A list of statements/theorems that you should be able to prove, together with the main idea of the proof for some of them.

1. Let A, A_{k} be elementary subsets of $[0,1] \times[0,1]$, such that

$$
A \subset \bigcup_{k=1}^{\infty} A_{k}
$$

Then

$$
\tilde{m}(A) \leqslant \sum_{k=1}^{\infty} \tilde{m}\left(A_{k}\right)
$$

[Replace A by a slightly smaller closed set, and enlarge each A_{k} a bit to get open sets. Then use compactness of the new A to reduce to a finite union.]
2. For every $A \subset[0,1] \times[0,1]$ we have $\mu_{*}(A) \leqslant \mu^{*}(A)$. [Otherwise we would have $\mu^{*}(A)+\mu^{*}(E \backslash A)<1$, where $E=[0,1] \times[0,1]$, and we could get too small a cover of E, contradicting the previous theorem.]
3. Suppose that $A, A_{k} \subset[0,1] \times[0,1]$, and $A \subset \bigcup_{k=1}^{\infty} A_{k}$. Then

$$
\mu^{*}(A) \leqslant \sum_{k=1}^{\infty} \mu^{*}\left(A_{k}\right)
$$

[By definition of μ^{*} each A_{k} can be covered by rectangles whose areas sum to slightly more than $\mu^{*}\left(A_{k}\right)$. The collection of all these rectangles cover A, giving an upper bound on $\mu^{*}(A)$.]
4. If $A \subset[0,1] \times[0,1]$ is an elementary set, then A is measurable and $\mu(A)=\tilde{m}(A)$.
$\left[\tilde{m}(A) \leqslant \mu^{*}(A)\right.$ follows from first theorem, and $\mu^{*}(A) \leqslant \tilde{m}(A)$ follows from writing A as a disjoint union of rectangles. Apply the same also to the complement of A.]
5. The union, intersection, difference and symmetric difference of two measurable subsets of $[0,1] \times[0,1]$ is measurable.
[Use the fact that A is measurable if and only if for every $\epsilon>0$ there is an elementary set B such that $\mu^{*}(A \triangle B)<\epsilon$.]
6. Suppose that A_{1}, A_{2} are disjoint measurable subsets of $[0,1] \times[0,1]$. Then $\mu\left(A_{1} \cup A_{2}\right)=$ $\mu\left(A_{1}\right)+\mu\left(A_{2}\right)$.
[Approximate A_{1} and A_{2} with elementary sets, and use the additivity of \tilde{m}. Note that the approximating sets may not be disjoint.]
7. The union of a countable collection of measurable sets is measurable.
[It's enough to do this for disjoint unions. Approximate the countable union with a finite union, and approximate the finite union with an elementary set.]
8. If $A=\bigcup_{k} A_{k}$ is a disjoint union of a countable collection of measurable sets, then

$$
\mu(A)=\sum_{k=1}^{\infty} \mu\left(A_{k}\right) .
$$

[We know that $\mu(A) \leqslant \sum \mu\left(A_{k}\right)$. For the converse inequality use finite additivity.]
9. Let $f_{n}: X \rightarrow \mathbf{R}$ be measurable, such that the limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ exists for all x. Then f is measurable.
[Express $f^{-1}(-\infty, c)$ in terms of sets of the form $f_{n}^{-1}(-\infty, d)$ using countably many unions / intersections]
10. If $f: X \rightarrow \mathbf{R}$ is measurable, and $g: \mathbf{R} \rightarrow \mathbf{R}$ is continuous, then $g \circ f$ is measurable.
11. A function $f: X \rightarrow \mathbf{R}$ is measurable if and only if f is a uniform limit of simple functions. [For any $k>1$ define a simple function $g: X \rightarrow \mathbf{R}$ by letting $g(x)=\frac{m}{k}$ if $\frac{m}{k} \leqslant f(x)<\frac{m+1}{k}$ for an integer m. Then g is simple, and $\left.|f-g| \leqslant \frac{1}{k}\right]$
12. Suppose $f, g: X \rightarrow \mathbf{R}$ are measurable and $c \in \mathbf{R}$. Then $f+g, c f, f g, f / g$ are measurable if g is nowhere vanishing in the case of f / g.
13. Let $f, g:[0,1] \rightarrow \mathbf{R}$ be continuous such that $f(x)=g(x)$ for almost every x (with respect to Lebesgue measure). Then $f(x)=g(x)$ for all x.
14. (Egorov's theorem) Let $f_{n}: X \rightarrow \mathbf{R}$ be a sequence of measurable functions, converging almost everywhere to $f: X \rightarrow \mathbf{R}$. For any $\delta>0$ there exists a set $Y \subset X$ such that $\mu(X \backslash Y)<\delta$ and $f_{n} \rightarrow f$ uniformly on Y.
[For $m, n>0$ let E_{n}^{m} be the set of x such that $\left|f_{i}(x)-f(x)\right|<1 / m$ for all $i>n$. For almost every x we have $x \in \bigcup_{n} E_{n}^{m}$. Use this to show that there is an N_{m} such that $\mu\left(E_{N_{m}}^{m}\right)>$ $\mu(X)-2^{-m} \delta$. Finally define $Y=\bigcap_{m} E_{N_{m}}^{m}$.]
15. Suppose that $\phi: A \rightarrow \mathbf{R}$ is integrable and $f: A \rightarrow \mathbf{R}$ satisfies $|f(x)| \leqslant \phi(x)$ for all $x \in A$. Then f is integrable and

$$
\left|\int_{A} f(x) \mu\right| \leqslant \int_{A} \phi(x) \mu
$$

[First assume that f, ϕ are simple functions. Then use approximation to extend to the general case.]
16. (Chebyshev's inequality) If $f: A \rightarrow \mathbf{R}$ is integrable and $f(x) \geqslant 0$ for all $x \in A$, then

$$
\mu\{x ; x \in A, f(x) \geqslant c\} \leqslant \frac{1}{c} \int_{A} f(x) d \mu
$$

for all $c>0$.
[Split the integral over A into two parts, over the sets where $f \geqslant c$ and where $f<c$.]
17. Let $f: A \rightarrow \mathbf{R}$ be integrable. For any $\epsilon>0$ there is a $\delta>0$ such that

$$
\left|\int_{E} f(x) d \mu\right| \leqslant \epsilon,
$$

whenever $E \subset A$ satisfies $\mu(E)<\delta$.
[First find an N such that the integral of $|f|$ on the set where $|f|>N$ is at most $\epsilon / 2$. Then the integral of $|f|$ on a set E will be at most $\epsilon / 2+N \mu(E)$.]
18. (Bounded convergence theorem) Let $f_{n} \rightarrow f$ almost everywhere on A, and let $\phi: A \rightarrow \mathbf{R}$ be an integrable function such that $\left|f_{n}(x)\right| \leqslant \phi(x)$ for almost every $x \in A$. Then f is integrable, and

$$
\int_{A} f(x) d \mu=\lim _{n \rightarrow \infty} \int_{A} f_{n}(x) d \mu .
$$

[By Egorov's theorem $f_{n} \rightarrow f$ uniformly outside of a small set $C \subset A$. If C has sufficiently small measure, then we can make the integral of ϕ on C as small as needed.]
19. (Monotone convergence theorem) Suppose that $f_{1}(x) \leqslant f_{2}(x) \leqslant \ldots$ for all $x \in A$, each f_{n} is integrable, and

$$
\int_{A} f_{n} d \mu \leqslant M
$$

for some constant M. Then $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ is defined almost everywhere on A, f is integrable, and

$$
\int_{A} f d \mu=\lim _{n \rightarrow \infty} \int_{A} f_{n} d \mu
$$

[First show that for almost every x the sequence $f_{n}(x)$ is bounded, by looking at the measure of the set of x for which $f_{n}(x)>C$ for large C. Now you can define $f(x)$ almost everywhere. To control its integral, find a simple function bigger than f, and show that it's integrable, then apply the bounded convergence theorem.]
20. (Fatou's theorem) Let $f_{n} \geqslant 0$ be integrableon A, such that for some $M>0$ we have

$$
\int_{A} f_{n} d \mu \leqslant M
$$

and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for almost every $x \in A$. Then f is integrable, and

$$
\int_{A} f d \mu \leqslant M
$$

[Let $\phi_{n}=\inf _{k \geqslant n} f_{k}$, and apply the monotone convergence theorem to ϕ_{n}.]
21. The space $L^{1}(X, \mu)$ is complete.
[If f_{n} is a Cauchy sequence in L^{1}, then a subsequence $f_{n_{k}}$ satisfies $\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{1}<2^{-k}$. Construct the limit of this subsequence as a telescoping sum, and use the monotone convergence theorem to give the existence of the limit.]
22. The space $L^{2}(X, \mu)$ is complete.
[Show that a Cauchy sequence in L^{2} is also a Cauchy sequence in L^{1}, and then use the completeness of L^{1}.]
23. (Lusin's Theorem) Let $f:[a, b] \rightarrow \mathbf{R}$ be measurable, with respect to the Lebesgue measure. For every $\epsilon>0$ there is a set $E \subset[a, b]$ with $\mu([a, b] \backslash E)<\epsilon$ such that the restriction of f to E is continuous.
[Use the density of continuous functions in L^{1} together with Egorov's theorem]
24. (Riesz representation theorem) For every bounded linear functional $f: H \rightarrow \mathbf{C}$ on a Hilbert space H, there is an element $y \in H$ such that

$$
f(x)=\langle x, y\rangle, \text { for all } x \in H
$$

[Let $y=\|\tilde{y}\|^{-2} \tilde{y}$, where \tilde{y} is the closest point to the origin in $\left.f^{-1}(0).\right]$
25. If $A: E \rightarrow F$ is a bounded linear operator between Banach spaces, then the adjoint A^{*} is bounded, and $\left\|A^{*}\right\|=\|A\|$.
[To get a lower bound on $\left\|A^{*}\right\|$, you need to use the Hahn-Banach theorem to write $\|A x\|=$ $|g(A x)|$ for some $g \in F^{*}$.]
26. The set of invertible elements in a Banach algebra with unit is open.
[Use that if $\|a\|<1$, then $e-a$ is invertible.]
27. Any maximal ideal in a Banach algebra with unit is closed.
[Use the fact that the invertible elements form an open set to show that the closure of a proper ideal is closed.]
28. If $a \in A$ is an element in a Banach algebra with unit, then the spectral radius $\nu(a)$ satisfies $\nu(a) \leqslant\|a\|$.
[Use that $e-x$ is invertible if $\|x\|<1$.]
29. If A is a Banach algebra where every non-zero element is invertible, then $A \cong \mathbf{C}$.
[The spectrum of every element is non-empty.]
30. If $a \in A$ is normal in a C^{*}-algebra A, then $\nu(a)=\|a\|$.
[Use the spectral radius formula.]
31. If A is a commutative Banach algebra with unit, then there is a bijection between maximal ideals of A and non-zero homomorphisms $A \rightarrow \mathbf{C}$.
[The bijection is given by identifying a homomorphism with its kernel.]
32. For a commutative Banach algebra A with unit, the spectrum $\sigma(a)$ of any element is the range of its Gelfand transform \hat{a}.
[Use that an element $x \in A$ is invertible if and only if $\phi(x) \neq 0$ for all non-zero homomorphisms ϕ.]

