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Atomic Physics

Helium and two-electron atoms
Part 1




The helium atom

Work together -

1. Draw an energy level diagram showing all helium excited states.
Label the energy levels... according to

(a) Configurations n,ln,l, etc

(b) Spectroscopic notation - assuming LS- coupling —e.g. @5*DL,
Think about systematics (logic)

2. Can you generalize these results to any other many-electron
systems?
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Fig. 15. The experimental energy levels of helium. The scale on the left represents jonization potential in electron volts,
The numbers next to the levels are the wave numbers corresponding to the ionization potential, expressed in units of 107 em™Y,
The dotted lines represent the energy levels of hydrogen {nuclear charge = Z—1=1).




The basic 2-electron Schrodinger equation

(Just the 1/r potentials and the non-relativistic kinetic energies) 1s:

2 2 ol 7 02 2
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(A + A, + AW = Ey.
where
2 2

and similarly for electron 2. with

ro__ ¥, .
H ' = e’ /dneyr,, .

ili 1s the wave function for the whole sistem.



The ground state binding energy

Let 6, = F, + J,,  and treat F€ 1n first order perturbation theory:

Then the zero order wavefunction will be the hydrogenic
n=1, Z=2 wavefunction product: Y=u,Z,r1)uZr,)

Zero-order Eigen-energy is E,=-2x 13.6 x Z? eV =-108.8 eV for helium
Perturbation energy AE =<V | €’ |¥P>=+34 eV

NB — it 1s repulsive — the electrons tend to repel each other




The energy to remove both electrons to infinity 1s {— E, -+ AE } = 74.8 eV
But we know the energy to remove the 2nd electron is Z? x 13.6 = 54.4 eV

Hence, the first ionization potential = 74.8 — 54.4 = 20.4 eV {Expt=24.58 ¢V}
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Homework Problem: Show that AE =+34 eV [=(5/4)x Z x 13.6 V]




Helium excited states

“All”” configurations have just one electron excited...

e.g One electron in the 1s state:  u (1) =R (1)) * 1/N4m

2nd electron in the nl state : u,(2) = Ry(1,) * Y1,(0,, 0,)

BUT: since electrons are identical Fermi particles...

Two spatial linear combinations of the 2 electrons are allowed — symmetric and
antisymmetric — P> and WA

- The total wavefunction including spin must be antisymmetric

— thus the spin part of the ground state must have an antisymmetric spin state (S=0)
-The excited states can have both symmetric and antisymmetric spins (S=1 & S=0)
-And the excited state spatial parts can be written:

PS(spatial) = (1/72) {u, (v, (2) +u,(2)u,(l}) singlet spin
YA(spatial) = (1/72) tu (v (2)-u(2) u,(1}) triplet spin




Spin wavefunctions

Total wavefunctions are:

¥ (singlet) A

space spin

and Y (triplet) Ps

space spin

And we write the spin states as:
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Exchange energy

Treating H’ as a perturbation now leads to a different energy change for
each of the states AE=J+K

Where J and K are called the direct and exchange integrals...

4”6/ luis(1 |un;(2)| drldr)

u15(2)ung(1) dr3 dr3 .

Unperturbed
configuration

Note: Triplet 1s lower in energy than the singlet
This 1s called Hund’s rule — highest spin state has the lowest energy




The Direct & Exchange integrals

Example — the 1s2p singlet and triplet states of helium

Assume that the 1s electron sees a nuclear charge Z=2, and the 2p electron is
completely outside the 1s wavefunction, and sees Z=1

Then let Hy, = -h?2m (V¥ 2+ V,2) — e?/4ng, (2/r, + 1/1y)
and H,’ = e*/4ng, (1/r, — 1/r,) NB this goes to zero as r, -> infinity

The Direct integral 1s then
Jisu = €%/4me, 1] (1/ry, — 1/ry) u (D [uy(2) d3r, d3r, over all space

Isnl

= ¢?/4mg, J OOOI o I, 1) R, 2 (r)R, 2 (r,) 1,2dr, 1,2dr, 2 radial integrals 0 to

where J(r,, 1,) 1s the tricky angular part.....

We need to expand 1/r, in spherical harmonics — tedious, but the integrals are
known....




The angular parts (direct)

s = [ (1) = im0

X Sin 91 dgl d@l sin 92 d@_} d(bg -

Expanding l/r;, ....[forr, >r,, and the reverse when r>1,]

kg (01,01) Yi g (62, 02)

Only the k=0 term survives,

: : ¢ ]
(orthogonality of Y, s)..to give orry <ra,

1/7‘1 - 1/7‘2 for ri > ro.

For r>1,, potential difference 1s
(2/ty +1/r,)-(-2/r,-1/r,) = (1/1,-1/1,)

e Uk




The exchange integrals

These integrals have the same form as before, but with the 2 values of Z=2, and Z=1

I{lsnt‘ ~— ;E{] // I‘L I‘1 I:- { 1}}?.;”(?1)Rn(f‘}]R”;(TE)T% d-rl rf d'?*;z

.F

Where the angular part is...

I\.(}"] T /]f/ }[m 81 Ol }Im(g"" ¢7')

X Sin 91 dgl dCDl sin 92 dgg dd)g ;

For p-states, only k=1 survives, g r. |3 f for r; < 7o,

1vin
giving for ro < ;.

Results: J;,,=-0.028 eV (ie. Very little incomplete screening!)
Kigp =1.105 eV (Expt=0.125 eV)
Not as good for the 1s2s states — screening is not as complete!




Improving on first order perturbation theory

1 — Go to higher orders
Advantage — good for all atoms
Disadvantage - Tedious and not very accurate — slow convergence

(Converges to wrong value — h-orbitals are NOT a complete set)

2 — Variational calculation: parametrize the wavefunction and minimize the energy
with respect to the parameter(s)
Advantage — very accurate, fast convergence with more parameters
Disadvantage — Tedious, not possible for other atoms (more than 2 electrons)

First done by Hylleraas in 1930 for helium — a landmark set of papers...
(see website)
We .....will begin with calculational method in Bethe and Salpeter




Bethe &
Salpeter,
Pp. 122..

p) Variation perturbation theory. Consider a general HaMmirronian equation
(Hy+AH,— E)yu=0, (25.5)

where H, and H, are any two HERMITian operators and A is considered as a small
parameter. We consider the eigenfunction # and eigenvalue E expanded in powers
of this parameter,

E=S1E, u=Yru,. (25.6)

If we substitute these expansions into (25.5) and equate the coefficient of each
power of A to zero, we get an infinite set of coupled linear equations,

HyUy— EyUy=0, (25.7)
BT, e FLT, s By T o B o By T, (25.9)

HU +HU,_,—>EU,_,=0.
i =_}

We call (25.7) the unperturbed (or zero order) HAMILTONian equation. This
equation, like the full Eq. (25.5), has a whole spectrum of solutions. We consider
one particular solution and consider U, and E, as known completely and U,
normalized. Multiply (25.7) by U,, (25.8) by U,, substract the two equations and
integrate over all space!. One then obtains the well-known expression for £,

the first order perturbation energy,

A knowledge of the zero-order wave function U, for one particular state alone,
thus vields both E, and E, for this state.



In Eq. (25.8) for the particular state we are considering, the constants E,
and E; and the function U, are now known. (25.8) is then an inhomogeneous
differential equation for U,, which does not contain any unknown eigenvalue.
Since U; must satisfy some definite boundary conditions (conditions of ““good
behavior™), the Eq. (25.8) determines the function U, for the particular state
untquely?®, at least in principle. We shall discuss practical methods of solving for

! We restrict ourselves to the case of real functions U, U}, U,, etc. for the sake of
simplicity.

£ Except for an additive multiple of Uj,. The normalization, etc., can be so arranged
that U (and U, etc.) is orthogonal to U,

U, in a moment. Once U] has been found, both £, and E, can be evaluated as
follows. Multiplying (25.7) by U,, (25.9} by U,, subtracting the equations and
integrating, we get

E,= [U,H,U,dr, (25.11)

where we have assumed the normalization such that U, and U] are orthogonal.
Next multiply (25.7) by — U}, (25.8) by — U,, (25.9) by + U, and the next equa-
tion by + U,. Adding these equations and integrating gives

E;= [(U,HU,— E, U})dz. (25.12)

After E, and U, have been found, the Eq. (25.9) determines the function U,
(in principle}, and so on. In general, after each additional wave function (e.g. U,)
has been found, #wo additional eigenvalues (e.g. E, and Ey) can be evaluated.




Variational techniques - 1

The helium ground state energy:

We can assume some parametric form for the wavefunction, evaluate the

Hamiltonian, and then minimize the energy with respect to these parameters

The Ritz/Hylleraas variational method

Simplest 1dea for the 1s2s helium-like state: guess a 1-parameter (o) wavefunction
let ¥ = exp({-(Z-0)(r,*1,)} = exp({-(Z-0)s} where s= (r,+1,)

And rewrite the Hamiltonian: 702 T

}l[/:El//.

- +
471-80"-1 471:80’-2 471-80 I‘l 2
In terms of s,t=r, —r, andu=r;, and then minimize E = <¥Y|#V>/<Y|¥>

-See Bethe & Salpeter, pp. 146-148 for details

-Result — the screening parameter ¢ = 5/16, and thus the energy is

. E = - 2(Z-5/16)? Rydbergs

-And the 1%t ionization potential IP = -(E - Z?) = (Z? — 5Z/4 + 25/128) Rydbergs
-Note: this 1s very similar to earlier result — extra term brings it closer to experiment
— especially as Z gets larger — for Li*, Be?".... The isoelectronic sequence




Variational techniques - 2

Hylleraas (1929 and onwards) expanded these ideas to include more
parameters..

e.g. wavefunctions which included the exponent G,
and power expansions of s, t and u

e.g ¥ =exp({-(Z-0)s} > s*tYu? x,y,z=0,1,2,3...

With 6 parameters he obtained an ionization potential to 1 part in 104,

Using computers Pekeris et al (1958) extended these results to excited S and P
states — e.g. thousands of parameters... giving EXACT non-relativistic energies.
Note : that leaves relativistic corrections — (we will treat them later...)

A good overview of the technique, developing a 3-parameter function:
Bhattarchya et al, J. Phys. B 29, L147 (1996)




PHYSICAL REVIEW VOLUME

Examples of
early
calculations

The method described previously for the solution of the wave
equation of two-electron atoms has been applied to the 11§ and
23S states of helium, with the purpose of attaining an accuracy
of 0.001 cm™ in the nonrelativistic energy values. For the 11§
state we have extended our previous calculations by solving
determinants of orders 252, 444, 715, and 1078, the last yielding
an energy value of —2.903724375 atomic units, with an estimated
error of the order of 1 in the last figure. Applying the mass-
polarization and relativistic corrections derived from the new
wave functions, we obtain a value for the ionization energy of
198 312.0258 cm™, as against the value of 198 312.011 cm™
derived previously from the solution of a determinant of order
210. With a Lamb shift correction of —1.339, due to Kabir,
Salpeter, and Sucher, this leads to a theoretical value for the
ionization energy of 198 310.687 cm™!, compared with Herzberg’s
experimental value of 198 310.8::0. 15 cm™,

(la.u.=2 Ry
=27.2 eV)

115,

NUMBER 5§ SEPTEMBER 1, 1959

11S and 2 S States of Helium

C. L. PExERIS
Department of Applied Mathematics, The Weizmann Institute, Rehovot, Israel

(Received April 15, 1959)

125, 252, 444, and 715, the last giving an energy value of
—2.17522937822 a.u., with an estimated error of the order of 1
in the last figure. This corresponds to a nonrelativistic ionization
energy of 38 453.1292 cm™. The mass-polarization and relativistic
corrections bring it up to 38 454.8273 cm™. Using the value of
74.9 ry obtained by Dalgarno and Kingston for the Lamb-shift
excitation energy Ko, we get a Lamb-shift correction to the
ionization energy of the 23S state of —0.16 cm™. The resultmg
theoretical value of 38 454.66 cm™ for the ionization potential is
to be compared with the experimental value, which Herzberg
estimates to be 38 454.73+0.05 cm™. The electron density at
the nucleus D(0) comes out 33.18416, as against a value of
33.183884-0.00023 which Novick and Commins deduced from
the hyperfine splitting. We have also determined expectation
values of several positive and negative powers of the three mutual
distances, which enter in the expressions for the polarizability
and for various sum rules.

For the 23S state we have solved deternunants of orders

PHYSICAL REVIEW VOLUME 128, NUMBER 6 DECEMBER 15, 1962

Two-Electron Atoms. I. Perturbation Study of the Ground State

RoBErT E. KN1GHT AND CHARLES W. SCHERR
Department of Physics, The University of Texas, Austin, Texas
(Received May 3, 1962)

A variational perturbation method used by Hylleraas has been extended to include 70-term basis sets as
approximations to the first-order wave function of the two-electron atomic species. An upper limit of
—0.15766625% a.u. has been found for the second-order perturbation energy coefficient. It is estimated
that this value is converged to at least two units in the seventh decimal place. A value of the third-order
perturbation energy coefficient of 0.00869868 a.u. is calculated from the same variational first-order wave func-
tion. A number of expectation values to first-order for certain operators [e.g., 8(r1), (r12), p1%, 71", cosfiz, etc. ]
are computed, and compared, where possible, to known values. A variety of basis sets is studied, including
a set that contains negative powers of the metric variables (“Kinoshita” type) and one that contains only
positive powers (“Hylleraas” type). A scheme is proposed that uses first and higher order expectation values
for the analysis and characterization of approximate wave functions. This scheme, which is not restricted
to two electrons, also opens the possibility of a nonenergetic variational procedure for obtaining wave
functions.




A “modern” example...

I Phys. B: At. Mol. Opt. Phys. 29 (1996) L147-1150. Printed in the UK

LETTER TO THE EDITOR

Analytical approach to the helium-atom ground state using
correlated wavefunctions

S Bhattacharyvai. A Bhattacharyvaf, B Talukdari and N C Debi

T Department of Physics, Visva-Bharati University, Santiniketan-731235, India

1 Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur,
Calcutta-700032, India

Fecerved 23 Augnst 1993

Abstract. A realistic three-parameter correlated wavefinction 15 used to construct an exact
analytical expression for the expectation valee of the helmm-atom Hanultoman expressed in
the mterparticle coordinates. The parameters deternuned vanatonally are found to satisfy the
orbital and correlation cusp conditions to a faw degree of accuracy and yield a value for the
ground-state energy which 1s m good agreement with the exact result.




n terms of mterelectronic coordimates. equation o1 e case of »-states can be

written 1 the form (Roothaan and Weiss 1960)

(H —eyir, r2,r12) =10

where
H = H1 + H: + Hi» + Hy,
with
1/ a2 2 4 2
=35+ 05)
= F 7 ory 7
a° 2 4 1
Hypz = —( — + ) —
dri, 1z driz 12
and

ri—ri 4 9 +r§—rf+rf;_ d d

2r1r12 di 2112 di?

The vector operator del implied i (4) 15 given by (Hylleraas 1964)
d

The ground-state energy for (1) 1s given by
. iH ]y
vl w)

dria

(2)

(3

(4a)

(45)

(4c)

&)

(6)



The expectation value of the Hamualtonian can be written in the explicit form

1 - - 1 1
WIHI) = — ffnvlwr +IVayl) dr dra — sz v* (;1 + ;) v dry dr
1
—I—ff'-f—\j!di‘l drs. (7)
Fi2

For calculating the ground-state energv of helmum by means of (6) and (7). we have
chosen to work with the trial wavefunction (Hartree and Ingman 1933)

Wiry.ra, ) =e

TRy (1) (&)

where the correlation function
wirp)=1—2e™2, (9)

The adjustable parameters of our tnal wavefunction are «, A and u. As rpp — @, yirpn) —
1. This expresses the separability of the wavefunction when the two electrons are far apart.
As demanded by Hartree and Ingman (1933). we can allow y(r{y) to assume a small finite
value for 12 = 0. Thus our choice for the wavefunction (8) 1s based on physically founded
assumptions. In the mid 1980s, Abbott and Maslen (1986) envisaged a study similar to
ours in terms of a correlated wavefunction of the form W(ry, 2. r12) = e 5 H el This
choice was ongmally made by Hyvlleraas (1929) and rejected subsequently by Hartree and
Ingman (1933) as unphvsical. When the cusp conditions (Roothaan and Weiss 1960)

()
r =0 ra=0




and

14 1
(_ hd ) _Z (10B)
warp /S, 2

are satisfied. the wavefunctions gave a found-state energy —2.8333 au in contrast to the
exact value —2.9037 au. Interestingly, 1f the conditions in (1) are relaxed by allowing
L — £ — 014 and y» = 0.26. an mmproved result of —2.8896 au could be obtaimned.
As opposed to the wavefunctions used by Abbott and Maslen (1986). the continuum
distorted wavefunction (CDW) of Pluvinage (1950) 1s based on a perfectly legitimate physical
assumption that the correlation energy arises from a repulsive Coulomb potential which can
support continuous spectrum only. But the use of CDW does not permut an analytical
approach to the problem and also it gives a poor ground-state energy of —2.8780 au.

To construct an expression for (y|H |y} by using the wavefunction in (8). ons would,
ideally, like to calculate the integrals mmvolved by the use of well known Hylleraas
coordinates w = r;;,8 = rp +r; and 1 = r; — . Unformunately, this approach does
not lead to an analvtical expression for the energy expectation value (Morse and Feshbach
1953). We thus take recourse to the use of the Fourer transforms (Deb 1994)

E—J..r 1 Eip-:l'
= —d 11
r Errzf{ﬂ—l—;:-‘} P (1)
and
1 1 Ei.R Wy —ra
—=— | ————dHR. 12
F12 2 f RE { }
For {y | w} and (y|H |y} we have found that
71 2 ) ) A ) )
= | —_— - _iu- 10 32a” - in- 5 Ror”
R =3 Lﬁ_ {#Hmjm + 10pa 4 3 }+E{;a+-:r}f'm + Spa + }}

(13)




(WH[y)j=A—-B+C (14)
with
H: 1 E.:‘-.-I:!'E ~ ':.
= — — 3~ 4 30 3a
o L’ '[H-I—EEE"}EHH b :
b (u* + 5 + 11p%a? 4 150’ + 3.:.:4}} (15a)
Bl +a)
2 : 12
T 4 164 Ao
B = — — g —_— dow 1356
- L" {#4_2&]4{#4— cr}—l—m_I_mﬂﬂ—l— "}} (155)
and
Ti[ 5 A . e . ,
C = — (’ +8 20a’ (> +4 Se’y|. (15
ﬂ}_[gﬂg e 2a) i 4 Spa + }+8m+ﬂ}4 w4 dpa + }} (15¢)

Mimimizing the energy with respect to vanations in the parameters of yiry, 2. r12) we
get @ = 1.8395, 4 = 0.386 and pu = 0.379. For these parameters the correlation cusp
condition (105) comes out to be 0.5363 which 15 not far from the exact value and. more
significantly, the ground-state energy 1s found to be —2.8894 au. Very recently, Tripathy

Note: Using the Fourier transforms allowed an analytical solution;

With just 3 parameters, the result 1s within 0.3% for the total energy




