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Abstract—In this paper, we study stability property for commutation condition to a Lie-algebraic condition. Ref.
a new type of switched systems which are composed of [11] showed that a class of symmetric switched systems

a continuous-time LTI subsystem and a discrete-ime LTI 516 asymptotically stable under arbitrary switching since a
subsystem. When the two subsystems are Hurwitz and Schur L functi in the f of Ccr
stable, respectively, we show that if the subsystem matrices COMMonN Lyapunov function, in the form &f (z) = 2"z,

commute each other, or if they are symmetric, then a common €Xists for all the subsystems. Refs. [12]-[14] considered
Lyapunov function exists for the two subsystems and that the Problem (ii) using piecewise Lyapunov functions, and Ref.
switched system is exponentially stable under arbitrary switch-  [15] considered Problem (i) for switched systems with
ing. Without the assumption of commutation or symmetricity pairwise commutation or Lie-algebraic properties. Ref. [16]

condition, we show that the switched system is exponentaill . S
stable if the average dwell time betwgen the subpsystems )i/s considered Problem (iii) by dividing the state space asso-

larger than a specified constant. When neither of the two Ciated with appropriate switching depending on state, and
subsystems is stable, we propose a sufficient condition in the Ref. [17] considered quadratic stabilization, which belongs

form of a combination of the two subsystem matrices, under to Problem (iii), for switched systems composed of a pair of
which we propose a stabilizing switching law. unstable linear subsystems by using a linear stable combina-
tion of unstable subsystems. Ref. [18] considered quadratic
stabilizability of switched linear systems with polytopic
In the last two decades, there has been increasing interesicertainties, and Ref. [19] dealt with robust quadratic
in stability analysis and controller design for switchedstabilization for switched LTI systems by using piecewise
systems; see the survey papers [1], [2], the recent bogfuadratic Lyapunov functions so that the synthesis problem
[3] and the references cited therein. The motivation focan be formulated as a matrix inequality feasibility problem.
studying switched systems is from many aspect. It is knowRefs. [11], [20], [21], [22] extended the consideration to
that many practical systems are inherently multimodal istability analysis problems for switched systems composed
the sense that several dynamical subsystems are requitfddiscrete-time subsystems.
to describe their behavior which may depend on various Noticing that all the above references deal with switched
environmental factors. Since these systems are essentialystems composed of only continuous-time subsystems or
switched systems, powerful analysis or design results @hly discrete-time ones, we are motivated to ask the fol-
switched systems are helpful dealing with real system$owing questionsDoes it make sense to consider switched
Another important observation is that switching among 8ystems composed of both continuous-time and discrete-time
set of controllers for a specified system can be regardetynamical subsystems? If so, is it possible to obtain similar
as a switched system, and that switching has been usegbults for such switched systems concerning the three basic
in adaptive control to assure stability in situations wher@roblems?
stability can not be proved otherwise [4], [5], or to improve The answer to the first question is “YES”. It is very easy
transient response of adaptive control systems [6]. Also, the find many applications involving such switched systems.
methods of intelligent control design are based on the idéeor example, in a switched system whose subsystems are
of switching among different controllers [7], [8]. Therefore,all continuous-time, if we use computer to activate some of
study on switched systems contributes greatly in switchinghe subsystems in a discrete-time manner, then the switched
controller and intelligent controller design. system is in fact composed of both continuous-time and
When focusing on stability analysis of switched systemgjiscrete-time subsystems. A cascaded system composed of
there are three basic problems in stability and design @fcontinuous-time plant, a set of discrete-time controller and
switched systems: (i) find conditions for stabilizability underswitchings among the controllers is also a good example.
arbitrary switching; (ii) identify the limited but useful class Another example of a system of this kind is a continuous-
of stabilizing switching laws; and (iii) construct a stabilizingtime plant controlled either by a physically implemented
switching law. There are many existing works on these prolsegulator or by a digitally implemented one (and a switching
lems in the case where the switched systems are composeate between them). Concerning the second question, we
of continuous-time subsystems. For Problem (i), Ref. [9ill show that some existing results are still valid for such
showed that when all subsystems are stable and comntype of switched systems, though they may take different
tative pairwise, the switched linear system is stable undéorms, while analysis and design problems become much
arbitrary switching. Ref. [10] extended this result from thenore difficult for such switched systems if the approach
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is involved using combination of subsystems. For example, It is known that Assumption 1 is not enough to guarantee
it is impossible to apply the idea of linear stable combiarbitrary switching. That is, a switched system composed of
nation of unstable continuous-time subsystems, which wasable subsystems could be unstable if the switching is not

proposed in [17], to the present case. done appropriately [1], [23]. Together with Assumption 1,
The switched system we consider is composed of we consider two different conditions under which arbitrary
continuous-time subsystem switching is possible.
CS: i(t) = Acx(t) (1) A. Commutation condition

We first consider the following assumption.
Assumption 2: A, and A; commute each other, i.e.,
DS: z(k+1) = Agx(k), (2 A.A, = A A,

Under this assumption, we can easily confirm that

and a discrete-time subsystem

wherez(t), z(k) € R™ are the subsystem statek, and A,
are constant matrices of appropriate dimension. To discuss eActAg = AgeAct (3)
stability of the switched system, we assume that the sam-
pling period ofDS is 7. Since the state of the discrete-timeholds for any scalat and any positive integek.
subsystem can be viewed as a piecewise constant vectoMVe now state and prove the first result.
between sampling points, we can consider the value of Theorem 1: Under Assumptions 1 and 2, the switched
the system states in continuous-time domain. Although fd¥ystem composed of (1) and (2) is exponentially stable
notation simplicity we focus our attention on the switchedinder arbitrary switching.
system including only one continuous-time subsystem and Proof: For any time¢ > 0, we can always divide the
one discrete-time subsystem, most of the results in this pagépe interval[0, ] ast = t. +m7 (m > 0), wheret, is the
can be extended to the case of more than three subsysteigl duration time orCS andmr is the total duration time
in a natural way, as will be remarked later. on DS. Under Assumption 2, we obtain
This paper is organized as follows. In Section 2, we  Aute gm

consider Problem (i) for the switched system, assuming 2(t) = e Agw(0) “)
that CS is Hurwitz stable andDS is Schur stable. We According to Assumption 1,
show that if the two subsystem matrices commute each At e
other, the switched system is exponentially stable, and there lleeel] < cee™ e ®)
is @ common Lyapunov function for the two subsystems,gids with two positive scalars., \., and
Without the commutation condition, we show that if the .
two subsystem matrices are symmetric, then a common m (i)

. . . ; [AG | < o (6)
Lyapunov function also exists and the switched system is
exponen_tially stable unger arbitrary.switching. In Section 3,44s with two positive scalars; and\; > 1. Combining
we consider Problem (ii) fc_>r the switched system when_ the ase inequalities, we obtain
two subsystems are Hurwitz and Schur stable, respectively. o
We show that if the average dwell time [1_2_], [13] betwee 2(8)]| < aeage et (1) 12(0)]| < aeage t[z(0)],
the two subsystems is larger than a specified contant, then Ad
the switched system is exponentially stable. The lower 7
bound of the average dwell time is computed using desiradhere A = min {\, ®224}. Since we did not add any
decay rate of the system. Section 4 considers the case whEggtriction on switching laws, the switched system is ex-
CS is not Hurwitz stable andS is not Schur stable. We Ponentially stable under arbitrary switching. 1
propose a sufficient condition in the form of a combination Remark 1:Theorem 1 and its proof remains true in the
of the two subsystem matrices, under which we propose@Se where there are more than three subsystems who are

stabilizing switching law. Finally, Section 5 concludes thedll Hurwitz/Schur stable and commute pairwise. 1
paper. In the proof of Theorem 1, we used a direct method of
estimating the norm of the system state. It is also known [9],
Il. ARBITRARY SWITCHING [11], [22] that if we can find a common Lyapunov function

In this section, we discuss the case where arbitrafpr the subsystems, then we can declare immediately that
switching is possible for the switched system composed difie switched system is exponentially stable under arbitrary
(1) and (2). Since arbitrary switching includes the case afwitching. The following theorem is an extension to Theo-
dwelling onCS or DS for all time, we make the following rem 1 in [9], and gives a clear answer concerning existence

necessary assumption. of a common Lyapunov function fa€S and DS.
Assumption 1: A, is Hurwitz stable andA4, is Schur Theorem 2: Suppose that Assumptions 1 and 2 hold. Let
stable. Q@ be an arbitrary positive definite matrix, and B} and
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P, be the unique positive definite solutions respectively twith respect toP;; > 0. Secondly, solve
the Lyapunov equations

. AL Py + PaAay = —Pan, (19)
Ay PjAqg— Py = — 8

C; e ¢ @ ® with respect toP,; > 0, and then solve foi =2,--- N,
Ac Pc + PcAc = _Pd 9 (9) AZ;PC,L + PCiACi _ —Pc)iil (20)

then the function
r with respect toP.; > 0. Then,V(z) = 27 P. n.x is a
V(z)=a" Px (10)  common Lyapunov function for all the subsystems in (15)

is a common Lyapunov function fa€S and DS. and (16). 1
Proof: Since the derivative oV (z) along the trajectories g Symmetricity condition

of the subsystenCS is Here, we consider the case where Assumption 2 does

V=2T(ATP.+ P.A))x = —2T Pz <0, (11) not hold, yet we desire to have exponential stability under
V(z) is a Lyapunov function for the continuous-time sub—%ltl)gvrv?%ng::}':ﬁi'o':mted by Refs. [11], [22], we make the
system. . A ' L _

Since the difference of (x) along the trajectories of the Assumption 3:Both 4. and A, are symmeltric, i.el. =

. AT Ay = AT,
subsystenDS is The next theorem describes another case where arbitrary

V(z(k+1))=V(x(k)) = 27 (k) (AL P.Ag—P.)z(k), (12) switching is possible.
what remains is to showl? P, A, — P, < 0. To do this, we Theorem 3: Under Assumptions 1 and 3, thg switched
. . . : system composed of (1) and (2) is exponentially stable
substituteP,; in (9) into (8) to obtain ; o
under arbitrary switching.
Q=AY (ATP, + P.A)As — (ATP. + P.A.). (13) Proof: For any switching law and any time> 0, we
assume without loss of generality that the switching points

Using the assumption ofi. Ay = AzA., we rewrite the on [0, 1] are

above inequality as
Q= AT(ATP.A; — P) + (ATP Ay — P)A,.  (14) lev fatmT ey fadmaT, oo o tmet, (21)
which means that the switched system starts frGg,

changes toDS at ¢.;, and then changes back t©S at
t.1 + myi7, and so on, and that we are now situated on

SinceA. is Hurwitz stable and) > 0, we obtainAchAd—

P. < 0, which implies thatV'(z) is a Lyapunov function

also for the discrete-time subsystem. 1
Remark 2:Consider the case where there are more tha?is' . .

two continuous-time subsystems described by According to Assumptions 1 and 3,

CS+i: @(t) = Aga(t), i=1,---,N.  (15) Ac < —pel (22)
and there are more than two discrete-time subsystems d¥ds with some positive scalar., and
scribed by A2 < 2T 23)

DSy: a(k+1) = Agz(k), j=1.--,Na, (16) poids with some positive scalafy > 1.

where N, > 2 and N, > 2 are respectively the number Now, we consider the Lyapunov function candidate
of continuous-time and discrete-time subsysters's and _.T
, ; . Vi)=z"z (24)

Ag’s are respectively constant Hurwitz and Schur stable
matrices. Then, using the same proof technique of Theorerf the system. On the intervid,, + m,,t], we have
1 and 2, we can show that if all the subsystem matrices
(As’s and Ag;’s) commute pairwise, then

(i) The switched system composed of (15) and (16) ignd thus
exponentially stable under arbitrary switching; (b (et maT))

(i) There exists a common Lyapunov function for all the V (z(t)) < e™ 0= 0er™m TV (a(t e +my7)) . (26)
sgbsystems. The. _proced.ur_e of co.mputing it is as followgyy the intervalter, ter + m, 7], we have
First, for any positive definite matrig), solve

AL PpnAp — P = —Q (17

V=2:TAx < —2u.V (25)

V(z(ter +m,7)) < quV(x(tcr + (m, —1)7))  (27)
due to (23), and thus

- V(@(ter +mer)) < pg 2"V (@(ter)) = €72 AV (@(ter)) -
AT Py Agj — Py = —Paj (18) (28)

with respect toP;; > 0, and then solve foj = 2,---, Ny,
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Combining the above two inequalities results in holds for a positive scalak < ), then
V(a(t) < e 2070V (a(te,)) | (29) lz()]| < ce™||z(0)]|- (37)

where s = min{p,, 4} > 0. By induction, we obtain |t js known that the quantity.s given in (36) describes
V(a(t) < e 2V (2(0)) < |z(6)]| < e[z (0)]|. (30) a lower bound for the average dwell time between the

subsystems.
Therefore, the switched system is exponentially stable underwe summarize the above discussion in the following
arbitrary switching. 1 theorem.

Remark 3:According to (25) and (27), we see that Theorem 4: Under Assumption 1, the switched system
V(z) = 2Tz is a common Lyapunov function for the composed of (1) and (2) is exponentially stable with decay
subsystems under Assumptions 1 and 3. I rate) if the average dwell time is larger than, in (36).1
Remark 4:Theorem 4 and its proof remains true in the

. . . . case where there are more than three subsystems who are
In this section, assuming that Assumption 1 holds, W&l Hurwitz/Schur stable .

consider Problem (i) for the switched system. Specifically,

we propose a class of switching law using the average dwdll Piecewise Lyapunov function

time concept [12], [13] between the two subsystems. There pjecewise Lyapunov functions have been used for sta-

are two different approaches, “direction computation” angjlity analysis and design of switched systems in many

“piecewise Lyapunov function”, which lead to the sameeferences; for example, [12]-[14]. However, the piecewise

result. Lyapunov functions proposed in these references are for the

A. Direct computation case where all subsystems are continuous-time dynamical

ones. Here, we extend these considerations to the switched

system composed of the continuous-time subsystem (1) and

the discrete-time subsystem (2).

SinceCS s Hurwitz stable, we can always find a positive

z(ter) = eeter2(0). (31) scalar). such thatd,.+ A I is still Hurwitz stable and thus

there is a matrixP. > 0 satisfying

(Ac + AD)TP. + Po(Ac +XI) <0
< ATP. + P.A. < —2)\.P..

Since DS is Schur stable, we can always find a positive
x(t) = eAc(t—(tcr+'rrw))AZ%eAc(to'f—(fc(r—lﬁmrflf)) scacar)\; > 1 such that\;A4, is still Schur stable and thus
there is a matrixP; > 0 satisfying

) ) ) ) (33) ) ()\dAd)TPd(/\dAd) —P; <0<~ AZ;PdAd — /\;2Pd <0.
Using the norm estimates given in (5) and (6), we obtain (39)

S ms Note that the above inequalities are LMIs with respedPto
1 i=1"" . .
) and P;, and thus are easily solved using any one of several

Ad existing softwares, such as the LMI Control Toolbox .
e (ST s Using the solutions”,. and P;, we define the following
r r_—Acte m;)In A . S c “ .
= aaje ™! Qi) “Nlz(0)]l (34)  piecewise Lyapunov functiarandidate

wheret. is the total duration time o€S as before. Then, we T () P.x(t) whenCS active att
: In ) ; =
usea = max{ac, ag} and A = min {A, #2¢ } to rewrite z(k)Psz(k) whenDS active on[kr, (k + 1)7),

T

the above inequality as (40)
_ for the switched system. Then, there exist constant scalars
Ni+1 At ’
lo(®)]] < @™ F1e™ M (0)] (35 0 o~ 0 such that
where N; denotes the number of switchings occuring on
[0,t], and N; = 2r in the present case. It is easy to confirm
that the above inequality holds for any other case besidesd there exists a constant scglar- 1 such that for any

IIl. SLOW SWITCHING BY AVERAGE DWELL TIME

As in Section 2, for any time > 0, we assume that the
switching points o0, ¢] are given by (21). On the interval
[0,t.1], we have

On the intervalt i, t.1 + ma7],

2(ter +mat) = AT x(ter) . (32) (38)

Thus, by induction, we obtain

><AZLT_1 . ~A§16Actclx(0) .

()]l

IN

r+1_—Acte 7
OLC (& Oéd (

arllz|* < V() < asllz|®,  Va; (41)

(21). fixed z,
Sincea < 1 is a very trivial case, we consider > 1. T T T T
According to (35), if x' Pox < px* Pyx, x' Pyx < px* P.x. (42)
t Inc Ina One example of choosingai,as, p is a3 =
< —_— = - — = = .
NesNot 200 No=q0 =1 Taa = 750 B8 rin (P A (Pa)} s @ = max{Aar(Po), Aur(Pa)},
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and p = g—f. Here, Aps(-) (M (-)) denotes the largest  Proof: Without loss of generality, assume that we start
(smallest) eigenvalue of a symmetric matrix. FurthermoregctivatingCS and therDS, and so on. For any positive time
using the matrix inequalities (38) and (39), we see that of)y when the present subsystemds, we can dividet as

the time interval where&€S is active,

. t = p(EUo + qUoT) + €Uy (48)
V() < =2X:V (1), (43) wherep is a nonnegative intege§, < ¢ is a nonnegative
and on the time interval whef@S is active scalar, and when the present subsystenD& we can
' always find a positive integer < qU, such that
-2
VI(E+1)7) < A7V (k7). (44)  p(eUs+qUor) +€U0+3r < t < p(€Uo+qUsT)+EUo+(g+1)7 .
We consider the_same switc_hing situation as in Sections |, the case of (48), we have (49)
2.2 and 3.1. That is, for any time> 0, assume that the B
switching points or0, t] are given by (21). Then, according z(t) = eAetUo(A470eAU0 )Py ()
to (43), (44) together with (42), we obtain by induction that _ 6AC§U°(6AC£AZ)Z)UOI(O) (50)

< —2X(t—(ter+maT)) + ) ] ]
Vit)<e V((ter +mp7)7) using A, Ay = AgA.. Although A, is not Hurwitz stable,

< pe” el Certmem)y (4 4myr)7) we can always find two nonnegative scalgrsand¢, such
< MA;m1~e—2)\c(t—(tcr+mTT))V(t;i;) that

e
< ;L2/\;27”'"672)\C(t7(t”+mr7—))‘/(t;r)

< et (51)

holds for anyt > 0. Thus, we obtain

B - lz(t)]] < BeeletorPlo |l2(0)|
2r 7227;—1 i _9X.te
SpPA, T eV (0). (45) - L\ PUo(&+47)
| | el Clacd 2 (0)]
Using (41), we obtain
" — (CetA1)EUG \ = A1t
ag -3 mi = (Bee e "z (0)]|
ol < ([ S2urag 2= e (o)) ( h )A
< (5Ce(<c+/\1)£Uo) 6_>\1t||x(0)|| (52)
_ |02 2r ~Acte—(D 7 mi)In g
= ,/— e i=1 z(0)] .(46 R
2 (Vi) IoO-(48) oo, — ma

Noting that the above inequality is almost the same as N the case of (49), since(?) is the same as that at
(34), we declare that an average dwell time scheme, similér = P(€Uo + qUo7) +&Uo + g7, we have

to (36), can be propo;ed SO tha_t_the switched system_is a(t) = AgeAcguo (AgerAcgUo)px(O)
exponentially stable with a specified decay rate. In this AU A U
case, (40) serves as a piecewise Lyapunov function for the = AfetetUo (eAS AP0 (0) (53)
switched system under the average dwell time scheme. Although A, is not Schur stable, we can always find two
V. STABILIZING SWITCHING LAW positive scalargd; and(; > 1 such that
In this section, assuming th4kt. is not Hurwitz stable and A% < Bach (54)

that A, is not Schur stable, we consider Problem (iii) for,

the switched system. That is, we aim to derive a switchinBOIds for anyk > 1. Thus, we obtain

law stabilizing the switched system. ()] < BaCiBeesetTorPY0 |z (0)||
We assume here that Assumption 2 holds, i&.4,; = N " L\ pUo(E+ar)
AqA.. In addition, when there exist a positive real number = Ba (C;) Beetetto (’Y“‘”) l|lz(0)]]

¢ and a positive integey satisfying

In

Cd 3 ir N 3
— (ﬁcﬂde( 4 +A1)q e(Cc+A1)EU0)e )\1tl|$(0)”

let€Afl =~ <1, (47)
. L (B84 4 50)qUoT (CotA1)EVG | —Art
we propose the following switching law. < (505616 PTe ' 0) e " z(0)].(55)
Switching law: Activate the subsystem&€S and DS
alternatively so that their duration time &/, and qUyT, Therefore, in both cases of (48) and (49), the switched
respectively, wheré/, is an arbitrary positive integer. system is exponentially stable. This completes the praof.

Theorem 5Under the above switching law with Assump- Remark 5:In the case where there are more than three
tion 2 and Condition (47), the switched system composeslibsystems, for example, the switched system composed of
of (1) and (2) is exponentially stable. (15) and (16), the condition (47) for existence of stabilizing
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switching law should be modified as: if all the subsystem[8] B. Hu, G. Zhai, and A. N. Michel, “Hybrid output feedback
matrices commute pairwise, and there are positive real
numberé; and positive integerg; such that

then a stabilizing switching law is: Activate the subsystem[slo]

Ne

H (ezi'l Aci&) (H;.\’:filAg;) H =~y<1, (56)

CS+ (i = 1,---,N.) in sequence and theBS-j (j =

1,--

-, Ng) in sequence with their duration time beigd/,
and ¢;Uy, respectively, wheréd/, is an arbitrary positive [11]

integer. 1

V. CONCLUSION

In this paper, we have studied stability property for a
new type of switched systems which are composed of a

continuous-time LTI subsystem and a discrete-time LTJ13]

subsystem. When the two subsystems are Hurwitz and Schur
stable, respectively, we have shown that if the subsystem

matrices commute each other, or if the subsystem matricagl]

are symmetric, then a common Lyapunov function exists for
the two subsystems and the switched system is exponentially
stable under arbitrary switching. Without commutation or

symmetricity assumption, we have shown that the switchdd®!

system is exponentailly stable if the average dwell time

between the subsystems is larger than a specified constgmg)

When neither of the two subsystems is stable, we have es-
tablished a sufficient condition in the form of a combination

of the subsystem matrices, under which we have propos
a stabilizing switching law.

(1]

(2]

(3]
(4]

VI. REFERENCES

D. Liberzon and A. S. Morse, “Basic problems in stability .
and design of switched systemdEEE Control Systems
Magazine vol. 19, no. 5, pp. 59-70, 1999.

R. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartr g
son, “Perspectives and results on the stability and stabiliz-
ability of hybrid systems,'Proceedings of the IEER/0I. 88,

vo. 7, pp. 1069-1082, 2000.

D. Liberzon, Switching in Systems and Contr@irkhauser,
Boston, 2003.

M. Fu and B. R. Barmish, “Adaptive stabilization of linear

systems via switching control/[EEE Transactions on Auto- [21]

matic Contro) vol. 31, no. 12, pp. 1097-1103, 1986.

[5] A. S. Morse, D. Q. Mayne, and G. C. Goodwin, “Application

(6]

of hysteresus switching in adaptive contrdEEE Transac-

tions on Automatic Controlvol. 37, no. 9, pp. 1343-1354, [22]

1992.
K. S. Narendra and J. Balakrishnan, “Improving transient
response of adaptive control systems using multiple models

and switching,” inProceedings of the 33rd IEEE Conference[23]

on Decision and ControlSan Antonio, USA, 1992.

[7]1 A. S. Morse, “Supervisory control of families of linear set-

point controllers-Part 1: exact matchingEZEE Transactions
on Automatic Contrglvol. 41, no. 10, pp. 1413-1431, 1996.

9]

[12]

iy

stabilization of two-dimensional linear control systems,” in
Proceedings of the American Control ConferenGicago,
USA, pp. 2184-2188, 2000.

K. S. Narendra and J. Balakrishnan, “A common Lyapunov
function for stable LTI systems with commutintymatrices,”
IEEE Transactions on Automatic Contrebl. 39, no. 12, pp.
2469-2471, 1994.

D. Liberzon, J. P. Hespanha, and A. S. Morse, “Stability
of switched systems: A Lie-algebraic conditioigystems &
Control Letters vol. 37, no. 3, pp. 117-122, 1999.

G. Zhai, “Stability and£» gain analysis of switched sym-
metric systems”, Chapter 7, pp.131-152, in (ed.) D. Liu &
P. J. Antsaklis Stability and Control of Dynamical Systems
with Applications Birkhauser, Boston, 2003.

J. P. Hespanha and A. S. Morse, “Stability of switched
systems with average dwell-time,” Proceedings of the 38th
|IEEE Conference on Decision and Contrélhoenix, USA,
pp. 2655-2660, 1999.

G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Stability anal-
ysis of switched systems with stable and unstable subsystems:
An average dwell time approachijiternational Journal of
Systems Sciengceol. 32, no. 8, pp. 1055-1061, 2001.

M. A. Wicks, P. Peleties, and R. A. DeCarlo, “Construction
of piecewise Lyapunov functions for stabilizing switched
systems,” inProceedings of the 33rd IEEE Conference on
Decision and ContrglOrlando, USA, pp. 3492-3497, 1994.
G. Zhai and K. Yasuda, “Stability analysis for a class of
switched systems Transactions of the Society of Instrument
and Control Engineetsvol. 36, no. 5, pp. 409-415, 2000.

S. Pettersson and B. Lennartson, “LMI for stability and
robustness of hybrid systems,” Froceedings of the Ameri-
can Control ConferencéAlbuquerque, USA, pp. 1714-1718,
1997.

M. A. Wicks, P. Peleties, and R. A. DeCarlo, “Switched
controller design for the quadratic stabilization of a pair of
unstable linear systemsEEuropean Journal of Controlvol.

4, pp. 140-147, 1998.

G. Zhai, H. Lin, and P. J. Antsaklis, “Quadratic stabilizability
of switched linear systems with polytopic uncertainties,”
International Journal of Contrglvol. 76, no. 7, pp. 747—
753, 2003.

S. Pettersson, “Synthesis of switched linear systems,” in
Proceedings of the 42th IEEE Conference on Decision and
Control, pp. 5283-5288, 2003.

G. Zhai, “Quadratic stabilizability of discrete-time switched
systems via state and output feedback,Piaceedings of the
40th IEEE Conference on Decision and Contr@rlando,
USA, pp. 2165-2166, 2001.

G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Stability and
L> gain analysis of discrete-time switched systenisdns-
actions of the Institute of Systems, Control and Information
Engineersvol. 15, no. 3, pp. 117-125, 2002.

G. Zhai, X. Chen, M. Ikeda, and K. Yasuda, “Stability and
Lo gain analysis for a class of switched symmetric systems,”
in Proceedings of the 41st IEEE Conference on Decision and
Control, Las Vegas, USA, pp. 4395-4400, 2002.

M. S. Branicky, “Multiple Lyapunov functions and other
analysis tools for switched and hydrid systemlBEE Trans-
actions on Automatic Contrplol. 43, no. 4, pp. 475-482,
1998.

4560



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrA19.5
	Page0: 4555
	Page1: 4556
	Page2: 4557
	Page3: 4558
	Page4: 4559
	Page5: 4560


