A list of statements/theorems that you should be able to prove, together with the main idea of the proof for some of them.

1. Let A, A_k be elementary subsets of $[0, 1] \times [0, 1]$, such that

$$A \subset \bigcup_{k=1}^{\infty} A_k$$

Then

$$\tilde{m}(A) \leqslant \sum_{k=1}^{\infty} \tilde{m}(A_k).$$

[Replace A by a slightly smaller closed set, and enlarge each A_k a bit to get open sets. Then use compactness of the new A to reduce to a finite union.]

- For every A ⊂ [0,1] × [0,1] we have μ_{*}(A) ≤ μ^{*}(A).
 [Otherwise we would have μ^{*}(A) + μ^{*}(E \ A) < 1, where E = [0,1] × [0,1], and we could get too small a cover of E, contradicting the previous theorem.]
- 3. Suppose that $A, A_k \subset [0,1] \times [0,1]$, and $A \subset \bigcup_{k=1}^{\infty} A_k$. Then

$$\mu^*(A) \leqslant \sum_{k=1}^{\infty} \mu^*(A_k)$$

[By definition of μ^* each A_k can be covered by rectangles whose areas sum to slightly more than $\mu^*(A_k)$. The collection of all these rectangles cover A, giving an upper bound on $\mu^*(A)$.]

- If A ⊂ [0,1] × [0,1] is an elementary set, then A is measurable and μ(A) = m̃(A).
 [m̃(A) ≤ μ*(A) follows from first theorem, and μ*(A) ≤ m̃(A) follows from writing A as a disjoint union of rectangles. Apply the same also to the complement of A.]
- The union, intersection, difference and symmetric difference of two measurable subsets of [0,1] × [0,1] is measurable.
 [Use the fact that A is measurable if and only if for every ε > 0 there is an elementary set B such that μ*(A △ B) < ε.]
- 6. Suppose that A_1, A_2 are disjoint measurable subsets of $[0,1] \times [0,1]$. Then $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$. [Approximate A_1 and A_2 with elementary sets, and use the additivity of \tilde{m} . Note that the

[Approximate A_1 and A_2 with elementary sets, and use the additivity of m. Note that the approximating sets may not be disjoint.]

- 7. The union of a countable collection of measurable sets is measurable. [It's enough to do this for disjoint unions. Approximate the countable union with a finite union, and approximate the finite union with an elementary set.]
- 8. If $A = \bigcup_k A_k$ is a disjoint union of a countable collection of measurable sets, then

$$\mu(A) = \sum_{k=1}^{\infty} \mu(A_k).$$

[We know that $\mu(A) \leq \sum \mu(A_k)$. For the converse inequality use finite additivity.]

- 9. Let $f_n : X \to \mathbf{R}$ be measurable, such that the limit $f(x) = \lim_{n \to \infty} f_n(x)$ exists for all x. Then f is measurable. [Express $f^{-1}(-\infty, c)$ in terms of sets of the form $f_n^{-1}(-\infty, d)$ using countably many unions / intersections]
- 10. If $f: X \to \mathbf{R}$ is measurable, and $g: \mathbf{R} \to \mathbf{R}$ is continuous, then $g \circ f$ is measurable.
- 11. A function $f: X \to \mathbf{R}$ is measurable if and only if f is a uniform limit of simple functions. [For any k > 1 define a simple function $g: X \to \mathbf{R}$ by letting $g(x) = \frac{m}{k}$ if $\frac{m}{k} \leq f(x) < \frac{m+1}{k}$ for an integer m. Then g is simple, and $|f - g| \leq \frac{1}{k}$]
- 12. Suppose $f, g: X \to \mathbf{R}$ are measurable and $c \in \mathbf{R}$. Then f + g, cf, fg, f/g are measurable if g is nowhere vanishing in the case of f/g.
- 13. Let $f, g: [0,1] \to \mathbf{R}$ be continuous such that f(x) = g(x) for almost every x (with respect to Lebesgue measure). Then f(x) = g(x) for all x.
- 14. (Egorov's theorem) Let $f_n : X \to \mathbf{R}$ be a sequence of measurable functions, converging almost everywhere to $f : X \to \mathbf{R}$. For any $\delta > 0$ there exists a set $Y \subset X$ such that $\mu(X \setminus Y) < \delta$ and $f_n \to f$ uniformly on Y. [For m, n > 0 let E_n^m be the set of x such that $|f_i(x) - f(x)| < 1/m$ for all i > n. For almost every x we have $x \in \bigcup_n E_n^m$. Use this to show that there is an N_m such that $\mu(E_{N_m}^m) > \mu(X) - 2^{-m}\delta$. Finally define $Y = \bigcap_m E_{N_m}^m$.]
- 15. Suppose that $\phi : A \to \mathbf{R}$ is integrable and $f : A \to \mathbf{R}$ satisfies $|f(x)| \leq \phi(x)$ for all $x \in A$. Then f is integrable and

$$\left|\int_{A} f(x)\,\mu\right| \leqslant \int_{A} \phi(x)\,\mu.$$

[First assume that f, ϕ are simple functions. Then use approximation to extend to the general case.]

16. (Chebyshev's inequality) If $f: A \to \mathbf{R}$ is integrable and $f(x) \ge 0$ for all $x \in A$, then

$$\mu\{x\,;\,x\in A,\,f(x)\geqslant c\}\leqslant \frac{1}{c}\int_A f(x)\,d\mu,$$

for all c > 0.

[Split the integral over A into two parts, over the sets where $f \ge c$ and where f < c.]

17. Let $f: A \to \mathbf{R}$ be integrable. For any $\epsilon > 0$ there is a $\delta > 0$ such that

$$\left|\int_{E} f(x) \, d\mu\right| \leqslant \epsilon,$$

whenever $E \subset A$ satisfies $\mu(E) < \delta$.

[First find an N such that the integral of |f| on the set where |f| > N is at most $\epsilon/2$. Then the integral of |f| on a set E will be at most $\epsilon/2 + N\mu(E)$.] 18. (Bounded convergence theorem) Let $f_n \to f$ almost everywhere on A, and let $\phi : A \to \mathbf{R}$ be an integrable function such that $|f_n(x)| \leq \phi(x)$ for almost every $x \in A$. Then f is integrable, and

$$\int_{A} f(x) \, d\mu = \lim_{n \to \infty} \int_{A} f_n(x) \, d\mu$$

[By Egorov's theorem $f_n \to f$ uniformly outside of a small set $C \subset A$. If C has sufficiently small measure, then we can make the integral of ϕ on C as small as needed.]

19. (Monotone convergence theorem) Suppose that $f_1(x) \leq f_2(x) \leq \ldots$ for all $x \in A$, each f_n is integrable, and

$$\int_A f_n \, d\mu \leqslant M,$$

for some constant M. Then $f(x) = \lim_{n \to \infty} f_n(x)$ is defined almost everywhere on A, f is integrable, and

$$\int_A f \, d\mu = \lim_{n \to \infty} \int_A f_n \, d\mu.$$

[First show that for almost every x the sequence $f_n(x)$ is bounded, by looking at the measure of the set of x for which $f_n(x) > C$ for large C. Now you can define f(x) almost everywhere. To control its integral, find a simple function bigger than f, and show that it's integrable, then apply the bounded convergence theorem.]

20. (Fatou's theorem) Let $f_n \ge 0$ be integrable on A, such that for some M > 0 we have

$$\int_A f_n \, d\mu \leqslant M,$$

and $\lim_{n\to\infty} f_n(x) = f(x)$ for almost every $x \in A$. Then f is integrable, and

$$\int_A f \, d\mu \leqslant M$$

[Let $\phi_n = \inf_{k \ge n} f_k$, and apply the monotone convergence theorem to ϕ_n .]

- 21. The space L¹(X, μ) is complete.
 [If f_n is a Cauchy sequence in L¹, then a subsequence f_{nk} satisfies ||f_{nk+1} f_{nk}||₁ < 2^{-k}. Construct the limit of this subsequence as a telescoping sum, and use the monotone convergence theorem to give the existence of the limit.]
- 22. The space $L^2(X,\mu)$ is complete. [Show that a Cauchy sequence in L^2 is also a Cauchy sequence in L^1 , and then use the completeness of L^1 .]
- 23. (Lusin's Theorem) Let $f : [a, b] \to \mathbf{R}$ be measurable, with respect to the Lebesgue measure. For every $\epsilon > 0$ there is a set $E \subset [a, b]$ with $\mu([a, b] \setminus E) < \epsilon$ such that the restriction of f to E is continuous.

[Use the density of continuous functions in L^1 together with Egorov's theorem]

24. (Riesz representation theorem) For every bounded linear functional $f: H \to \mathbb{C}$ on a Hilbert space H, there is an element $y \in H$ such that

$$f(x) = \langle x, y \rangle$$
, for all $x \in H$.

[Let $y = \|\tilde{y}\|^{-2}\tilde{y}$, where \tilde{y} is the closest point to the origin in $f^{-1}(0)$.]

- 25. If $A : E \to F$ is a bounded linear operator between Banach spaces, then the adjoint A^* is bounded, and $||A^*|| = ||A||$. [To get a lower bound on $||A^*||$, you need to use the Hahn-Banach theorem to write ||Ax|| = |g(Ax)| for some $g \in F^*$.]
- 26. The set of invertible elements in a Banach algebra with unit is open. [Use that if ||a|| < 1, then e a is invertible.]
- 27. Any maximal ideal in a Banach algebra with unit is closed. [Use the fact that the invertible elements form an open set to show that the closure of a proper ideal is closed.]
- 28. If $a \in A$ is an element in a Banach algebra with unit, then the spectral radius $\nu(a)$ satisfies $\nu(a) \leq ||a||$. [Use that e - x is invertible if ||x|| < 1.]
- 29. If A is a Banach algebra where every non-zero element is invertible, then $A \cong \mathbb{C}$. [The spectrum of every element is non-empty.]
- 30. If $a \in A$ is normal in a C*-algebra A, then $\nu(a) = ||a||$. [Use the spectral radius formula.]
- 31. If A is a commutative Banach algebra with unit, then there is a bijection between maximal ideals of A and non-zero homomorphisms A → C. [The bijection is given by identifying a homomorphism with its kernel.]
- 32. For a commutative Banach algebra A with unit, the spectrum $\sigma(a)$ of any element is the range of its Gelfand transform \hat{a} . [Use that an element $x \in A$ is invertible if and only if $\phi(x) \neq 0$ for all non-zero homomorphisms ϕ .]