
A list of statements/theorems that you should be able to prove, together with the
main idea of the proof for some of them.

1. Let A,Ak be elementary subsets of [0, 1]× [0, 1], such that

A ⊂
∞⋃
k=1

Ak.

Then

m̃(A) 6
∞∑
k=1

m̃(Ak).

[Replace A by a slightly smaller closed set, and enlarge each Ak a bit to get open sets. Then
use compactness of the new A to reduce to a finite union.]

2. For every A ⊂ [0, 1]× [0, 1] we have µ∗(A) 6 µ∗(A).
[Otherwise we would have µ∗(A) + µ∗(E \ A) < 1, where E = [0, 1]× [0, 1], and we could get
too small a cover of E, contradicting the previous theorem.]

3. Suppose that A,Ak ⊂ [0, 1]× [0, 1], and A ⊂
⋃∞

k=1Ak. Then

µ∗(A) 6
∞∑
k=1

µ∗(Ak).

[By definition of µ∗ each Ak can be covered by rectangles whose areas sum to slightly more
than µ∗(Ak). The collection of all these rectangles cover A, giving an upper bound on µ∗(A).]

4. If A ⊂ [0, 1]× [0, 1] is an elementary set, then A is measurable and µ(A) = m̃(A).
[m̃(A) 6 µ∗(A) follows from first theorem, and µ∗(A) 6 m̃(A) follows from writing A as a
disjoint union of rectangles. Apply the same also to the complement of A.]

5. The union, intersection, difference and symmetric difference of two measurable subsets of
[0, 1]× [0, 1] is measurable.
[Use the fact that A is measurable if and only if for every ε > 0 there is an elementary set B
such that µ∗(A4B) < ε.]

6. Suppose that A1, A2 are disjoint measurable subsets of [0, 1] × [0, 1]. Then µ(A1 ∪ A2) =
µ(A1) + µ(A2).
[Approximate A1 and A2 with elementary sets, and use the additivity of m̃. Note that the
approximating sets may not be disjoint. ]

7. The union of a countable collection of measurable sets is measurable.
[It’s enough to do this for disjoint unions. Approximate the countable union with a finite
union, and approximate the finite union with an elementary set.]

8. If A =
⋃

k Ak is a disjoint union of a countable collection of measurable sets, then

µ(A) =

∞∑
k=1

µ(Ak).

[We know that µ(A) 6
∑
µ(Ak). For the converse inequality use finite additivity.]
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9. Let fn : X → R be measurable, such that the limit f(x) = limn→∞ fn(x) exists for all x.
Then f is measurable.
[Express f−1(−∞, c) in terms of sets of the form f−1n (−∞, d) using countably many unions
/ intersections]

10. If f : X → R is measurable, and g : R→ R is continuous, then g ◦ f is measurable.

11. A function f : X → R is measurable if and only if f is a uniform limit of simple functions.
[For any k > 1 define a simple function g : X → R by letting g(x) = m

k if m
k 6 f(x) < m+1

k
for an integer m. Then g is simple, and |f − g| 6 1

k ]

12. Suppose f, g : X → R are measurable and c ∈ R. Then f + g, cf , fg, f/g are measurable if
g is nowhere vanishing in the case of f/g.

13. Let f, g : [0, 1]→ R be continuous such that f(x) = g(x) for almost every x (with respect to
Lebesgue measure). Then f(x) = g(x) for all x.

14. (Egorov’s theorem) Let fn : X → R be a sequence of measurable functions, converging almost
everywhere to f : X → R. For any δ > 0 there exists a set Y ⊂ X such that µ(X \ Y ) < δ
and fn → f uniformly on Y .
[For m,n > 0 let Em

n be the set of x such that |fi(x)− f(x)| < 1/m for all i > n. For almost
every x we have x ∈

⋃
nE

m
n . Use this to show that there is an Nm such that µ(Em

Nm
) >

µ(X)− 2−mδ. Finally define Y =
⋂

mE
m
Nm

.]

15. Suppose that φ : A → R is integrable and f : A → R satisfies |f(x)| 6 φ(x) for all x ∈ A.
Then f is integrable and ∣∣∣∣∫

A
f(x)µ

∣∣∣∣ 6 ∫
A
φ(x)µ.

[First assume that f, φ are simple functions. Then use approximation to extend to the general
case.]

16. (Chebyshev’s inequality) If f : A→ R is integrable and f(x) > 0 for all x ∈ A, then

µ{x ; x ∈ A, f(x) > c} 6 1

c

∫
A
f(x) dµ,

for all c > 0.
[Split the integral over A into two parts, over the sets where f > c and where f < c.]

17. Let f : A→ R be integrable. For any ε > 0 there is a δ > 0 such that∣∣∣∣∫
E
f(x) dµ

∣∣∣∣ 6 ε,

whenever E ⊂ A satisfies µ(E) < δ.
[First find an N such that the integral of |f | on the set where |f | > N is at most ε/2. Then
the integral of |f | on a set E will be at most ε/2 +Nµ(E).]
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18. (Bounded convergence theorem) Let fn → f almost everywhere on A, and let φ : A→ R be
an integrable function such that |fn(x)| 6 φ(x) for almost every x ∈ A. Then f is integrable,
and ∫

A
f(x) dµ = lim

n→∞

∫
A
fn(x) dµ.

[By Egorov’s theorem fn → f uniformly outside of a small set C ⊂ A. If C has sufficiently
small measure, then we can make the integral of φ on C as small as needed.]

19. (Monotone convergence theorem) Suppose that f1(x) 6 f2(x) 6 . . . for all x ∈ A, each fn is
integrable, and ∫

A
fn dµ 6M,

for some constant M . Then f(x) = limn→∞ fn(x) is defined almost everywhere on A, f is
integrable, and ∫

A
f dµ = lim

n→∞

∫
A
fn dµ.

[First show that for almost every x the sequence fn(x) is bounded, by looking at the measure
of the set of x for which fn(x) > C for large C. Now you can define f(x) almost everywhere.
To control its integral, find a simple function bigger than f , and show that it’s integrable, then
apply the bounded convergence theorem.]

20. (Fatou’s theorem) Let fn > 0 be integrableon A, such that for some M > 0 we have∫
A
fn dµ 6M,

and limn→∞ fn(x) = f(x) for almost every x ∈ A. Then f is integrable, and∫
A
f dµ 6M.

[ Let φn = infk>n fk, and apply the monotone convergence theorem to φn.]

21. The space L1(X,µ) is complete.
[If fn is a Cauchy sequence in L1, then a subsequence fnk

satisfies ‖fnk+1
−fnk

‖1 < 2−k. Con-
struct the limit of this subsequence as a telescoping sum, and use the monotone convergence
theorem to give the existence of the limit.]

22. The space L2(X,µ) is complete.
[Show that a Cauchy sequence in L2 is also a Cauchy sequence in L1, and then use the
completeness of L1.]

23. (Lusin’s Theorem) Let f : [a, b] → R be measurable, with respect to the Lebesgue measure.
For every ε > 0 there is a set E ⊂ [a, b] with µ([a, b] \E) < ε such that the restriction of f to
E is continuous.
[Use the density of continuous functions in L1 together with Egorov’s theorem]
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24. (Riesz representation theorem) For every bounded linear functional f : H → C on a Hilbert
space H, there is an element y ∈ H such that

f(x) = 〈x, y〉, for all x ∈ H.

[Let y = ‖ỹ‖−2ỹ, where ỹ is the closest point to the origin in f−1(0).]

25. If A : E → F is a bounded linear operator between Banach spaces, then the adjoint A∗ is
bounded, and ‖A∗‖ = ‖A‖.
[To get a lower bound on ‖A∗‖, you need to use the Hahn-Banach theorem to write ‖Ax‖ =
|g(Ax)| for some g ∈ F ∗.]

26. The set of invertible elements in a Banach algebra with unit is open.
[Use that if ‖a‖ < 1, then e− a is invertible.]

27. Any maximal ideal in a Banach algebra with unit is closed.
[Use the fact that the invertible elements form an open set to show that the closure of a proper
ideal is closed.]

28. If a ∈ A is an element in a Banach algebra with unit, then the spectral radius ν(a) satisfies
ν(a) 6 ‖a‖.
[Use that e− x is invertible if ‖x‖ < 1.]

29. If A is a Banach algebra where every non-zero element is invertible, then A ∼= C.
[The spectrum of every element is non-empty.]

30. If a ∈ A is normal in a C∗-algebra A, then ν(a) = ‖a‖.
[Use the spectral radius formula.]

31. If A is a commutative Banach algebra with unit, then there is a bijection between maximal
ideals of A and non-zero homomorphisms A→ C.
[The bijection is given by identifying a homomorphism with its kernel.]

32. For a commutative Banach algebra A with unit, the spectrum σ(a) of any element is the
range of its Gelfand transform â.
[Use that an element x ∈ A is invertible if and only if φ(x) 6= 0 for all non-zero homomor-
phisms φ.]
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