A list of statements/theorems that you should be able to prove, together with the
main idea of the proof for some of them.

1. Let A, Ay be elementary subsets of [0, 1] x [0, 1], such that

AC [j Ag.
k=1

Then -
m(A) <Y m(Ap).
k=1

[Replace A by a slightly smaller closed set, and enlarge each Ay a bit to get open sets. Then
use compactness of the new A to reduce to a finite union.]

2. For every A C [0,1] x [0, 1] we have u.(A) < p*(A).
[Otherwise we would have p*(A) + p*(E \ A) < 1, where E = [0,1] x [0, 1], and we could get
too small a cover of E, contradicting the previous theorem./

3. Suppose that A, Ay C [0,1] x [0,1], and A C [J,—; Ax. Then
i (A4) < 3 ().
k=1

[By definition of u* each Ay can be covered by rectangles whose areas sum to slightly more
than pw*(Ayg). The collection of all these rectangles cover A, giving an upper bound on u*(A).]

4. If A C [0,1] x [0,1] is an elementary set, then A is measurable and p(A) = m(A).
[m(A) < u*(A) follows from first theorem, and p*(A) < m(A) follows from writing A as a
disjoint union of rectangles. Apply the same also to the complement of A.]

5. The union, intersection, difference and symmetric difference of two measurable subsets of
[0,1] x [0, 1] is measurable.
[Use the fact that A is measurable if and only if for every e > 0 there is an elementary set B
such that *(A A B) <e.]

6. Suppose that Aj, Ay are disjoint measurable subsets of [0,1] x [0,1]. Then u(A; U Ay) =

(A1) + p(Az).
[Approzimate Ay and As with elementary sets, and use the additivity of m. Note that the
approximating sets may not be disjoint. |

7. The union of a countable collection of measurable sets is measurable.
[It’s enough to do this for disjoint unions. Approximate the countable union with a finite
union, and approrimate the finite union with an elementary set./

8. If A =, A is a disjoint union of a countable collection of measurable sets, then
oo
p(A) = p(Ag).
k=1

[We know that pn(A) < > u(Ag). For the converse inequality use finite additivity./
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. Let f,, : X — R be measurable, such that the limit f(z) = lim, 0 fn(x) exists for all z.

Then f is measurable.
[Express f~1(—oco,c) in terms of sets of the form f,!(—oc,d) using countably many unions
/ intersections]

If f: X — R is measurable, and g : R — R is continuous, then g o f is measurable.

A function f: X — R is measurable if and only if f is a uniform limit of simple functions.
[For any k > 1 define a simple function g : X — R by letting g(x) = 7 if 7 < f(z) < mT'H
for an integer m. Then g is simple, and |f — g| < %]

Suppose f,g: X — R are measurable and ¢ € R. Then f + g, c¢f, fg, f/g are measurable if
g is nowhere vanishing in the case of f/g.

Let f,g:[0,1] — R be continuous such that f(z) = g(z) for almost every = (with respect to
Lebesgue measure). Then f(z) = g(z) for all x.

(Egorov’s theorem) Let f,, : X — R be a sequence of measurable functions, converging almost
everywhere to f : X — R. For any § > 0 there exists a set Y C X such that u(X\Y) < 4d
and f, — f uniformly on Y.

[For m,n >0 let E]"" be the set of x such that | fi(x) — f(x)| < 1/m for all i > n. For almost
every x we have x € |, Ey'. Use this to show that there is an Ny, such that p(Eg ) >
w(X) —27™6. Finally define Y =, EX ./

Suppose that ¢ : A — R is integrable and f : A — R satisfies |f(z)| < ¢(x) for all z € A.

Then f is integrable and
/f(fv)u‘ </¢($)u-
A A

[First assume that f, ¢ are simple functions. Then use approzimation to extend to the general
case./

(Chebyshev’s inequality) If f: A — R is integrable and f(x) > 0 for all z € A, then

1
wasze A f@) > < C/Af(w) .

for all ¢ > 0.
[Split the integral over A into two parts, over the sets where f > ¢ and where f < c.]

Let f: A — R be integrable. For any € > 0 there is a § > 0 such that

[E f(x) du' <e

whenever E C A satisfies u(E) < 4.
[First find an N such that the integral of |f| on the set where |f| > N is at most €/2. Then
the integral of |f| on a set E will be at most /2 + Nu(E).]
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(Bounded convergence theorem) Let f,, — f almost everywhere on A, and let ¢ : A — R be
an integrable function such that |f,,(z)| < ¢(x) for almost every = € A. Then f is integrable,
and

n—oo

[ t@yau= i [ uw)du.
A A

[By Egorov’s theorem fp, — f uniformly outside of a small set C C A. If C has sufficiently
small measure, then we can make the integral of ¢ on C as small as needed.]

(Monotone convergence theorem) Suppose that fi(z) < fo(x) < ... for all x € A, each f, is
integrable, and

/fndM<M7
A

for some constant M. Then f(x) = limy, e fn(x) is defined almost everywhere on A, f is

integrable, and
/fd,u: lim /fnd,u,.
A n—oo A

[First show that for almost every x the sequence f,(x) is bounded, by looking at the measure
of the set of x for which f,(x) > C for large C. Now you can define f(x) almost everywhere.
To control its integral, find a simple function bigger than f, and show that it’s integrable, then
apply the bounded convergence theorem.]

(Fatou’s theorem) Let f, > 0 be integrableon A, such that for some M > 0 we have

/nw<M
A

and lim,, o fn(z) = f(x) for almost every © € A. Then f is integrable, and

/fduéM.
A

[ Let ¢y, = infy>,, fi, and apply the monotone convergence theorem to ¢y.]

The space L'(X, u) is complete.

[If fn is a Cauchy sequence in L', then a subsequence f,, satisfies | frpr — frill < 27k, Con-
struct the limit of this subsequence as a telescoping sum, and use the monotone convergence
theorem to give the existence of the limit.]

The space L?(X, ) is complete.
[Show that a Cauchy sequence in L* is also a Cauchy sequence in L', and then use the
completeness of L'.]

(Lusin’s Theorem) Let f : [a,b] — R be measurable, with respect to the Lebesgue measure.
For every € > 0 there is a set E C [a,b] with p([a,b] \ E) < € such that the restriction of f to
E is continuous.

[Use the density of continuous functions in L' together with Egorov’s theorem]
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(Riesz representation theorem) For every bounded linear functional f : H — C on a Hilbert
space H, there is an element y € H such that

f(z) = (z,y), for all z € H.
[Let y = ||§|| =27, where § is the closest point to the origin in f~1(0).]

If A: F — F is a bounded linear operator between Banach spaces, then the adjoint A* is
bounded, and ||A*|| = ||4]|.
[To get a lower bound on ||A*||, you need to use the Hahn-Banach theorem to write ||Az| =
lg(Ax)| for some g € F*.]

The set of invertible elements in a Banach algebra with unit is open.
[Use that if ||a]| < 1, then e — a is invertible.]

Any maximal ideal in a Banach algebra with unit is closed.
[Use the fact that the invertible elements form an open set to show that the closure of a proper
ideal is closed.]

If a € A is an element in a Banach algebra with unit, then the spectral radius v(a) satisfies
v(a) < |a]-
[Use that e — x is invertible if ||x|| < 1.]

If A is a Banach algebra where every non-zero element is invertible, then A = C.
[The spectrum of every element is non-empty./

If a € A is normal in a C*-algebra A, then v(a) = ||al|.
[Use the spectral radius formula.]

If A is a commutative Banach algebra with unit, then there is a bijection between maximal
ideals of A and non-zero homomorphisms A — C.
[The bijection is given by identifying a homomorphism with its kernel.]

For a commutative Banach algebra A with unit, the spectrum o(a) of any element is the
range of its Gelfand transform a.
[Use that an element x € A is invertible if and only if ¢(x) # O for all non-zero homomor-

phisms ¢.]



