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We examined the transcriptional activity of Oct3/4 (Pou5f1) inmouse embryonic stem cells (mESCs) maintained
under standard culture conditions to gain a better understanding of self-renewal in mESCs. First, we built an ex-
pression vector in which the Oct3/4 promoter drives themonocistronic transcription of Venus and a puromycin-
resistant gene via the foot-and-mouth disease virus self-cleaving peptide T2A. Then, a genetically-engineered
mESC line with the stable integration of this vector was isolated and cultured in the presence or absence of pu-
romycin. The cultureswere subsequently subjected to Illumina expressionmicroarray analysis.We identified ap-
proximately 4600 probes with statistically significant differential expression. The genes involved in nucleic acid
synthesis were overrepresented in the probe set associated with mESCs maintained in the presence of puromy-
cin. In contrast, the genes involved in cell differentiation were overrepresented in the probe set associated with
mESCsmaintained in the absence of puromycin. Therefore, it is suggestedwith these data that the transcriptional
activity ofOct3/4 fluctuates inmESCs and thatOct3/4plays an essential role in sustaining the basal transcriptional
activities required for cell duplication in populations with equal differentiation potential. Heterogeneity in the
transcriptional activity of Oct3/4was dynamic. Interestingly, we found that genes involved in the hedgehog sig-
naling pathway showed unique expression profiles in mESCs and validated this observation by RT-PCR analysis.
The expression ofGli2, Ptch1 and Smowas consistently detected in other types of pluripotent stem cells examined
in this study. Furthermore, the Gli2 protein was heterogeneously detected in mESC nuclei by immunofluores-
cence microscopy and this result correlated with the detection of the Oct3/4 protein. Finally, forced activation
of Gli2 in mESCs increased their proliferation rate. Collectively, it is suggested with these results that Gli2 may
play a novel role in the self-renewal of pluripotent stem cells.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Embryonic stem cells (ESCs) are derived from preimplantation em-
bryos and are capable of both long-term proliferation (self-renewal)
anddifferentiation into cell types of all three germ layers (pluripotency).
The self-renewal and pluripotency of ESCs are sustained by a combina-
tion of essential transcription factors [1] and the extracellular signals
that drive the expression of these transcription factors [2]. Recent
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studies have observed that undifferentiatedmouse ESC (mESC) cultures
contain multiple cell populations showing fluctuating expression levels
of genes associated with cellular pluripotency and cell differentiation
[3–18]. Cellular pluripotency and cell differentiation genes are downreg-
ulated or expressed in approximately one-tenth of cells in steady state
culture (for a review, see [19–22]). For example, when mESCs were
sorted into Zscan4-positive and Zscan4-negative subpopulations based
on expression levels, the subpopulations were able to regain Zscan4-
negative and Zscan4-positive cells, respectively, when they were
replated and cultured separately [11]. Interestingly, the constitutive
knockdown of Zscan4 significantly decreased telomere length, whereas
its constitutive expression increased the levels of telomeric sister chro-
matid exchange (T-SCE; [11]). Both telomere shortening and increased
T-SCE rates lead to acceleration of the replicative senescence [23,24].
heterogeneous transcriptional activity of Oct3/4 and its possible inter-
dx.doi.org/10.1016/j.ygeno.2013.09.004
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Therefore, the heterogeneous expression of Zscan4 is necessary for
mESCs to self-renew indefinitely.

In studies with other genes [3,5,12–16,18], each subpopulation has
exhibited unique differentiation potential. For example, Nanog-high
mESCs are resistant to differentiation, whereas Nanog-low mESCs are
prone to differentiation [3]. Consequently, the presence of subpopula-
tions in mESC cultures typifies the plasticity of early embryonic
cells and dynamically sustains their self-renewal and pluripotency.
The autorepressive feedback of Nanog [25], extrinsic TGFβ signal-
ing pathways, such as Nodal and BMP [26], and activity of the basic-
helix–loop–helix transcription factor Tcf15 [16] are responsible for
maintaining heterogeneousNanog expression inmESC cultures. In addi-
tion, the stiffness of the culture dishes [27] and/or the uneven partition
of the cytoplasm during cell division [28,29] may contribute to the
variable expression of these genes in mESC cultures. However, the un-
derlying molecular mechanism that is responsible for transcriptional
heterogeneity in mESCs remains elusive.

In this study, we generated a genetically-engineered mESC line to
examine its self-renewal. ThemESC line contains an expression cassette
with anOct3/4 (Pou5f1) promoter that drives themonocistronic expres-
sion of Venus and a puromycin-resistant gene product. The mESCs
were cultured under standard conditions with or without puromycin
(puromycin-positive and puromycin-negative cultures, respectively)
and subjected to Illumina expressionmicroarray analysis. It is suggested
with these data that mESCs exhibit fluctuations in Oct3/4 expression
levels and thatOct3/4 plays an essential role in sustaining the basal tran-
scriptional activities required for duplication of cells with equal differ-
entiation potential. Surprisingly, we found that the genes involved in
the hedgehog signaling pathway, i.e., Gli2 and Ptch1, showed unique ex-
pression profiles inmESCs. It is suggested with our results that Gli2may
play a novel role in the self-renewal of pluripotent stem cells.

2. Materials and methods

2.1. Vector construction

Standardmolecular cloning techniqueswere used to build pOctV2AP
inwhich theOct3/4 promoter drives the expression of Venus [17,30] and
pCAG_Gli2ERP from which the protein coding sequence of Gli2 is
expressed as a fusion protein with the human estrogen receptor ERT2
[31,32]. A stepwise description of the vector construction is provided
in the Supplementary Materials and methods.

2.2. Cell culture

Mouse embryonic stem cells (mESCs; OGR1 andW4) were cultured
under standard conditions, as described previously [27,33,34]. Briefly,
mESCs were plated on 0.1% gelatin-coated tissue culture dishes and
cultured in Dulbecco's modified Eagle's medium (high glucose; Life
Technologies, Carlsbad, CA) supplemented with 15% fetal bovine
serum (FBS; Life Technologies, and Gemini Bio-Products, West Sacra-
mento, CA), 0.1 mM non-essential amino acids (Life Technologies),
2 mM GlutaMax I (Life Technologies), 1 mM sodium pyruvate (Life
Technologies), 100U/ml penicillin and 0.1mg/ml streptomycin (Sigma-
Aldrich, St. Louis, MO), 0.1 mM 2-mercaptoethanol (Sigma-Aldrich)
and 1000U/ml Leukemia inhibitory factor (LIF; EMD Millipore, Billerica,
MA). To determine the best serum lot for mESC culture, several different
serum lots from a few different companies were tested by platingmESCs
at a low density under 15 or 30% serum conditions. Although three
serum lots contributed to the results presented in this manuscript due
to the duration of the study, heterogeneity in the expression of the
Oct3/4 reporterwas consistently observed. To expandmESCs at 80% con-
fluence, TrypLE Express (Life Technologies) and the same volume of the
standard culture medium were sequentially added to the culture and a
single cell suspension was prepared. The plating density was 1:5.
Under these conditions, it took two days for mESCs to reach 80%
Please cite this article as: Y. Li, et al., Gene expression profiling reveals the
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confluence after plating. More than 80% of the mESCs exhibited an ap-
pearance of undifferentiated cells under these conditions. Mouse terato-
carcinoma cell lines (F9 and P19 [35,36]), whichwere kindly provided by
Dr.Minoru S. H. Ko, National Institute onAging/NIH,were culturedunder
standard conditions for mESCs without LIF.

pOctV2AP (see Supplementary Materials and methods) was linear-
ized with BspHI and delivered by electroporation into feeder-free W4
ESCs at passage 15 (10 μg DNA/1.0 × 107 cells/cuvette, 0.8 kV/cm, 12
pulses of 99 μs/pulse, BTX ECM200). After selection with 2 μg/ml puro-
mycin (InvivoGen, San Diego, CA) for 11 days, the drug-resistant colo-
nies, designated OVW4, were collected (passage 1) and expanded. The
OVW4 cells were maintained under standard conditions and sorted at
passage 18 based on fluorescence at 575 nm, as described previously
[27].

Linear pCAG_Gli2ERP digested with ScaI (0.5, 3 and 4 μg) was
nucleofected into OGR1mESCs (at passages 21, 25 and 12, respectively)
according to themanufacturer's instruction (Lonza, Basel, Switzerland).
Stable lines (referred to as Gli2ER hereafter) were isolated 10–14 days
after selection with 2 μg/ml puromycin supplemented in the standard
culture medium. Gli2ER clones were maintained and assayed in
the presence of puromycin within 10 passages after isolation. After
trypsinization, the same volume of a single cell suspension was plated
into two sets of gelatin-coated wells of 24-well plates in the standard
culture medium. Roughly 100–3000 cells were plated in this manner.
One day after plating, one set of the wells were fed with the standard
medium supplemented with 20nM 4-hydroxytamoxifen (4OHT; T176,
Sigma-Aldrich). We determined that 20 nM 4OHT was optimum:
when a higher dose was applied to culture, OGR1 mESCs decreased
the proliferation rate (data not shown). Four days after the 4OHT treat-
ment, a single cell suspension was prepared using an electronic pipet
(Biohit, Bohemia, NY) to reduce pipetting errors, although the final vol-
ume of the single cell suspension was measured using a pipetman
(Eppendorf, Hauppauge, NY). The number of cells (larger than 8.4 μm
and smaller than 33.6 μm in diameter) was counted using ScepterTM

(Millipore). Results were statistically analyzed using one-tail Student's
t-test.

The dynamic of Oct3/4 reporter expression was examined using
mESCs that express EGFP under the Oct3/4 promoter, namely OGR1
[27,33,34,37]. After a single cell suspensionwas dilutedwith the standard
culture medium, EGFP expression levels in each OGR1mESC were deter-
mined under an inverted microscope (Leica DMI4000B) equipped with
an epifluorescent lamp. Single OGR1 mESCs were individually plated
in each well of a gelatin-coated 96-well plate (Sarstedt AG & Co.,
Nümbrecht, Germany) filled with the standard culture medium by the
single cell manipulation method [38,39]. Five to seven days after plating,
the plating efficiency and the morphology and EGFP expression of colo-
nies developed from single OGR1 mESCs were measured. Images were
processed using ImageJ and enhanced in the sameway. For this set of ex-
periments, OGR1 mESCs were used at passages 6–19.

2.3. Microarray hybridization and analysis

One day after a subclone of OVW4, namely A02 (at passage 5), was
plated at 100 cells/cm2, it was maintained under the presence or ab-
sence of puromycin (2 μg/ml; Invivogen) for 4 days. Total RNA was
extracted from 3 separate dishes per condition and subjected to micro-
array analysis (MouseWG-6 v1.1 Expression BeadChips; Illumina Inc.,
San Diego, CA). More detailed descriptions of themicroarray hybridiza-
tion and data analysis are provided in the Supplementary Materials and
methods.

After background correction and quantile normalization, the log2-
transformed data were assessed for differential expression. We arbi-
trarily considered genes with a false discovery rate [40] less than 0.05
and a fold-change of 1.2 or greater differentially expressed. Then, a list
of differentially expressed genes with an expression level of 200 or
greater in the puromycin-positive OVW4 culture was generated. A
heterogeneous transcriptional activity of Oct3/4 and its possible inter-
dx.doi.org/10.1016/j.ygeno.2013.09.004
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scatter plot and a heat map were constructed using Microsoft Excel
and MultiExperiment Viewer [41,42], respectively. ConPath Navigator
(http://conpath.dna-chip.co.jp/; DNA Chip Research Inc., Yokohama,
Kanagawa, Japan) was used to compare this gene list with published
data [42,43], and GOToolBox (http://genome.crg.es/GOToolBox/; [44])
was used to investigate its associated gene annotations.

2.4. Semi-quantitative (sq) and quantitative (q) RT-PCR

The 1.6μg of total RNA extracted from stem cells in each culture con-
dition was used to synthesize the first cDNA strand, as described previ-
ously [27,45,46]. For gene expression analysis of undifferentiated and
differentiatedmESCs, OGR1was plated at 100cells/cm2 andmaintained
in the presence or absence of LIF for 4 days under standard conditions
with animal serum. PCR mixtures were prepared using Phusion DNA
polymerase (New England Biolab, Ipswich, MA), according to the
manufacturer's instructions. The PCR conditions were as follows: initial
denaturing at 98°C for 1min followed by 25cycles of denaturing at 98°C
for 10s, annealing at 65°C for 30s, extension at 72°C for 30s and a final
extension at 72 °C for 7.5min. The primer sets used for this study were
described previously [5,27,33,34,45,47,48] or are listed in Supplementa-
ry Table 1. To quantify relative gene expression, images of ethidium
bromide-stained PCR products in agarose gels were analyzed using
ImageJ. An identical rectangular selection was used to measure the
mean fluorescence intensity of each PCR product as well as a local back-
ground level near the product per image. After background subtraction,
values were divided by the one of Smo as a reference to obtain relative
gene expression levels.

Quantitative (q) RT-PCRwas carried out essentially as described pre-
viously [34], except that the One-Step qRT-PCR kit (Life Technologies)
was used.

2.5. Immunofluorescence microscopy

After fixation with 4% paraformaldehyde (Sigma-Aldrich) in PBS at
room temperature for 15min, mESCs cultured on glass-bottom dishes
(MatTek corporation, Ashland, MA) coated with 0.15 mg/ml type IA
collagen (Nitta Gelatin Co., Osaka, Japan) were washed with PBS
and blocked with 0.1% Triton X-100 at room temperature for 10 min.
After PBS washes, these mESCs were incubated with 10% Image-iT FX
signal enhancer (Life Technologies) at room temperature for 30 min,
followed by incubation with a mouse anti-human Oct4 monoclonal an-
tibody (sc-5279, Santa Cruz Biotechnology, Santa Cruz, CA) and a rabbit
anti-human Gli2 polyclonal antibody (ab26056, Abcam, Cambridge,
MA) diluted with 10% Image-iT FX signal enhancer at a 1:200 ratio at
4 °C overnight. After PBS washes, the samples were incubated with
goat Alexa Fluor 488 anti-mouse IgG and goat Alexa Fluor 568 anti-
rabbit IgG polyclonal antibodies (Life Technologies) diluted in 10%
Image-iT in PBS at room temperature for 1h. Cellular nuclei were stained
with Hoechst 33258 (0.2mg/ml; Sigma) after PBS washes. The immuno-
stained mESCs were treated with ProLong Gold antifade reagent (Life
Technologies) overnight. A confocal microscope LSM 700 was used.
Image analysiswas carried out using ImageJ.Meanfluorescence intensity
values that are greater than 40 and 20 are considered positive for the ex-
pression of Oct3/4 and Gli2, respectively (see Supplementary Fig. 1).

Detection of the SSEA1 antigen [49] was carried out using the FITC-
conjugated anti-SSEA1 antibody (sc-21702, Santa Cruz Biotechnology)
under the standard fluorescencemicroscopy (Observer.Z1, Zeiss) essen-
tially as described previously [34,27].

3. Results and discussion

3.1. Mouse embryonic stem cells showed fluctuating expression of Oct3/4

To examine the transcriptional activity of Oct3/4 in mESCs cultured
under standard conditions with animal serum (referred to as standard
Please cite this article as: Y. Li, et al., Gene expression profiling reveals the
action with Gli2 in mouse embryonic stem cells, Genomics (2013), http://
conditions hereafter), the Oct3/4 promoter [50] was cloned and used
to build a fluorescent reporter construct, namely pOctV2AP (Fig. 1A;
see Supplementary Materials and methods). In this construct, the
Oct3/4promoter drives the expression of Venus, a variant of yellowfluo-
rescent protein [30], which is co-expressed with a puromycin-resistant
gene product via the self-cleaving peptide T2A [51]. After pOctV2APwas
linearized and delivered tomESCs by electroporation, mESC clones that
exhibited puromycin resistance were isolated. As a proof of principle,
these mESC clones, referred to as OVW4, expressed Venus under stan-
dard culture conditions (Fig. 1B). Interestingly, Venus expression was
not detected in all of the OVW4 mESCs under standard culture condi-
tions (Fig. 1B), i.e., Venus exhibited a variable expression pattern across
OVW4 mESCs. In contrast, Venus fluorescence was relatively uniform
when OVW4 cells were cultured in the presence of puromycin
(Fig. 1C). Thus, these results indicate that the transcriptional activity of
Oct3/4 fluctuates inmESCs under standard culture conditions. Heteroge-
neity in the transcriptional activity ofOct3/4 is not under the influence of
animal serum because we observed similar heterogeneous expression of
the Oct3/4 reporter in mESCs maintained under chemically-defined
serum-free conditions [33,52] (Supplementary Fig. 2). Flow cytometric
analysis revealed that approximately one-fifth of the OVW4 cells main-
tained under standard conditions lacked Venus expression (data not
shown). When OVW4 cells were introduced into host blastocysts,
Venus was fluorescently detected in the testes of developing fetuses at
embryonic day 17.5 (Fig. 1D), thus validating the promoter activity of
the transgene.

Next, the expression of genes associated with cellular pluripotency
(Oct3/4, Esg1(Dppa5a), Fgf4, Nanog, Rex1 and Sox2) and cell differentia-
tion (Rhox6, Rhox9 and Tcf15) were examined in Venus-positive and
Venus-negative OVW4 cells by semi-quantitative reverse transcriptase
polymerase chain reaction (sqRT-PCR; Fig. 1E). Nanog, Rex1, Rhox6/9
and Tcf15 are known to be heterogeneously expressed in mESCs
[3–6,16,45]. Notably, Venus-negative OVW4 cells exhibited a marked
downregulation of Fgf4, Rex1, Sox2, Rhox9 and Tcf15, whereas Esg1,
Nanog and Rhox6 expression levels were roughly maintained in Venus-
negative OVW4 cells (Fig. 1E). Therefore, multiple subpopulations of
mESCs existed in the culture, as suggested previously [4].

We investigated whether or not the observed heterogeneity in the
transcriptional activity of Oct3/4 is dynamic. Initially, single OVW4
mESCs were plated, but their recovery was poor due to W4's high de-
pendency on LIF [53]. Therefore, R1 mESCs that express EGFP under
the Oct3/4 promoter (OGR1 [27,33,34,37]) were used. Single EGFP-
high or low OGR1 mESCs were plated into each well of 96-well plates
and maintained under standard conditions (Figs. 2A–C). Five to seven
days after plating, 42.8% of EGFP-high and 36.6% of EGFP-low single
OGR1 mESCs grew into individual colonies (p N 0.05). The appearance
of each colony was arbitrarily categorized into the following three: a
dome-like shapewith bright EGFPfluorescence indicative of pluripotent
mESCs, a flattened shapewithmoderate EGFPfluorescence indicative of
reduced differentiation potential and a committed cell shape with re-
duced EGFP fluorescence indicative of cell differentiation (Figs. 2D–I).
EGFP-low mESCs produced slightly more colonies with an appearance
of committed cells (38.1%) than EGFP-high mESCs (34.3%) at the ex-
pense of dome-like colonies (28.6% in EGFP-low mESCs vs. 33.1% in
EGFP-high mESCs; Fig. 2J). However, this result shows no statistical sig-
nificance and both EGFP-high and EGFP-low mESCs formed colonies
with heterogeneous EGFP expression. Thus, we conclude that heteroge-
neity in the transcriptional activity of Oct3/4 is dynamic.

3.2. Microarray analysis revealed global transcriptional heterogeneity in
mouse embryonic stem cells

To evaluate the transcriptional heterogeneity in mESCs at a genomic
scale, OVW4 cells were maintained under standard conditions in the
presence or absence of puromycin, and subjected to expression micro-
array analysis (Fig. 3A). Hybridization experiments were carried out in
heterogeneous transcriptional activity of Oct3/4 and its possible inter-
dx.doi.org/10.1016/j.ygeno.2013.09.004
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Fig. 1. Characterization of OVW4 mouse embryonic stem cells (mESCs). (A) A schematic representation of the expression cassette used to generate OVW4 mESCs. The Oct3/4 promoter
drives the monocistronic transcription of the Venus fluorescent protein and a puromycin-resistant gene product (puromycin-N-acetyltransferase; Puror) via T2A (2A). pA, the bovine
growth hormone polyadenylation signal. The bar denotes a length of 1 kb. (B–D) Bright (left) and dark (right) field images are shown. Bars, 50 μm in B and C and 100 μm in D. (B) A
mESC line that harbors the Venus_T2A_Puror cassette driven by the Oct3/4 promoter (Oct3/4::Venus) was designated OVW4 and maintained under standard conditions (left). Venus
showed fluctuating expression (right). (C) OVW4 was maintained under standard conditions supplemented with puromycin (left). Venus showed relatively homogeneous expression
(right). (D) Fetal testeswere isolated from a chimera at embryonic day 17.5, whichwas derived from injection of OVW4 into a host blastocyst (left). The expression of Venuswas detected
in seminiferous tubules (right). (E) Undifferentiated OVW4 was sorted according to Venus expression levels at 575 nm and subjected to first strand cDNA synthesis. The cDNA obtained
from Venus-positive (+) or negative (−) OVW4 was used as a template for the subsequent polymerase chain reaction (PCR) with each gene-specific primer pair indicated on the right.
Ef1a is a positive control, and RT− is a negative control.

Fig. 2.Heterogeneous expression of the Oct3/4 reporter is dynamic. (A–I) Phase contrast (left) and fluorescence (right) images ofmouse embryonic stem cells (mESCs) that express EGFP
under the Oct3/4 promoter, namely OGR1, are shown. The EGFP fluorescence indicates the transcriptional activity of Oct3/4. Bars, 50 μm. (A & B) Single EGFP-high (A) and EGFP-low
(B) OGR1 mESCs are shown. (C) An EGFP-high mESC (arrowhead) was plated in a well of a 96-well plate. No other cell exists in the same well. (D–I) Colonies with a dome-like shape
(D & E), a flattened shape (F & G) and a committed cell shape (H & I) were formed from single EGFP-high (D, F & H) or EGFP-low (E, G & I) OGR1 mESCs. Note that colonies shown in
E and G were formed on the plastic plate showing “grooves” on the opposite side of the bottom due to the manufacturing-associated issue. (J) The frequency of the appearance of a
dome-like, flattened or committed cell shape was measured 5–7 days after plating single EGFP-high and EGFP-low mESCs. The total numbers of single cells plated are 181 for EGFP-
high and 21 for EGFP-low mESCs from five replications. The Chi-square test showed no statistical significance.
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Fig. 3. Global transcriptional heterogeneity in OVW4. (A) A schematic representation of the experimental design. OVW4mESCs weremaintained under standard conditionswith orwith-
out puromycin, and subjected to Illumina expression microarray analysis. (B) A scatter plot of the 4606 probes exhibiting differential expression between OVW4maintained in the pres-
ence or absence of puromycin (referred to as puro+ or puro−, respectively). Differential expressionwas defined by arbitrarily determined cut-off values (see Section 2.3 inMaterials and
methods). For each probe, the log2-transformed average expression level of hybridizations for puro+ (collected in triplicate) was plotted on the x-axis and the log2-transformed ratio of
expression levels between puro+ and puro− (“puro+/puro−”) was plotted on the y-axis. Probes representing indicated genes aremarked on the plot. (C) Two representative pathways
that exhibited significant enrichment of genes highly expressed in puro+ (left, general transcriptions factors and RNA polymerases) or puro− (right, cholesterol synthesis) are shown.
The color of each box represents the normalized levels of fold-differences in gene expression between puro+ and puro−, as indicated in the legend.
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triplicate for each condition. A total of 4606 probes were selected as
differentially expressed based on their statistical confidence (see
Section 2.3 in Materials and methods). In the puromycin-positive
OVW4 culture, 2717 probes were overexpressed, whereas 1889 probes
were underexpressed (the gene list is available in Supplementary
Table 2). The variation in gene expression levels between puromycin-
positive and puromycin-negative conditions was evident in a scatter
plot (Fig. 3B). Among the variably expressed genes, Spink3, which en-
codes a serine peptidase inhibitor, showed the largest fold induction
in OVW4 cells grown in the presence of puromycin. In addition to
Spink3, expression levels of Enox1, Gbx2 and Myo1f were upregulated
when OVW4 cells were maintained in the presence of puromycin
(Fig. 3B). These four genes were consistently downregulated when the
Oct3/4 expression level was knocked-down [54]. Genes associated
with the self-renewal and pluripotency of mESCs, such as Dppa2,
Dppa4, Eras, Fbxo15, Mybl2, Sox2 and Utf1, were enriched in OVW4
cells that were cultured in the presence of puromycin, whereas genes
associated with cell differentiation, such as Acta1, Acta2, Evx1, Hes1,
Igf2, Igfbp4, Lefty2, Msx1, Notch3, Pitx2 and T, were under-represented.
Collectively, these results indicate that a standard culture of mESCs
Please cite this article as: Y. Li, et al., Gene expression profiling reveals the
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contains a cell population with reduced Oct3/4 transcriptional activity,
which leads to the generation of subpopulations with expression pro-
files that are similar to differentiated cells.

Next, we investigated the gene enrichment and functional annota-
tions associated with this gene list. The enriched probe sets in
puromycin-positive OVW4 cultures contained 2368 unique gene sym-
bols, which yielded 1264 functionally annotated genes (53%), whereas
enriched probes in puromycin-negative OVW4 cultures contained
1689 unique gene symbols, which included 1034 annotated genes
(61%). Uncharacterized genes were enriched in puromycin-positive
OVW4 cultures, which may be indicative of a naïve state of undifferen-
tiated cells [55]. Similar results were obtainedwhenmESC gene expres-
sion profiles were compared with lineage-committed trophoblast stem
cells [47]. By arbitrarily selecting probes with greater than 2-fold
expression level differences between the two conditions, the gene lists
were reduced to 286 and 365 annotated genes in puromycin-positive
and puromycin-negative OVW4 cultures, respectively (Tables 1 and
2). Interestingly, the gene list for the puromycin-positive OVW4 cul-
tures contained genes involved in nucleic acid metabolism (Table 1),
whereas genes involved in embryonic development, cholesterol
heterogeneous transcriptional activity of Oct3/4 and its possible inter-
dx.doi.org/10.1016/j.ygeno.2013.09.004
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Table 1
The functional annotations of genes overrepresented in puromycin-positive OVW4 cultures.

Levela Gene Ontology ID Term # in the
referenceb

Frequency in
the reference

# in the
gene listc

Frequency in
the gene list

p-Valued

2 0008152 Metabolic process 7146 0.4875 187 0.6538 0.000006481434
3 0043170 Macromolecule metabolic process 5310 0.3622 147 0.514 0.00006951657
5 0034960 Cellular biopolymer metabolic process 4682 0.3194 141 0.493 0.0000004910301
5, 6 0010468 Regulation of gene expression 2019 0.1377 69 0.2413 0.0012982

a The terms at levels 3, 5, and 6 are derived from the parental term at level 2. A total of 24 terms showed statistical significance (see “d” below), although they belong to the same pa-
rental term. Only the representative daughter terms are shown.

b Gene symbols in Mouse Genome Informatics were used as a reference.
c A total of 706 genes exhibiting a 2-fold increase in their expression levels at FDR b 0.05 contain 640 non-redundant gene symbols, of which 286 symbols are functionally annotated.
d p-Values were calculated using the hypergeometric test (default setting) and the Bonferroni correction. GO annotations that have p-values less than 0.01 are considered statistically

significant.

6 Y. Li et al. / Genomics xxx (2013) xxx–xxx
metabolism, and cytoskeletons were noted on the puromycin-negative
gene list (Table 2). Similar results were independently obtained using
ConPath Navigator (Fig. 3C; http://conpath.dna-chip.co.jp/). ConPath
Navigator is a search tool for genes relative to biological signaling path-
ways built by GenMAPP [56]. Taken together, it is suggested with these
data that Oct3/4 plays an essential role in maintaining basal cellular
transcriptional activities while suppressing the expression of genes in-
volved in cell differentiation. This function of Oct3/4 is indicative of a
gene that is responsible for regulating the duplication of cells with
equal differentiation potential, i.e., self-renewal.

Our expressionmicroarray analysis identified about 2300 annotated
genes that potentially exhibit heterogeneous expression under the in-
fluence of Oct3/4 in mESCs. This analysis was done using OVW4 cul-
tured in the presence or absence of puromycin under conditions with
LIF and animal serum without feeder layers. These conditions might
have enriched a population of cells that express Oct3/4 at a very high
level (e.g., [57]) and contributed tomagnifying the gene list. Interesting-
ly, single-cell gene expression analysis showed that nine genes associat-
ed with cellular pluripotency including Nanog and Oct3/4 exhibited
variable expression similar to Gapdh [58]. In this analysis, mESCs were
maintained under conditions with LIF, animal serum and feeder layers.
Under these conditions, fluctuating expression of the nine genes might
have been less pronounced than in conditions without feeder layers.
However, these two studies clearly demonstrated that gene expression
in mESCs is quite variable, so that bulk analysis of gene expression is
not suited for understanding the mechanism of cellular pluripotency.

3.3. Undifferentiated pluripotent stem cells expressed genes involved in the
hedgehog signaling pathway

Our expression microarray data clearly demonstrate that standard
cultures of mESCs consist of heterogeneous populations. Next, we
used ConPath Navigator to perform a cross-platform comparison of
our current data with published datasets that reported gene expression
Table 2
The functional annotations of genes overrepresented in puromycin-negative OVW4 cultures.

Levela Gene Ontology ID Term # in
refe

2 0032502 Developmental process 291
3 0007275 Multicellular organismal development 247
4, 5 0009792 Embryonic development ending in

birth or egg hatching
42

2 0010926 Anatomical structure formation 77
4, 5, 6 0034728 Nucleosome organization 9
5, 6, 7 0016125 Sterol metabolic process 7
3, 4, 5 0016192 Vesicle-mediated transport 41

a Terms belonging to the same parental term (level 2) are grouped. A total of 15 terms showed
different parental terms (level 2) are expected, although 2 of them did not show statistical sig

b Gene symbols in Mouse Genome Informatics were used as a reference.
c A total of 613 genes exhibiting a 2-fold increase in their expression levels at FDR b 0.05 con
d p-Values were calculated using the hypergeometric test (default setting) and the Bonferro

significant.
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profiles of mESCs in the course of Oct3/4 downregulation [42,43]. These
published datasets were generated using bulk preparations of mESCs
maintained under standard conditions. On the other hand, our dataset
took into account the heterogeneous transcriptional activity of Oct3/4
in mESCs maintained under similar conditions. Therefore, we aimed at
investigatingwhether our dataset is consistentwith or offers alternative
interpretations of the published datasets. Because not all of the probes
tested in our dataset were necessarily examined in the published
datasets, we used two datasets for comparison. Interestingly, we
found unique expression patterns in genes that are involved in the
hedgehog (Hh) signaling pathway. For example, the transcription factor
Gli2 and the transmembrane receptor Ptch1 were consistently highly
expressed in mESCs that displayed high transcriptional activity of
Oct3/4 (i.e., OVW4 cells that were cultured in the presence of puromy-
cin, “puro+”; Table 3), whereas the transcription repressor Gli3 was
highly expressed in OVW4 cells that were cultured in the absence of pu-
romycin (“puro”; Table 3). The expression levels of Gli2, Gli3 and Ptch1
were comparable to that of Sox2, a co-factor of Oct3/4 (Table 3). The
forced downregulation of Oct3/4 transcription [43] induced down-
regulation and up-regulation of Gli2 and Gli3, respectively (Fig. 4A).
Thus, the positive correlation between Gli2 and Oct3/4 expression, and
the negative correlation between Gli3 and Oct3/4 expressionwere inde-
pendently validated. The Ptch1 expression pattern observed in the cur-
rent dataset was unexpected because, according to Walker et al. [42],
Ptch1 expressionmarkedly increased a fewdays after cell differentiation
was induced (by the withdrawal of LIF from the culture or the addition
of retinoic acid to the culture), but returned back to its basal level within
5days [42]. Another study independently reported a similar expression
profile of Ptch1 [59]. However, Ptch1 expression became further down-
regulated when mESCs were differentiated in the absence of LIF but the
presence of retinoic acid for 20 days [60]. Ptch1 may be influenced by
both LIF and differentiation-inducing signals.

These results were unexpected because the Hh signaling pathway
governs cell type specification and embryonic patterning [61]. In
the
renceb

Frequency in
the reference

# in the
gene listc

Frequency in
the gene list

p-Valued

5 0.1989 112 0.3068 0.0004047
6 0.1689 96 0.263 0.0025906
1 0.0287 28 0.0767 0.0030938

5 0.0529 43 0.1178 0.0007994
6 0.0065 12 0.0329 0.0072877
8 0.0053 12 0.0329 0.0007878
9 0.0286 28 0.0767 0.0028278

statistical significance (see “d” below). Only the representative terms are shown. At least 4
nificance.

tain 559 non-redundant gene symbols, of which 365 symbols are functionally annotated.
ni correction. GO annotations that have p-values less than 0.01 are considered statistically

heterogeneous transcriptional activity of Oct3/4 and its possible inter-
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Table 3
The differential expression of genes involved in the Hh signaling pathway in OVW4a.

Gene symbol Refseq ID Entrez ID FDR Puro+ Puro− Log2 (Puro+/−)

(i) Genes showing statistically significant differential expression
Gli2 NM_001081125.1 14633 0.00 1238 839 0.6
Gli3 NM_008130.2 14634 0.00 1052 1743 −0.7
Igf2 NM_010514.3 16002 0.00 1036 4279 −2.0
Ptch1 NM_008957.2 19206 0.00 1107 494 1.2
Rab23 NM_008999.4 19335 0.01 231 193 0.3
Sap18 NM_009119.3 20220 0.03 268 227 0.2
Smo NM_176996.4 319757 0.00 226 394 −0.8
Sox2b NM_011443.3 20674 0.00 1016 577 0.8

(ii) Genes that did not show statistical significance or had expression levels less than 200
Cdk1 NM_007659.3 12534 N0.05 3679 4071
Crebbp NM_001025432.1 12914 N0.05 455 540
Dhh NM_007857.4 13363 N0.05 b200 b200
Dyrk1a NM_007890.2 13548 N0.05 b200 b200
Ptch2 NM_008958.2 19207 0.00 b200 b200
Sin3a NM_011378.2 20466 N0.05 2581 2593
Ski NM_011385.2 20481 N0.05 784 692
Stk36 NM_175031.3 269209 N0.05 b200 b200
Sufu NM_015752.2 24069 N0.05 413 426

a The expression microarray did not contain probes for the following genes involved in the Hh signaling pathway: Gas1, Gli1, Ihh and Shh.
b Sox2 is not directly involved in the Hh signaling pathway, but it has been listed for comparison.

Fig. 4. The expression of genes involved in the hedgehog pathway ofmESCs. (A) A heatmap of genes (rows) involved in cellular pluripotency and the hedgehog pathway based on present
(OVW4 puro+/−) and published (ZHBTc4, LIF+, LIF−, RA+ [41,42]) datasets (columns). ConPath Navigator was used to compare data obtained from multiple platforms. In the pub-
lished datasets, mESC differentiation was induced by either the forced downregulation of Oct3/4 transgenes using Oct3/4-null mESCs (ZHBTc4 [42]), or the withdrawal of LIF (LIF−)
for 5days and the addition of all-trans retinoic acid (RA+) under the LIF− condition for 2days using OGR1mESCs (Oct3/4::EGFP [41]). The triangles indicate the level of EGFP expression
in OGR1. The color scale indicates relative gene expression levels. Missing values are shaded in gray. (B) A schematic representation of the Sonic hedgehog (Shh) pathway. Without the
growth factor Shh, the Shh receptor Patched (Ptch) represses Smoothened (Smo).When Shh binds to Ptch, Shh represses Ptch, allowing activation of Smo. Subsequently, Smo can activate
protein activity of transcription factors Gli1, Gli2 and Gli3. (C) The expression of genes shown in B was examined in undifferentiated (LIF+, left) and differentiated (LIF−, middle) OGR1
mESCs. Phase contrast (top) and fluorescence (bottom) images of the representative mESC colonies are shown. Bars, 100 μm. For LIF− conditions, mESCs were cultured in the absence of
LIF for 4 days. Semi-quantitative RT-PCR analysis was performed using cDNAs derived from OGR1 mESCs cultured under LIF+ or LIF− conditions as templates with each gene specific
primer set indicated on the right. Ef1α is a positive control. The size of the DNAmarkers is shown on the left. These results were independently validated by quantitative RT-PCR (Supple-
mentary Fig. 3).
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vertebrates, three orthologs ofDrosophila Hh, i.e.,Desert hedgehog (Dhh),
Indian hedgehog (Ihh) and Sonic hedgehog (Shh), have unique roles in
embryonic development [62–67]. Shh is the most broadly expressed
ortholog and is involved in embryogenesis, organogenesis and the
maintenance of adult stem cells [68]. Without the Shh ligand, the Shh
receptor, Patched (Ptch), represses anothermembrane-bound receptor,
Smoothened (Smo). In mammals, two Ptch isoforms, Ptch1 and 2, exist,
although Ptch1 is mainly involved in the Hh signaling pathway [69].
When Shh binds to Ptch, Shh represses Ptch, allowing the activation of
Smo. Subsequently, Smo can activate the protein activity of transcrip-
tion factors Gli1, Gli2 andGli3. Gli2 is themainmodulator of the Shh sig-
nal [70–72]. Gli3 mostly acts as a transcriptional repressor [73].

In accordancewith this knowledge, genes involved in the Hh signal-
ing pathway, except forGli2 and Ptch1, (Cdk1, Crebbp,Dhh,Dyrk1a,Gas1,
Gli1, Gli3, Igf2, Ihh, Ptch2, Rab23, Sap18, Shh, Sin3a, Ski, Smo, Stk36 and
Sufu, according to ConPath Navigator) were either constitutively
expressed or downregulated in puromycin-positive OVW4 cultures
(“puro+”). Furthermore, many of these genes were upregulated when
a forced downregulation of Oct3/4 was induced (Crebbp, Dyrk1a, Dhh,
Sap18, Rab23, Gli3, Sufu and Cdk1; Fig. 4A) or when LIF was withdrawn
from the culture (Gas1, Ski, Igf2, Smo, Ptch1 and Ptch2; Fig. 4A). In con-
trast to these results, our expression microarray analysis showed that
Gli2 and Ptch1 were consistently highly expressed in mESCs with high
transcriptional activity of Oct3/4.

To further validate our expression microarray analysis, we exam-
ined the expression of selected genes in the Hh signaling pathway
(Fig. 4B) in undifferentiated and differentiated mESCs by sqRT-PCR
(Fig. 4C). For this analysis, we used a bulk preparation of OGR1
mESCs [27,33,34,37,42] (see Fig. 2) that were maintained under culture
conditions with animal serum in the presence or absence of LIF for
4 days. Although significant downregulation of EGFP fluorescence was
observed in OGR1 maintained without LIF for 4 days (Fig. 4C “LIF+”

on the left vs. “LIF−” on themiddle), EGFP fluorescence did not become
fully undetectable under these conditions.

We found that undifferentiated mESCs expressed Gli1, Gli2, Smo and
Ptch1 (Fig. 4C right). However, the endogenous expression of Shh was
not detected,which is consistentwith the fact thatGli2 can be expressed
in the absence of a Shh signal [71,72]. The expression of Gli1, Gli2 and
Ptch1was downregulated 4days after differentiation of mESCs were in-
duced, whereas the expression of Gli3 and Smo was upregulated
(Fig. 4C, see Supplementary Fig. 3 for quantitative results). Because
the increased transcription of Gli1 and Ptch1 serves as an indicator of
Hh pathway activity [69,74,75], it is suggested with these results that
Shh signaling was stimulated in undifferentiated mESCs, but not in
mESCs cultured in the absence of LIF for 4 days. Interestingly, when
mESCs were maintained under chemically-defined serum-free (CDSF)
conditions [33,52], we observed downregulation of Gli1, Gli2 and Ptch1
(data not shown) in thesemESCs. Therefore, animal serummay provide
a stimulus to activate theHh-mediated signal. However, when recombi-
nant Shh was supplemented in a CDSF medium, it failed to provide any
significant impact on the growth of mESCs (data not shown). Similarly,
endogenous activation of the Hh signalwas detected in undifferentiated
human ESCs, although exogenously supplied SHH played no significant
role in their self-renewal and pluripotency [76]. The self-renewal of
human ESCs is dependent on the TGFβ and bFGF signals [77,78],
which are known to interact with the Shh signal [79,80]. Therefore, it
is suggested with these observations that the Hh-mediated signaling
may originate from TGFβ and/or bFGF-like activity in animal serum.

Next, we investigated whether the genes involved in the Hh path-
way were expressed in other mouse pluripotent stem cells. The mouse
teratocarcinoma cell lines F9 (derived from the testis [35]) and P19
(derived from postimplantation embryos [36]) consistently expressed
Gli2, Smo and Ptch1, although the expression level of Gli2 was lower in
P19 than in F9 and Gli1 expression was undetectable in P19 (Fig. 5).
We could not detect endogenous expression of Shh in F9 or P19
(Fig. 5). Because Gli encodes a transcription factor and, interestingly,
Please cite this article as: Y. Li, et al., Gene expression profiling reveals the
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the expression of Gli2was consistently detected in all of the pluripotent
stem cells examined, it is suggestedwith these results thatGli2mayplay
a novel role in the self-renewal of pluripotent stem cells.

3.4. Gli2 exhibited heterogeneous expression in undifferentiatedmouse em-
bryonic stem cells

It is suggested with our expression microarray data that Gli2-
positive and Gli2-negative cells may both exist in mESCs maintained
under standard conditions. Confocal microscopy confirmed that the
Gli2 protein was localized in the nuclei and exhibited a patchy staining
pattern (Fig. 6A), and that 89% of Gli2-positive mESCs were undifferen-
tiated and Oct3/4-positive (Fig. 6B). In addition, 50% of mESCs with
reduced expression levels of the Oct3/4 protein also exhibited low ex-
pression levels of the Gli2 protein (arrowheads in Fig. 6A). Therefore,
Gli2 expression patterns are highly correlated with Oct3/4 expression
patterns in undifferentiated mESCs. Collectively, we suggest that Gli2
may be involved in the network of transcription factors that sustain
mESCs self-renewal and pluripotency. However, Gli2 is expected to
play a modulatory role instead of an essential role in mESCs because
Gli2-deficient embryos exhibited defects in body plans but not in cell
differentiation per se [81].

3.5. Forced activation of Gli2 significantly enhanced the proliferation rate of
mouse embryonic stem cells

To gain an insight into the role that Gli2 plays in mESCs, the protein-
coding sequence of the Gli2 cDNA was subcloned into a novel expres-
sion vector (Fig. 7A) and stably expressed in OGR1 mESCs maintained
under standard conditions. This vector allows Gli2 to be expressed as
a fusion protein with the human estrogen receptor ERT2 [31,32].
When 4-hydroxytamoxifen (4OHT) is supplemented in the culture,
Gli2 fused with ERT2 will be activated and localized to nuclei. In addi-
tion, this vector assures us a strong expression level of the transgene
by the CAG promoter [82] combined with a translational enhancer
[45,83] and a transcriptional enhancer [84]. Furthermore, DsRedT3
[85,86] is linked with the immediate downstream of the transgene by
the self-cleaving peptide T2A [51] in this vector (Fig. 7A). Therefore,
DsRedT3 fluorescence helps us monitor expression levels of Gli2 in
real-time (Fig. 7B).

Nine clones that express Gli2 fused with ERT2 (referred to as Gli2ER
hereafter) were used for assays. They exhibited varying levels of
DsRedT3 fluorescence, whereas quantitative (q) RT-PCR indicated that
on average the expression level of Gli2 increased 244 (±48.24 s.e.m.,
n = 7) folds in these Gli2ER clones. Parental OGR1 mESCs were used
as a control.When 4OHTwas added to standard cultures in thepresence
of LIF and animal serum for 4days, Gli2ER clones did not exhibit any ap-
pearance of cell differentiation (Fig. 7B) and expressed the SSEA1 anti-
gen [49] (Fig. 7C). In addition, heterogeneity in the transcriptional
activity of Oct3/4 was observed in Gli2ER clones treated with 4OHT
(Fig. 7B). This was not due to the forced activation of Gli2ER because
most of the Gli2ER cells maintained the expression of both EGFP and
DsRedT3 (Fig. 7B). This result indicates that Gli2 does not regulate het-
erogeneous transcriptional activity of Oct3/4. However, Gli2ER clones
significantly increased their proliferation rate when maintained in the
presence of 4OHT for 4 days (1.59 ± 0.230 s.e.m.-fold increase in the
nine Gli2ER clones vs. 1.08 ± 0.0601 s.e.m.-fold increase in OGR1,
p b 0.025, Fig. 7D). When five Gli2ER clones that exhibited bright
DsRedT3 fluorescence (260 ± 71.03 s.e.m.-fold increase in the Gli2
level on average) were selected and independently assayed twice or
three times, we consistently observed a similar increase in their prolif-
eration rate (1.47±0.157 s.e.m.-fold increase, n=11, pb0.025). Finally,
using five randomly selected Gli2ER clones that were maintained in the
presence or absence of 4OHT for 4 days, expression levels of Oct3/4,
Eras and Gsk3β were examined by qRT-PCR (the reason why these
genes were chosen is described below). As expected from the results
heterogeneous transcriptional activity of Oct3/4 and its possible inter-
dx.doi.org/10.1016/j.ygeno.2013.09.004
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Fig. 5. The expression of genes involved in the Hh pathway in pluripotent stem cells. Semi-quantitative RT-PCR analysis was performed using cDNAs derived from pluripotent stem cells
indicated on the rightwith each gene specific primer set indicated along the top. Ef1α is a positive control andRT− is the negative control. The size of theDNAmarkers is shownon the left.
(A) Mouse ESCs (OGR1) and teratocarcinoma cell lines (F9 and P19) were cultured in a standardmediumwith animal serum. (B) Relative expression levels of genes indicated on the bot-
tom were examined by quantifying mean fluorescence intensities of the PCR products shown in A using ImageJ. Smo was used as a reference.
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presented in Figs. 7B and C, the expression of Oct3/4 was stable under
these conditions (Fig. 7E). However, the expression level of Eras in
Gli2ER clones under 4OHT+ conditions decreased to about 40% of the
Fig. 6. Oct3/4 and Gli2 are heterogeneously expressed in undifferentiated mESCs. (A) Confoc
second image), nuclei (blue; first row, second image) and Gli2 proteins (red; first row, thir
0.4μmon the z-axis. Twenty-one sectionswere stacked and projected for all images. Arrowhead
themESC nuclei that express Oct3/4, but display reduced expression of Gli2. An asterisk indicate
control, only secondary antibodieswere used (“2° only”, second row, second and third images). T
is not visible because these nuclei are out of focus. Bars, 10μm. (B) The bar chart indicates the fr
expression.
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Eras level in Gli2ER clones under 4OHT-conditions (Fig. 7E). On the
other hand, Gsk3β showed a dramatic increase in Gli2ER clones under
4OHT+ conditions (Fig. 7E). Perhaps a positive feedback loop exists
al microscopy was used to examine the localization of Oct3/4 proteins (green; first row,
d image) in undifferentiated mESCs (first row, first image). Sections were taken every
s indicate themESC nuclei with reducedOct3/4 andGli2 expression levels. Arrows indicate
s themESC nuclei with reduced expression of Oct3/4, but expression of Gli2. As a negative
henuclear staining of three cells in the bottom left corner of the second row, second image
equency (%) of mESC nuclei that show the presence (+) or absence (−) of Oct3/4 and Gli2

heterogeneous transcriptional activity of Oct3/4 and its possible inter-
dx.doi.org/10.1016/j.ygeno.2013.09.004
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Fig. 7. Forced activation ofGli2 increased themESC proliferation rate. (A) A schematic representation of a novel expression vector is shown. Boxes indicate each functional component and
are scaled, except for the box of the Gli2 cDNA [Gli2 (4.6 kb)]. The bar represents a length of 1 kbp. S/MAR, the synthetic scaffold/matrix associated region motifs [81]; CAG, the CMV en-
hancer and the chickenβ-actin promoter [79]; Gtx, the Gtxmotifs [17,80]; ERT2, thehuman estrogen receptor [30,31]; 2A, the foot-and-mouth disease virus self-cleaving peptide T2A [50];
DsRedT3, the DsRedT3 cDNA [82,83]; Puror, the puromycin N-acetyltransferase gene; pA, the bovine growth hormone polyadenylation signal. (B) Phase contrast (the top row)
and fluorescence (the second, third and bottom rows) images representing mESC clones that have the expression vector shown in A stably integrated in the genome and were
maintained in the presence (4OHT+) or absence (4OHT−) of 4-hydroxytamoxifen (4OHT) are shown. Fluorescence images shown on the second row indicate transcriptional activity
ofOct3/4 (Oct3/4::EGFP), whereas images on the third row indicate transcriptional activity of the transgenes shown in A (CAG::GEDP). These green and red fluorescence images aremerged
on the bottom row. Bars, 20 μm. (C) Phase contrast (the top and third rows) and fluorescence (the second and bottom rows) images of one of themESC clones maintainedwith (the third
and bottom rows) or without (the top and the second rows) 4OHT are shown. Fluorescence images indicate localization of the SSEA1 antigen (SSEA1, green) and cellular nuclei (DNA,
blue). Bars, 20 μm. (D) Mouse ESCs indicated on the bottom were plated in duplicate. Cell numbers in cultures supplemented with 4OHT for 4 days were divided by those without
4OHT. OGR1 was used to generate nine mESC clones (Gli2ER) that have the expression vector shown in A stably integrated. Four Gli2ER clones were plated without 4OHT in duplicate
and cell numbers were counted to estimate the plating error (Gli2ER w/o 4OHT). Error bars represent standard errors of the mean. (E) Five Gli2ER clones were randomly chosen to
examine relative expression levels of genes indicated on the bottom under conditions with (+, yellow) or without (−, blue) 4OHT. The averaged expression level of each gene under
4OHT− conditions was normalized to 1. Ef1α was used as a reference for the 2−ΔΔCt method. Error bars represent standard errors of the mean.
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betweenGsk3β andGli2 becauseGli2 is one of theGsk3β substrates and
targeted on proteasome-mediated processing [87].
3.6. The possible role that Gli2 plays in mouse embryonic stem cells

Gli1 was initially identified due to its amplification in human glio-
blastomas [88]. Two homologues of Gli1, Gli2 and Gli3, were also
expressed in human glioblastomas [89]. The overexpression of Gli2 in
the skin of transgenic mice induced the development of basal cell carci-
nomas, which are the most common skin tumors in Caucasians [90]. In
addition, the overexpression of GLI2 in a human prostate epithelial cell
line resulted in growth acceleration and cell cycle progression [91].
Therefore, it is possible to speculate that Gli2 may be involved in the
tumor-like growth of ESCs.

The tumor-like growth of mESCs is dependent on the activity of Eras
via the activation of Akt1 [92]. Because Akt1 inactivates Gsk3β [93–95]
and Gsk3β inhibits c-Myc (Myc) [93,96], Eras may indirectly activate c-
Myc, which subsequently drives the self-renewal ofmESCs [97]. Howev-
er, human ERAS is not expressed in human ESCs [98,99]. Therefore, we
hypothesize that other genetic factors drive the tumor-like growth of
both mouse and human ESCs. Interestingly, our data showed that
Gli2ER clones significantly increased their proliferation rate (Fig. 7D)
while they decreased the expression level of Eras (Fig. 7E) under
4OHT+ conditions. Although it needs to be addressed whether the in-
teraction between Gli2 and Eras is direct and whether a feedback loop
exist between Eras and Gsk3β or not, we suggest with our data that
Gli2may be involved in the tumor-like growth of ESCs.
Please cite this article as: Y. Li, et al., Gene expression profiling reveals the
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We recently demonstrated that mESCs cultured under chemically
defined serum-free conditions downregulated Eras and c-Myc and
failed to grow into teratomas [33]. Interestingly, mESCs maintained
under serum-free conditions restored their tumor-like growth with-
out the upregulation of Eras and c-Mycwhen the culture was supple-
mented with a Gsk3β inhibitor [33]. Therefore, this result strongly
supports our hypothesis that other genetic factors are involved in
promoting the tumor-like growth of ESCs. Because the serum-free
culture provides a unique platform to screen genetic factors respon-
sible for teratoma development in mESCs, further study using this
culture systemmay identify the role of Gli2 in the tumor-like growth
of mESCs.

4. Conclusions

A standard culture of mESCs contains a cell population with re-
duced Oct3/4 transcriptional activity, which leads to the generation
of subpopulations with expression profiles that are similar to differ-
entiated cells. Heterogeneity in the transcriptional activity of Oct3/4
was dynamic. Oct3/4 plays an essential role in maintaining basal cel-
lular transcriptional activities while suppressing the expression of
genes involved in cell differentiation. The expression of Gli2, Ptch1
and Smo was consistently detected in pluripotent stem cells exam-
ined in this study. Gli2 expression patterns are highly correlated
with Oct3/4 expression patterns in undifferentiated mESCs. Forced
activation ofGli2 in mESCs increased their proliferation rate. It is sug-
gested with our results that Gli2 may play a novel role in the self-
renewal of pluripotent stem cells.
heterogeneous transcriptional activity of Oct3/4 and its possible inter-
dx.doi.org/10.1016/j.ygeno.2013.09.004
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