


Atomic Physics

Helium and two-electron atoms
Part 1



The helium atom

1. Draw an energy level diagram showing all helium excited states.

Label the energy levels… according to 

(a) Configurations n1l1n2l2  etc

(b) Spectroscopic notation - assuming LS- coupling – e.g. (2S+1)LJ

Think about systematics (logic)……. 

2.  Can you generalize these results to any other many-electron 
systems?

Work together - ……



EXPERIMENT

Note:

- No 1s1s

- Singlets

- Triplets

- Hydrogen
energies?

- S/T diffs



The basic 2-electron Schrodinger equation
(just the 1/r potentials and the non-relativistic kinetic energies)  is:



The ground state binding energy
Let H0 = H1 + H2,  and treat H’ in first order perturbation theory:

Then the zero order wavefunction will be the hydrogenic
n=1, Z=2 wavefunction product:        Ψ = u1s(Z, r1) • u1s(Z, r2)

Zero-order Eigen-energy is  E0 = -2 x 13.6 x Z2 eV = -108.8 eV for  helium

Perturbation energy ΔE = <Ψ|H ’|Ψ> = +34 eV

NB – it is repulsive – the electrons tend to repel each other



The energy to remove both electrons to infinity is {– E0 + ΔE } =  74.8 eV
But we know the energy to remove the 2nd electron is Z2 x 13.6 = 54.4 eV

Hence, the first ionization potential = 74.8 – 54.4 = 20.4 eV   {Expt = 24.58 eV}

Homework Problem:   Show that ΔE = +34 eV  [=(5/4) x Z x 13.6 eV]



Helium excited states
“All” configurations have just one electron excited…

e.g One electron in the 1s state:   u1s(1) = R1s(r1) • 1/√4π

2nd electron in the nl state : unl(2) = Rnl(r2) • Ylm(θ2, φ2)

BUT: since electrons are identical Fermi particles…
Two spatial linear combinations of the 2 electrons are allowed – symmetric and 
antisymmetric – ΨS and ΨA

- The total wavefunction including spin must be antisymmetric
– thus the spin part of the ground state must have an antisymmetric spin state (S=0)
-The excited states can have both symmetric and antisymmetric spins (S=1 & S=0)
-And the excited state spatial parts can be written:

ΨS(spatial) = (1/√2) • {u1s(1) unl(2) + u1s(2) unl(1})     singlet spin
ΨA(spatial) = (1/√2) • {u1s(1) unl(2) - u1s(2) unl(1})      triplet spin



Spin wavefunctions
Total wavefunctions are:  

Ψ (singlet) = ΨS
spaceΨA

spin
and Ψ (triplet) = ΨA

spaceΨS
spin

And we write the spin states as:



Exchange energy
Treating H’ as a perturbation now leads to a different energy change for 
each of the states ΔE = J ± K

Where J and K are called the direct and exchange integrals…

Note: Triplet is lower in energy than the singlet 
This is called Hund’s rule – highest spin state has the lowest energy



The Direct & Exchange integrals
Example – the 1s2p singlet and triplet states of helium

Assume that the 1s electron sees a nuclear charge Z=2, and the 2p electron is 
completely outside the 1s wavefunction, and sees Z=1

Then let  H0a = -ħ2/2m (▼1
2 + ▼2

2) – e2/4πε0 (2/r1 + 1/r2)

and Ha’ = e2/4πε0 (1/r12 – 1/r2)   NB this goes to zero as r2 -> infinity

The Direct integral is then
J1snl = e2/4πε0 ∫∫ (1/r12 – 1/r2) |u1s(1)|2 |unl(2)|2 d3r1 d3r2                 over all space

= e2/4πε0 ∫0
∞∫0

∞
J(r1, r2) R10

2 (r1)Rnl
2 (r2) r1

2dr1 r2
2dr2            2 radial integrals 0 to ∞

where   J(r1, r2) is the tricky angular part…..

We need to expand 1/r12 in spherical harmonics – tedious, but the integrals are 
known….



The angular parts (direct) …

Expanding 1/r12 ….[for r2 > r1, and the reverse when r1>r2] 

Only  the k=0 term survives, 
(orthogonality of Ylms)..to give

For r1>r2, potential difference is 
(2/r2 +1/r1)-(-2/r1-1/r2) = (1/r1-1/r2)



The exchange integrals
These integrals have the same form as before, but with the 2 values of Z=2, and Z=1

Where the angular part is…

For p-states, only k=1 survives, 
giving

Results: J1s2p = -0.028 eV     (ie. Very little incomplete screening!)
K1s2p = +.105 eV  (Expt = 0.125 eV)

Not as good for the 1s2s states – screening is not as complete!



Improving on first order perturbation theory

1 – Go to higher orders…..  
Advantage – good for all atoms
Disadvantage - Tedious and not very accurate – slow convergence

2 – Variational calculation: parametrize the wavefunction and minimize the energy 
with respect to the parameter(s)

Advantage – very accurate, fast convergence with more parameters
Disadvantage – Tedious, not possible for other atoms (more than 2 electrons)

Let’s look at variational calculations…
First done by Hylleraas in 1930 for helium – a landmark set of papers…

(see website)
We …..will begin with calculational method in Bethe and Salpeter

(Converges to wrong value – h-orbitals are NOT a complete set)



Bethe & 
Salpeter,
Pp. 122.. 





Variational techniques - 1
The helium ground state energy:
We can assume some parametric form for the wavefunction, evaluate the 
Hamiltonian, and then minimize the energy with respect to these parameters
The Ritz/Hylleraas variational method
Simplest idea for the 1s2s helium-like state: guess a 1-parameter (σ) wavefunction

let  Ψ = exp({-(Z-σ)(r1+r2)} = exp({-(Z-σ)s}    where  s= (r1+r2)
And rewrite the Hamiltonian:

In terms of s, t = r1 – r2 and u = r12 and then minimize E = <Ψ|H|Ψ>/<Ψ|Ψ>

-See Bethe & Salpeter, pp. 146-148 for details
-Result – the screening parameter  σ = 5/16, and thus the energy is 
- E = - 2(Z-5/16)2 Rydbergs
-And the 1st ionization potential IP = -(E - Z2) = (Z2 – 5Z/4 + 25/128) Rydbergs
-Note:  this is very similar to earlier result – extra term brings it closer to experiment 
– especially as Z gets larger – for Li+, Be2+…. The isoelectronic sequence



Variational techniques - 2
Hylleraas (1929 and onwards) expanded these ideas to include more 
parameters..

e.g. wavefunctions which included the exponent σ, 
and power expansions of s, t and u   

e.g  Ψ = exp({-(Z-σ)s} ∑ sx ty uz x, y, z =0,1,2,3…

With 6 parameters he obtained an ionization potential to 1 part in 104.
Using computers Pekeris et al (1958) extended these results to excited S and P 
states – e.g. thousands of parameters… giving EXACT non-relativistic energies.
Note : that leaves relativistic corrections – (we will treat them later…)

A good overview of the technique, developing a 3-parameter function:   
Bhattarchya et al, J. Phys. B 29, L147 (1996)



Examples of 
early 
calculations

(1a.u.=2 Ry
=27.2 eV)



A “modern” example…









Note:  Using the Fourier transforms allowed an analytical solution;
With just 3 parameters, the result is within 0.3% for the total energy


