A) = \tilde{m}(A)$.
- 5. The union, intersection, difference and symmetric difference of two measurable subsets of $[0,1] \times [0,1]$ is measurable.
- 6. Suppose that A_1, A_2 are disjoint measurable subsets of $[0,1] \times [0,1]$. Then $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$.
- 7. The union of a countable collection of measurable sets is measurable.
- 8. If $A = \bigcup_k A_k$ is a disjoint union of a countable collection of measurable sets, then

$$\mu(A) = \sum_{k=1}^{\infty} \mu(A_k)$$

- 9. Let $f_n : X \to \mathbf{R}$ be measurable, such that the limit $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all x. Then f is measurable.
- 10. If $f: X \to \mathbf{R}$ is measurable, and $g: \mathbf{R} \to \mathbf{R}$ is continuous, then $g \circ f$ is measurable.
- 11. A function $f: X \to \mathbf{R}$ is measurable if and only if f is a uniform limit of simple functions.
- 12. Suppose $f, g: X \to \mathbf{R}$ are measurable and $c \in \mathbf{R}$. Then f + g, cf, fg, f/g are measurable if g is nowhere vanishing in the case of f/g.
- 13. Let $f, g: [0,1] \to \mathbf{R}$ be continuous such that f(x) = g(x) for almost every x (with respect to Lebesgue measure). Then f(x) = g(x) for all x.
- 14. (Egorov's theorem) Let $f_n : X \to \mathbf{R}$ be a sequence of measurable functions, converging almost everywhere to $f : X \to \mathbf{R}$. For any $\delta > 0$ there exists a set $Y \subset X$ such that $\mu(X \setminus Y) < \delta$ and $f_n \to f$ uniformly on Y.

15. Suppose that $\phi : A \to \mathbf{R}$ is integrable and $f : A \to \mathbf{R}$ satisfies $|f(x)| \leq \phi(x)$ for all $x \in A$. Then f is integrable and

$$\left| \int_{A} f(x) \, \mu \right| \leqslant \int_{A} \phi(x) \, \mu$$

16. (Chebyshev's inequality) If $f: A \to \mathbf{R}$ is integrable and $f(x) \ge 0$ for all $x \in A$, then

$$\mu\{x\,;\,x\in A,\,f(x)\geqslant c\}\leqslant \frac{1}{c}\int_A f(x)\,d\mu,$$

for all c > 0.

17. Let $f: A \to \mathbf{R}$ be integrable. For any $\epsilon > 0$ there is a $\delta > 0$ such that

$$\left|\int_{E} f(x) \, d\mu\right| \leqslant \epsilon,$$

whenever $E \subset A$ satisfies $\mu(E) < \delta$.

18. (Bounded convergence theorem) Let $f_n \to f$ almost everywhere on A, and let $\phi : A \to \mathbf{R}$ be an integrable function such that $|f_n(x)| \leq \phi(x)$ for almost every $x \in A$. Then f is integrable, and

$$\int_{A} f(x) \, d\mu = \lim_{n \to \infty} \int_{A} f_n(x) \, d\mu$$

19. (Monotone convergence theorem) Suppose that $f_1(x) \leq f_2(x) \leq \ldots$ for all $x \in A$, each f_n is integrable, and

$$\int_A f_n \, d\mu \leqslant M,$$

for some constant M. Then $f(x) = \lim_{n \to \infty} f_n(x)$ is defined almost everywhere on A, f is integrable, and

$$\int_A f \, d\mu = \lim_{n \to \infty} \int_A f_n \, d\mu.$$

20. (Fatou's theorem) Let $f_n \ge 0$ be integrable on A, such that for some M > 0 we have

$$\int_A f_n \, d\mu \leqslant M,$$

and $\lim_{n\to\infty} f_n(x) = f(x)$ for almost every $x \in A$. Then f is integrable, and

$$\int_A f \, d\mu \leqslant M$$

- 21. The space $L^1(X,\mu)$ is complete.
- 22. The space $L^2(X,\mu)$ is complete.
- 23. (Lusin's Theorem) Let $f : [a, b] \to \mathbf{R}$ be measurable, with respect to the Lebesgue measure. For every $\epsilon > 0$ there is a set $E \subset [a, b]$ with $\mu([a, b] \setminus E) < \epsilon$ such that the restriction of f to E is continuous.

24. (Riesz representation theorem) For every bounded linear functional $f: H \to \mathbb{C}$ on a Hilbert space H, there is an element $y \in H$ such that

$$f(x) = \langle x, y \rangle$$
, for all $x \in H$.

- 25. If $A : E \to F$ is a bounded linear operator between Banach spaces, then the adjoint A^* is bounded, and $||A^*|| = ||A||$.
- 26. The set of invertible elements in a Banach algebra with unit is open.
- 27. Any maximal ideal in a Banach algebra with unit is closed.
- 28. If $a \in A$ is an element in a Banach algebra with unit, then the spectral radius $\nu(a)$ satisfies $\nu(a) \leq ||a||$.
- 29. If A is a Banach algebra where every non-zero element is invertible, then $A \cong \mathbf{C}$.
- 30. If $a \in A$ is normal in a C^{*}-algebra A, then $\nu(a) = ||a||$.
- 31. If A is a commutative Banach algebra with unit, then there is a bijection between maximal ideals of A and non-zero homomorphisms $A \to \mathbb{C}$.
- 32. For a commutative Banach algebra A with unit, the spectrum $\sigma(a)$ of any element is the range of its Gelfand transform \hat{a} .