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Abstract— In this paper, we study stability and L2 gain
properties for a class of switched systems which are composed
of normal discrete-time subsystems. When all subsystems are
Schur stable, we show that a common quadratic Lyapunov
function exists for all subsystems and that the switched normal
system is exponentially stable under arbitrary switching. For
L2 gain analysis, we introduce an expanded matrix including
each subsystem’s coefficient matrices. Then, we show that if
the expanded matrix is normal and Schur stable so that each
subsystem is Schur stable and has unity L2 gain, then the
switched normal system also has unity L2 gain under arbitrary
switching. The key point is to establish a common quadratic
Lyapunov function for all subsystems in the sense of unity L2

gain.

Index Terms—Switched normal systems, stability, L2 gain,
common quadratic Lyapunov functions, LMI.

I. INTRODUCTION

In the last two decades, there has been increasing interest
in stability analysis and controller design for switched
systems; see the survey papers [1], [2], the recent book [3]
and the references cited therein. The motivation for study-
ing switched systems is from many aspects. It is known
that many practical systems are inherently multimodal in
the sense that several dynamical subsystems are required
to describe their behavior which may depend on various
environmental factors. Since these systems are essentially
switched systems, powerful analysis or design results of
switched systems are helpful for dealing with real systems.
Another important observation is that switching among a
set of controllers for a specified system can be regarded
as a switched system, and that switching has been used
in adaptive control to assure stability in situations where
stability can not be proved otherwise [4], [5], or to improve
transient response of adaptive control systems [6]. Also, the
methods of intelligent control design are based on the idea
of switching among different controllers [7], [8]. Therefore,
study on switched systems contributes greatly in switching
controller and intelligent controller design.

When focusing on stability analysis of switched systems,
there are three basic problems in stability and design of
switched systems: (i) find conditions for stability under
arbitrary switching; (ii) identify the limited but useful
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class of stabilizing switching laws; and (iii) construct a
stabilizing switching law. There are many existing works
on these problems in the case where the switched systems
are composed of continuous-time subsystems. For Problem
(i), Ref. [9] showed that when all subsystems are stable
and pairwise commutative, the switched linear system is
stable under arbitrary switching. Ref. [10] extended this
result from the commutation condition to a Lie-algebraic
condition. Ref. [11] showed that a class of symmetric
switched systems are asymptotically stable under arbitrary
switching since a common quadratic Lyapunov function, in
the form of V (x) = xT x, exists for all the subsystems.
Refs. [12]-[14] considered Problem (ii) using piecewise
Lyapunov functions, and Ref. [15] considered Problem (ii)
for switched systems with pairwise commutation or Lie-
algebraic properties. Ref. [16] considered Problem (iii) by
dividing the state space associated with appropriate switch-
ing depending on state, and Ref. [17] considered quadratic
stabilization, which belongs to Problem (iii), for switched
systems composed of a pair of unstable linear subsystems by
using a linear stable combination of unstable subsystems.
Ref. [18] considered quadratic stabilizability of switched
linear systems with polytopic uncertainties, and Ref. [19]
dealt with robust quadratic stabilization for switched LTI
systems by using piecewise quadratic Lyapunov functions
so that the synthesis problem can be formulated as a matrix
inequality feasibility problem. Refs. [11], [20], [21], [22]
extended the consideration to stability analysis problems for
switched systems composed of discrete-time subsystems.

Motivated by the observation that all these papers deal
with switched systems composed of only continuous-time
subsystems or only discrete-time ones, the authors con-
sidered in [23] the new type of switched systems which
are composed of both continuous-time and discrete-time
dynamical subsystems, and gave some analysis and design
results for several kinds of such switched system. For
example, the case where commutation condition holds,
and the case of switched symmetric systems. Recently,
the authors extended the results for switched symmetric
systems in [23] to switched normal systems in [24]. For
such switched systems, it is shown that when all continuous-
time subsystems are Hurwitz stable and all discrete-time
subsystems are Schur stable, a common quadratic Lyapunov
function exists for the subsystems and that the switched
system is exponentially stable under arbitrary switching.
Some discussions are also given for the case where unstable
subsystems are involved.

In this paper, we focus our attention on switched systems
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which are composed of normal discrete-time subsystems.
For such switched systems, we show that if all subsystems
are Schur stable, then the switched system is exponentially
stable under arbitrary switching. The main contribution of
this paper is to extend the consideration to L2 gain analysis
for such switched systems. For this purpose, we introduce
an expanded matrix including each subsystem’s coefficient
matrices. Then, we show that if the expanded matrix is nor-
mal and Schur stable so that each subsystem is Schur stable
and has unity L2 gain, then there is a common quadratic
Lyapunov function for all subsystems in the sense of L2

gain, and the switched normal system is asymptotically
stable and also has unity L2 gain under arbitrary switching.
As can be seen later, the normal assumption using the
expanded matrix covers the case of switched symmetric
systems we dealt with in [22], [11], and thus the result
of L2 gain analysis here is a nontrivial extension of the
existing works.

The rest of this paper is organized as follows. In Section
II, we give some preliminaries about normal systems and
state the Bounded Real Lemma for discrete-time LTI sys-
tems. In Section III, we state and prove that if all subsystems
are Schur stable and normal, then the switched normal
system is exponentially stable under arbitrary switching.
Two numerical examples are given to demonstrate the
effectiveness and the applicability of the result. Section
IV is devoted to L2 gain analysis. We prove that if all
subsystems are normal in the sense of unity L2 gain, then
there is a common quadratic Lyapunov function for all
subsystems in the sense of unity L2 gain, and thus the
switched normal system also achieves unity L2 gain under
arbitrary switching. Finally, Section V concludes the paper.

II. PRELIMINARIES

We first give some definitions and lemmas concerning
normal systems.

Definition 1: A discrete-time system

x(k + 1) = Ax(k) (1)

or the system matrix A is said to be normal if

AT A = AAT . (2)

Definition 2: A real square matrix Q is said to be
orthogonal if QT Q = I .

The following lemma characterizes a normal system or
matrix by orthogonally equalizing it to a block-diagonal
matrix consisting of its eigenvalues (Theorem 4.10.69 in
Ref. [25]).

Lemma 1: Suppose that A ∈ �n×n is normal, its real
eigenvalues are λ1, · · · , λr , and its complex eigenvalues are
a1 ± b1i, · · · , as ± bsi, where ai’s and bi’s are real, bi �= 0,
r+2s = n. Then, there exists an orthogonal matrix Q such
that

QT AQ = diag{λ1, · · · , λr, Λ1, · · · , Λs} , (3)

where

Λi =

[
ai bi

−bi ai

]
, i = 1, · · · , s . (4)

The following lemma plays a key role in this paper.

Lemma 2: If the discrete-time system (1) is normal and
Schur stable, then

AT A − I < 0 . (5)

Proof: We obtain from (3) that

QT (AT A)Q = diag{λ2
1, · · · , λ2

r,

a2
1 + b2

1, a
2
1 + b2

1, · · · , a2
s + b2

s, a
2
s + b2

s} .
(6)

Since A is Schur stable, we obtain |λi| < 1(1 ≤ i ≤ r)
and

√
a2

j + b2
j < 1(1 ≤ j ≤ s) and thus QT (AT A)Q < I ,

which is equivalent to (5).

The next lemma is on L2 gain analysis for discrete-time
LTI systems, which we will use in Section IV.

Lemma 3: [26] Consider the discrete-time LTI system{
x(k + 1) = Ax(k) + Bw(k)

z(k) = Cx(k) + Dw(k) ,
(7)

where x(k) ∈ �n is the system state, w(k) ∈ �m is the
input, z(k) ∈ �p is the output, A, B, C, D are constant
matrices of appropriate dimensions. The system (7) is Schur
stable and has unity L2 gain (i.e., L2 gain less than 1) if
and only if there exists P > 0 satisfying the LMI[

AT PA − P + CT C AT PB + CT D

BT PA + DT C BT PB − I + DT D

]
< 0 (8)

or equivalently
[

A B

C D

]T [
P 0
0 I

][
A B

C D

]
<

[
P 0
0 I

]
. (9)

III. STABILITY ANALYSIS

In this section, we consider stability for the switched sys-
tem which is composed of a set of discrete-time subsystems
described by

x(k + 1) = Aix(k) , i = 1, · · · , N , (10)

where x(k) ∈ �n is the subsystem state, Ai (i = 1, · · · , N )
are constant matrices of appropriate dimensions denoting
the subsystems, and N ≥ 1 denotes the number of subsys-
tems.

First, we are interested in the case where arbitrary
switching is possible for the switched system composed of
(10). Since arbitrary switching includes the case of dwelling
on certain subsystem for all time, we make the following
necessary assumption.

Assumption 1: All Ai’s are Schur stable.
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It is known that Assumption 1 is not enough to guarantee
stability under arbitrary switching. That is, a switched
system composed of stable subsystems could be unstable
if the switching is not done appropriately [1]. In [23], we
considered two conditions, namely, “commutation condi-
tion” and “symmetricity condition”, under which arbitrary
switching is possible. Here, we extend the latter condition
by making the following assumption.

Assumption 2: All the subsystems in (10) are normal,
i.e.,

AT
i Ai = AiA

T
i . (11)

Remark 1: For switched symmetric systems, it is as-
sumed in [22], [23] that AT

i = Ai. Obviously, Assumption
2 covers such symmetric systems. Furthermore, it covers
the cases of AT

i Ai = I , AT
i = −Ai and some other cases.

We now state and prove the first result.

Theorem 1: Under Assumptions 1 and 2, the switched
system composed of (10) is exponentially stable under
arbitrary switching.

Proof: Since all the subsystems are normal, according
to Lemmas 1 and 2, we obtain

AT
i Ai − I < 0 , i = 1, · · · , N . (12)

This implies that P = I is a common solution to the
Lyapunov matrix inequalities

AT
i PAi − P < 0 , i = 1, · · · , N , (13)

and thus V (x) = xT x is a common quadratic Lyapunov
function for all the subsystems.

To show the exponential stability of the system, we can
find a positive scalar α < 1 such that

AT
i Ai − α2I < 0 (14)

holds for all i’s. Then, in any time interval, we obtain
V (x(k +1)) < α2V (x(k)) . Since all the subsystems share
the Lyapunov function candidate, we obtain for any k ≥ 0
that

V (x(k)) ≤ α2kV (x(0)) = e−(2ln(α−1))kV (x(0)) (15)

and thus
|x(k)| ≤ e−(ln(α−1))k|x(0)| . (16)

Noting that we did not add any condition on the switching
signal, the switched system is exponentially stable under
arbitrary switching.

Remark 2: It has been shown in the proof of Theorem
1 that when all subsystems are normal and Schur stable,
V (x) = xT x is a common quadratic Lyapunov function for
them.

Example 1: Consider the switched system composed of
two subsystems given by

A1 =

[
0.45 0.6
−0.6 0.45

]
, A2 =

[
−0.3 −0.4

0.4 −0.3

]
. (17)

It is easy to confirm that both A1 and A2 are normal and
Schur stable. Fig. 1 shows the convergence of the system
trajectory where A1 and A2 are activated alternatively with
a randomly determined steps of (6, 5, 9, 3, 4, 7). The initial
state is [600 800]T , and the mark “*” in the upper-left
part of Fig. 1 describes the state change, while the upper-
right part of Fig. 1 connects all the sampling points into a
continuous trajectory. The lower part of Fig. 1 shows that
the norm of the system state converges to zero very quickly.
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Fig. 1. The system trajectory and the state’s norm in Example 1

At the end of this section, we note that Theorem 1 is
useful in many switching control problems. Suppose that
we have on hand an open-loop feedback system

x(k + 1) = Ax(k) + Bu(k) (18)

where x(k) is the state, u(k) is the input, A,B are constant
matrices of appropriate dimension. We also suppose that we
can design a set of state feedback controllers u(k) = Fix(k)
(i = 1, · · · , Nm), such that each A + BFi is normal and
Schur stable. This is possible in many cases. For example,
when

A =

[
1 3
2 4

]
, B =

[
1 0
0 −1

]
, (19)

it is easy to know that any feedback gain F =
[

f1 f2

f3 f4

]
,

with fi’s satisfying f1 + f4 = 3 , f3 − f2 = 5 , (f1 + 1)2 +
(f2 +3)2 < 1 , will make A+BF normal and Schur stable.
In fact, there are many F ’s satisfying this condition.

If we can (or have to ) choose one from the set of
controllers at every time instant, the whole system is a
switched system that is composed of Schur stable sub-
systems. Then, according to Theorem 1, we see that the
system is exponentially stable no matter how we choose
the controllers. This observation is very important in real
applications when we want more flexibity to take other
specification into consideration.

Obviously, the above discussion is also applicable to
the case of output feedback switching control problems.
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Furthermore, a more interesting problem may be feedback
control systems which are composed of a continuous-time
plant and discrete-time controllers.

Example 2: For the system (18) with (19), we set

F1 =

[
−0.5 −2.5

2.5 3.5

]
, F2 =

[
−0.8 −3.6

1.4 3.8

]
(20)

to obtain two closed-loop system matrix

A1 =

[
0.5 0.5

−0.5 0.5

]
, A2 =

[
0.2 −0.6
0.6 0.2

]
(21)

which are normal and Schur stable.

Now, we set the initial state as x0 = [600 800]T and the
two controllers are activated alternatively with 3 steps and
2 steps, respectively. Fig. 2 shows the convergence of the
system trajectory under such switching method.
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Fig. 2. The system trajectory and the state’s norm in Example 2

In this section, we have focused our attention on stability
analysis of the switched normal systems (10) under arbitrary
switching, i.e., in the framework of the basic problem
(i) which we mentioned in the introduction. Concerning
Problem (ii) and (iii) for switching method design, we have
given some discussion in [24], which may be referred to
for details.

IV. L2 GAIN ANALYSIS

In this section, we consider L2 gain property for the
switched system which is composed of discrete-time sub-
systems described by{

x(k + 1) = Aix(k) + Biw(k)
z(k) = Cix(k) + Diw(k) , i = 1, · · · , N ,

(22)

where x(k) ∈ �n is the subsystem state, w(k) ∈ �m is
the input, z(k) ∈ �p is the output. Ai, Bi, Ci, Di (i =
1, · · · , N ) are constant matrices of appropriate dimensions
denoting the subsystems, and N > 1 is the number of
subsystems. Although the discussion can be easily extended

to the case of x[0] �= 0, we assume for brevity that x[0] = 0
in this section.

Furthermore, we assume m = p, and define the square
matrix

Gi =

[
Ai Bi

Ci Di

]
(23)

to include each subsystem’s coefficient matrices. Through-
out this section, we make the following assumption.

Assumption 3: All Gi’s are Schur stable and are normal,
i.e.,

GT
i Gi = GiG

T
i . (24)

Remark 3: The condition (24) is computed as[
AT

i Ai + CT
i Ci AT

i Bi + CT
i Di

BT
i Ai + DT

i Ci BT
i Bi + DT

i Di

]

=

[
AiA

T
i + BiB

T
i AiC

T
i + BiD

T
i

CiA
T
i + DiB

T
i CiC

T
i + DiD

T
i

] (25)

which requires

AT
i Ai + CT

i Ci = AiA
T
i + BiB

T
i

AT
i Bi + CT

i Di = AiC
T
i + BiD

T
i

BT
i Bi + DT

i Di = CiC
T
i + DiD

T
i .

(26)

This covers the following symmetricity condition that we
have assumed in the existing works [22], [11]

Ai = AT
i , Bi = CT

i , Di = DT
i . (27)

In other words, the symmetric switched systems satisfying
(27), which we have considered in [22], [11], all satisfy the
normal condition (24).

Furthermore, the condition (24) or (25) also includes the
case of skew-symmetric systems described by

Ai = −AT
i , Bi = −CT

i , Di = −DT
i . (28)

Since Gi is normal and Schur stable, according to Lemma
2, we obtain

GT
i Gi − I < 0 (29)

which is equivalent to

[
Ai Bi

Ci Di

]T [
Ai Bi

Ci Di

]
<

[
I 0
0 I

]
. (30)

Comparing the above inequality with the matrix inequality
(9) in Lemma 3, we obtain immediately that under Assump-
tion 3, the ith subsystem is Schur stable and has unity L2

gain with P = I satisfying the LMI (9). Since this fact is
true for all Gi’s, all subsystems have a common quadratic
Lyapunov function V (x) = xT x in the sense of unity L2

gain.
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We now compute the difference of the Lyapunov function
V (x) = xT x along the trajectory of any subsystem to obtain

V (x(k + 1)) − V (x(k))

= xT (k + 1)x(k + 1) − xT (k)x(k)

= (Aix(k) + Biw(k))T (Aix(k) + Biw(k)) − xT (k)x(k)

=
[

xT (k) wT (k)
] [

AT
i Ai − I AT

i Bi

BT
i Ai BT

i Bi

][
x(k)
w(k)

]

≤ −
[

xT (k) wT (k)
] [

CT
i Ci CT

i Di

DT
i Ci DT

i Di − I

] [
x(k)
w(k)

]

= −
(
zT (k)z(k) − wT (k)w(k)

)
, (31)

where (30) was used to obtain the inequality, and the
inequality holds strictly when either x(k) or w(k) is not
zero.

For an arbitrary piecewise constant switching signal and
any given integer k > 0, we let k1, · · · , kr(r ≥ 1) denote
the switching points over the interval [0, k). Then, using the
difference inequality (31), we obtain

V (x(k)) − V (x(kr)) ≤ −
k−1∑
j=kr

Γ(j)

V (x(kr)) − V (x(kr−1)) ≤ −
kr−1∑

j=kr−1

Γ(j)

· · · · · · · · · · · ·

V (x(k1)) − V (x(0)) ≤ −
k1−1∑
j=0

Γ(j) ,

(32)

where Γ(j)
�
= zT (j)z(j) − wT (j)w(j). Since the case of

x(j) ≡ 0, w(j) ≡ 0, 0 ≤ j ≤ k, is a trivial one and is thus
excluded in our L2 gain analysis, there is at least one of
the inequalities in (32) that should hold strictly (i.e., without
“=”). We add all the inequalities to get to

V (x(k)) − V (x(0)) < −
k−1∑
j=0

Γ(j) . (33)

In this inequality, we use the assumption that x(0) = 0 and
the fact that V (x(k)) ≥ 0 to obtain

k−1∑
j=0

zT (j)z(j) <

k−1∑
j=0

wT (j)w(j) , (34)

which implies that unity L2 gain is achieved. We note that
the above inequality holds for any k > 0 including the case
of k → ∞, and that we did not add any restriction on the
switching signal.

Theorem 2: If all subsystems in (22) are normal in the
sense of unity L2 gain (satisfying Asumption 3), then there
is a common quadratic Lyapunov function V (x) = xT x for
all subsystems in the sense of unity L2 gain, and thus the
switched normal system (22) also achieves unity L2 gain
under arbitrary switching.

Remark 4: For brevity, we consider unity L2 gain in
this section. In the case of L2 gain γ, since the LMI (9) in
Lemma 3 takes the form of[

A B

C D

]T [
P 0
0 I

][
A B

C D

]
<

[
P 0
0 γ2I

]
,

(35)
what we have to do is to replace Gi of (23) with

Giγ =

[
Ai

1√
γ Bi

1√
γ Ci

1
γ Di

]
. (36)

In the case where each subsystem has a different L2 gain
γi, we define γ = maxi γi and proceed in the same way.

Finally, we relax Assumption 3 slightly by making the
following assumption instead.

Assumption 3’: All Gi’s are neutrally Schur stable
(GT

i Gi ≤ I) and are normal, satisfying (24).

Under Assumption 3’, the matrix P = I satisfies the
nonstrict LMI[

Ai Bi

Ci Di

]T [
P 0
0 I

] [
Ai Bi

Ci Di

]
≤

[
P 0
0 I

]

(37)
for all i = 1, · · · , N .

Using the same discussion as in Theorem 2, we obtain
that under arbitrary switching, the inequality

k−1∑
j=0

zT (j)z(j) ≤
k−1∑
j=0

wT (j)w(j) (38)

holds for any k > 0, which implies that nonstrict unity L2

gain is achieved.

Corollary 1: If all subsystems in (22) are normal in
the sense of nonstrict unity L2 gain (satisfying Asumption
3’), then there is a common quadratic Lyapunov function
V (x) = xT x for all subsystems in the sense of L2 gain,
and thus the switched normal system (22) also achieves
nonstrict unity L2 gain under arbitrary switching.

V. CONCLUSION

In this paper, we have studied stability and L2 gain prop-
erties for a class of switched systems which are composed
of normal discrete-time subsystems. When all subsystems
are Schur stable, we have shown that V (x) = xT x is a
common quadratic Lyapunov function for the subsystems
and that the switched normal system is exponentially stable
under arbitrary switching. Concerning L2 gain analysis,
we have introduced an expanded matrix including each
subsystem’s coefficient matrices, and have shown that if
the expanded matrix is normal and Schur stable so that
each subsystem is Schur stable and has unity L2 gain, then
the switched normal system also has unity L2 gain under
arbitrary switching. The key point is to establish a common
quadratic Lyapunov function for all subsystems in the sense
of unity L2 gain.
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