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Abstract. A realistic three-parameter correlated wavefunction is used to construct an exact
analytical expression for the expectation value of the helium-atom Hamiltonian expressed in
the interparticle coordinates. The parameters determined variationally are found to satisfy the
orbital and correlation cusp conditions to a fair degree of accuracy and yield a value for the
ground-state energy which is in good agreement with the exact result.

Most of our understanding of atomic theory rests on the independent-electron model which
assumes each electron as moving in the combined field of the nucleus and of the average
distribution of the other electrons. In this model the effect of interelectronic repulsion,
globally referred to as correlation (Fano 1983), is disregarded. Such a view-point, however,
leads to inaccurate results for the ground-state energy of the helium atom and its isoelectronic
sequence. Thus studies of the effects of two-electron correlation have been a subject of
interest from the early days of quantum mechanics (Hartree 1957).

The ground-state energies of helium and helium-like atoms are calculated by using
wavefunctions constructed from the conventional orbital product, times a correlation
function depending on the interelectronic distancer12. These wavefunctions involve, in
general, a number of adjustable parameters which are constrained to satisfy some kind of
variational principle to give an improved value for the ground-state energy (Mizushima
1970). It is found that integration of the functions ofr12 is quite difficult, so that the topic
of electron correlation is often studied by using numerical routines only.

In the present letter we shall make a judicious choice for the correlated wavefunction
and derive a simple analytical model in respect of this. The inevitable numerical routine
will be invoked only at the last stage of the game. We shall see in the course of our study
that the model presented is not only physically transparent but also numerically accurate.

In atomic units, the Schrödinger equation for the helium atom is given by[
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ψ(r1, r2) = 0 (1)

whererj is the position of thej th electron relative to the nucleus. Hylleraas (1929) realized
that a complete description of the S-states requires only three independent coordinates,
namely, the lengthsr1, r2 andr12 of the sides of the triangle formed by the three particles.
The Euler angles specifying the spatial orientation of the triangle disappear from the
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dynamical equation because of symmetry considerations. This observation forms the basis
for a realistic choice of the S-state wavefunction to calculate the value ofε in (1).

In terms of interelectronic coordinates, equation (1) for the case of S-states can be
written in the form (Roothaan and Weiss 1960)

(H − ε)ψ(r1, r2, r12) = 0 (2)

where
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The vector operator del implied in (4) is given by (Hylleraas 1964)
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The ground-state energy for (1) is given by

ε = 〈ψ|H |ψ〉
〈ψ | ψ〉 . (6)

The expectation value of the Hamiltonian can be written in the explicit form

〈ψ|H |ψ〉 = −1
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For calculating the ground-state energy of helium by means of (6) and (7), we have
chosen to work with the trial wavefunction (Hartree and Ingman 1933)

ψ(r1, r2, r12) = e−α(r1+r2)χ(r12) (8)

where the correlation function

χ(r12) = 1 − λe−µr12 . (9)

The adjustable parameters of our trial wavefunction areα, λ andµ. As r12 → α, χ(r12) →
1. This expresses the separability of the wavefunction when the two electrons are far apart.
As demanded by Hartree and Ingman (1933), we can allowχ(r12) to assume a small finite
value forr12 = 0. Thus our choice for the wavefunction (8) is based on physically founded
assumptions. In the mid 1980s, Abbott and Maslen (1986) envisaged a study similar to
ours in terms of a correlated wavefunction of the formψ(r1, r2, r12) = e−ξ(r1+r2)eγ r12. This
choice was originally made by Hylleraas (1929) and rejected subsequently by Hartree and
Ingman (1933) as unphysical. When the cusp conditions (Roothaan and Weiss 1960)(
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are satisfied, the wavefunctions gave a found-state energy−2.8555 au in contrast to the
exact value−2.9037 au. Interestingly, if the conditions in (10) are relaxed by allowing
Z → Z − 0.14 andγ = 0.26, an improved result of−2.8896 au could be obtained.
As opposed to the wavefunctions used by Abbott and Maslen (1986), the continuum
distorted wavefunction (CDW) of Pluvinage (1950) is based on a perfectly legitimate physical
assumption that the correlation energy arises from a repulsive Coulomb potential which can
support continuous spectrum only. But the use ofCDW does not permit an analytical
approach to the problem and also it gives a poor ground-state energy of−2.8780 au.

To construct an expression for〈ψ|H |ψ〉 by using the wavefunction in (8), one would,
ideally, like to calculate the integrals involved by the use of well known Hylleraas
coordinatesu = r12, s = r1 + r2 and t = r1 − r2. Unfortunately, this approach does
not lead to an analytical expression for the energy expectation value (Morse and Feshbach
1953). We thus take recourse to the use of the Fourier transforms (Deb 1994)
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For 〈ψ | ψ〉 and〈ψ|H |ψ〉 we have found that
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Minimizing the energy with respect to variations in the parameters ofψ(r1, r2, r12) we
get α = 1.8395, λ = 0.586 andµ = 0.379. For these parameters the correlation cusp
condition (10b) comes out to be 0.5365 which is not far from the exact value and, more
significantly, the ground-state energy is found to be−2.8894 au. Very recently, Tripathy
et al (1995) derived an interesting approach to compute the ground-state energies of the
helium isoelectronic sequence. Their method consists of introducing variational parameters
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in the Hamiltonian rather than in the trial wavefunction. Physically, the parameters used,
on the one hand, screen the nuclear charge and, on the other hand, produce a change in
the centrifugal potential term that appears in the radial part of the one-electron Schrödinger
equation. The interelectronic interaction is repulsive. Therefore, mechanistically, one may
think of this repulsion resulting in some kind of positional displacement for the electronic
wavefunction such that the correlated atomic state might not be associated only with pure s
orbitals. This justifies the claim that correlation can also be accounted for by introducing
variational parameters in the Hamiltonian. However, the two-parameter wavefunction used
by Tripathy et al (1995) yields a number for the ground-state energy of helium which is
little inferior to what we have obtained.
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