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Abstract— In this paper, we study stability property for a
class of switched systems whose subsystems are normal. The
subsystems can be continuous-time or discrete-time. When
all continuous-time subsystems are Hurwitz stable and all
discrete-time subsystems are Schur stable, we show that a
common quadratic Lyapunov function exists for the subsys-
tems and that the switched system is exponentially stable under
arbitrary switching. When unstable subsystems are involved,
we show that given a desired decay rate of the system, if the
activation time ratio between unstable subsystems and stable
ones is less than a certain value (calculated using the decay
rate), then the switched system is exponentially stable with the
desired decay rate.

I. INTRODUCTION

In the last two decades, there has been increasing interest
in stability analysis and controller design for switched
systems; see the survey papers [1], [2], the recent book
[3] and the references cited therein. The motivation for
studying switched systems is from many aspects. It is known
that many practical systems are inherently multimodal in
the sense that several dynamical subsystems are required
to describe their behavior which may depend on various
environmental factors. Since these systems are essentially
switched systems, powerful analysis or design results of
switched systems are helpful dealing with real systems.
Another important observation is that switching among a
set of controllers for a specified system can be regarded
as a switched system, and that switching has been used
in adaptive control to assure stability in situations where
stability can not be proved otherwise [4], [5], or to improve
transient response of adaptive control systems [6]. Also, the
methods of intelligent control design are based on the idea
of switching among different controllers [7], [8]. Therefore,
study on switched systems contributes greatly in switching
controller and intelligent controller design.

When focusing on stability analysis of switched sys-
tems, there are three basic problems in stability and de-
sign of switched systems: (i) find conditions for stabil-
ity/stabilizability under arbitrary switching; (ii) identify the
limited but useful class of stabilizing switching laws; and
(iii) construct a stabilizing switching law. There are many
existing works on these problems in the case where the
switched systems are composed of continuous-time subsys-
tems. For Problem (i), Ref. [9] showed that when all sub-
systems are stable and commutative pairwise, the switched
linear system is stable under arbitrary switching. Ref. [10]
extended this result from the commutation condition to a
Lie-algebraic condition. Ref. [11] showed that a class of
switched symmetric systems are asymptotically stable under

arbitrary switching since a common Lyapunov function, in
the form of V (x) = xT x, exists for all the subsystems. Refs.
[12]-[15] considered Problem (ii) using piecewise Lya-
punov functions, and Refs. [16]-[17] considered Problem
(ii) for switched systems with pairwise commutation or Lie-
algebraic properties. Ref. [18] considered Problem (iii) by
dividing the state space associated with appropriate switch-
ing depending on state, and Ref. [19] considered quadratic
stabilization, which belongs to Problem (iii), for switched
systems composed of a pair of unstable linear subsystems
by using a linear stable combination of unstable subsystems.
Ref. [20] considered quadratic stabilizability of switched
linear systems with polytopic uncertainties, and Ref. [21]
dealt with robust quadratic stabilization for switched LTI
systems by using piecewise quadratic Lyapunov functions
so that the synthesis problem can be formulated as a matrix
inequality feasibility problem. Refs. [11], [22], [23], [24]
extended the consideration to stability analysis problems for
switched systems composed of discrete-time subsystems.

Motivated by the observation that all these papers deal
with switched systems composed of only continuous-time
subsystems or only discrete-time ones, the authors con-
sidered in a recent paper [25] the new type of switched
systems which are composed of both continuous-time and
discrete-time dynamical subsystems. It was pointed out
there that it is very easy to find many applications involving
such switched systems. For example, for a continuous-time
plant, if we design a set of continuous-time controllers
and a set of discrete-time controllers, and we choose an
appropriate controller at every time instant, then the entire
feedback system is in fact a switched system composed
of both continuous-time and discrete-time subsystems. A
cascaded system composed of a continuous-time plant, a
set of discrete-time controller and switchings among the
controllers is also a good example. Another example of a
system of this kind is a continuous-time plant controlled
either by a physically implemented regulator or by a
digitally implemented one (and a switching rule between
them). Ref. [25] gave some analysis and design results for
several kinds of such switched system. For example, the
case where commutation condition holds, and the case of
switched symmetric systems. This paper aims to extend the
results for switched symmetric systems in [25] to switched
normal systems. For such switched systems, it is shown that
when all continuous-time subsystems are Hurwitz stable and
all discrete-time subsystems are Schur stable, a common
quadratic Lyapunov function exists for the subsystems and
that the switched system is exponentially stable under
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arbitrary switching. Furthermore, when unstable subsystems
are involved, we show that if the total activation time ratio
between unstable subsystems and stable ones is less than
a specified value (which is determined by the eigenvalues
of the subsystems and the desired decay rate), then the
switched system is exponentially stable with the desired
decay rate. Three numerical examples are given to show
the effectiveness of the results.

II. PRELIMINARIES AND SYSTEM DESCRIPTION

In this section, we give some definitions and lemmas
concerning normal systems, and then describe the switched
system we consider in this paper.

Definition 1: A continuous-time system

ẋ(t) = Ax(t) (1)

or a discrete-time system

x(k + 1) = Ax(k) (2)

is said to be normal if

AT A = AAT . (3)

Definition 2: A real square matrix Q is said to be
orthogonal if QT Q = I .

The following lemma characterizes a normal system
matrix by orthogonally equalizing it to a block-diagonal
matrix consisting of its eigenvalues (Theorem 4.10.69 in
[26]).

Lemma 1: Suppose that A ∈ �n×n is normal, its real
eigenvalues are λ1, · · · , λr, and its complex eigenvalues are
a1 ± b1i, · · · , as ± bsi, where ai’s and bi’s are real, bi �= 0,
r+2s = n. Then, there exists an orthogonal matrix Q such
that

QT AQ = diag{λ1, · · · , λr, Λ1, · · · , Λs} , (4)

where

Λi =
[

ai bi

−bi ai

]
, i = 1, · · · , s . (5)

The following two lemmas play a key role in the next
section.

Lemma 2: If the continuous-time system (1) is normal
and Hurwitz stable, then

AT + A < 0 . (6)

Proof: We obtain from (4) that

QT (AT + A)Q

= diag{2λ1, · · · , 2λr, 2a1, 2a1, · · · , 2as, 2as} .
(7)

Since A is Hurwitz stable, we obtain that λi < 0(1 ≤ i ≤ r)
and aj < 0(1 ≤ j ≤ s) and thus QT (AT +A)Q < 0, which
is equivalent to AT + A < 0. This completes the proof.

Lemma 3: If the discrete-time system (2) is normal and
Schur stable, then

AT A − I < 0 . (8)

Proof: We obtain from (4) that

QT (AT A)Q = diag{λ2
1, · · · , λ2

r,

a2
1 + b2

1, a
2
1 + b2

1, · · · , a2
s + b2

s, a
2
s + b2

s} .
(9)

Since A is Schur stable, we obtain |λi| < 1(1 ≤ i ≤ r)
and

√
a2

j + b2
j < 1(1 ≤ j ≤ s) and thus QT (AT A)Q < I ,

which is equivalent to (8).
In this paper, we consider the switched system which is

composed of a set of continuous-time subsystems

ẋ(t) = Acix(t) , i = 1, · · · , Nc (10)

and a set of discrete-time subsystems

x(k + 1) = Adjx(k) , j = 1, · · · , Nd (11)

where x(t), x(k) ∈ �n are the subsystem states, Aci’s and
Adj’s are constant matrices of appropriate dimension. To
discuss stability of the overall switched system, we assume
for simplicity that the sampling periods of all the discrete-
time subsystems are of the same value τ (the discussion
can be easily extended to the case where the discrete-
time subsystems have different sampling periods). Since
the states of the discrete-time subsystems can be viewed
as piecewise constant vectors between sampling points, we
can consider the value of the system states in continuous-
time domain. For example, if subsystem Ac1 is activated on
[t0, t1] and then subsystem Ad1 is activated for m steps and
subsystem Ac3 is activated from then to t2, the time domain
is divided into

[t0, t2] = [t0, t1] ∪ [t1, t1 + mτ ] ∪ [t1 + mτ, t2] (12)

and the system state takes the form of

x(t) =

⎧⎪⎨
⎪⎩

eAc1(t−t0)x(t0) , t ∈ [t0, t1]
Ak

d1x(t1) , t ∈ [t1, t1 + kτ ] , 1 ≤ k ≤ m

eAc3(t−t1−mτ)x(t1 + mτ) , t ∈ [t1 + mτ, t2]
(13)

Although x(t) is not continuous with respect to time t due
to existence of discrete-time subsystems, the solution x(t)
is uniquely defined at all time instants, and thus various
stability properties can be discussed in continuous-time
domain.

Throughout this paper, we make the following assump-
tion.

Assumption 1: All the subsystems in (10) and (11) are
normal, i.e.,

AT
ciAci = AciA

T
ci , AT

djAdj = AdjA
T
dj . (14)

Remark 1: For switched symmetric systems, it is as-
sumed in [24], [25] that AT

ci = Aci and/or AT
dj = Adj .
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Obviously, Assumption 1 covers such symmetric systems.
Furthermore, it covers the cases of AT

∗ A∗ = I , AT
∗ = −A∗

and some other cases.

III. ARBITRARY SWITCHING

In this section, we discuss the case where arbitrary
switching is possible for the switched system composed of
(10) and (11). Since arbitrary switching includes the case
of dwelling on certain subsystem for all time, we make the
following necessary assumption.

Assumption 2: Aci’s are Hurwitz stable and Adj’s are
Schur stable.

It is known that Assumption 2 is not enough to guarantee
stability under arbitrary switching. That is, a switched
system composed of stable subsystems could be unstable if
the switching is not done appropriately [1], [13]. However,
when all subsystems are normal, we will show in the
following that the switched system is exponentially stable
under arbitrary switching.

Theorem 1: Under Assumptions 1 and 2, the switched
system composed of (10) and (11) is exponentially stable
under arbitrary switching.

Proof: Since all subsystems are normal, according to
Lemma 1, we obtain

AT
ci + Aci < 0 , i = 1, · · · , Nc;

AT
djAdj − I < 0 , j = 1, · · · , Nd .

(15)

This implies that P = I is a common solution to the
Lyapunov matrix inequalities

AT
ciP + PAci < 0 , i = 1, · · · , Nc;

AT
djPAdj − P < 0 , j = 1, · · · , Nd ,

(16)

and thus V (x) = xT x is a common Lyapunov function for
all the subsystems.

To show the exponential stability of the system, we need
to find two positive scalars αc and αd < 1 such that

AT
ci + Aci < −2αcI , AT

djAdj − α2
dI < 0 (17)

for all i and j. Then, in the period where a continuous-time
subsystem is activated, we obtain V̇ (x(t)) < −2αcV (x(t)),
and in the period where a discrete-time subsystem is acti-
vated, V (x(k + 1)) < α2

dV (x(k)).
For any time t > 0 (when a discrete-time subsystem is

active at t, we refer to t tacitly as the last sampling point
since the state does not change until the next sampling
point), we can always divide the time interval [0, t] as
t = tc + mτ (m ≥ 0), where tc is the total duration time
on continuous-time subsystems and mτ is the total duration
time on discrete-time subsystems. It is not difficult to obtain
that no matter what the activation order is,

V (x(t)) ≤ e−2αctcα2m
d V (x(0)) (18)

and thus
|x(t)| ≤ e−αt|x(0)| (19)

where α = min{αc,
ln(α−1

d
)

τ } > 0. This completes the
proof.

Remark 2: It has been shown in the proof of Theorem 1
that when all subsystems are normal and (Hurwitz or Schur)
stable, V (x) = xT x is a common quadratic Lyapunov
function for them.

Example 1: Consider the switched system composed of
one continuous-time subsystem given by

Ac1 =
[ −0.6 0.8

−0.8 −0.6

]
(20)

and one discrete-time subsystem given by

Ad1 =
[

0.45 0.6
−0.6 0.45

]
. (21)

It is easy to confirm that both Ac1 and Ad1 are normal, Ac1

is Hurwitz stable and Ad1 is Schur stable. Suppose that the
sampling period of subsystem Ad1 is 0.1. Fig. 1 shows the
convergence of the system trajectory where Ac1 and Ad1 are
activated alternatively with respectively time period 1 and 5
steps (i.e., time period 0.5). The initial state is [100 100]T ,
and the mark “*” in the upper part of Figure 1 describes
the state change when the discrete-time subsystem Ad1 is
activated. The lower part of Fig. 1 connects all the sampling
points of subsystem Ad1 into a continuous trajectory.
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Fig. 1. The system trajectory in Example 1

In the end of this section, we note that Theorem 1 is
very useful in many switching control problems. Suppose
that we have on hand an open-loop feedback system

ẋ(t) = Ax(t) + Bu(t) (22)

where x(t) is the state, u(t) is the input, A,B are constant
matrices of appropriate dimension. We also suppose that we
can design a set of state feedback controllers u(t) = Kix(t)
(i = 1, · · · , Nm), such that each A + BKi is normal and
Hurwitz stable. This is possible in many cases. For example,
when

A =
[

1 3
2 4

]
, B =

[
1 0
0 −1

]
, (23)
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it is easy to know that any K =
[

k1 k2

k3 k4

]
, where k1 <

−1, k1 + k4 = 3 and k3 − k2 = 5, will make A + BK
normal and Hurwitz stable.

If we can (or have to ) choose one from the set of con-
trollers at every time instant, the whole system is a switched
system that is composed of Hurwitz stable subsystems.
Since this is a special case of Theorem 1 (no discrete-time
subsystems exist), we see that the system is exponentially
stable no matter how we choose the controllers. This obser-
vation is very important in real applications when we want
more flexibity to take other specification into consideration.

Obviously, the above discussion is also applicable to
discrete-time feedback control systems, and to the case
of output feedback switching problems. Furthermore, a
more interesting problem may be feedback control systems
which are composed of a continuous-time plant and both
continuous-time and discrete-time controllers.

Example 2: For the system (22) with (23), we set

K1 =
[ −1.5 1

6 4.5

]
, K2 =

[ −2 −1
4 5

]
(24)

to obtain two closed-loop system matrix

Ac1 =
[ −0.5 4

−4 −0.5

]
, Ac2 =

[ −1 2
−2 −1

]
(25)

which are normal and Hurwitz stable.
Now, we set the initial state as x0 = [1 1]T and randomly

generate 8 positive time periods among (0.01, 1) as T1 =
0.95, T2 = 0.23, T3 = 0.61, T4 = 0.49, T5 = 0.89, T6 =
0.76, T7 = 0.46, T8 = 0.02 . Then, we activate subsystem
Ac1 and Ac2 alternatively with time period T1, T2, · · ·, T7,
T8. Fig. 2 shows the convergence of the system trajectory
under such random activation periods.
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Fig. 2. The system trajectory in Example 2

IV. TIME-CONTROLLED SWITCHING

In this section, assuming that some subsystems are not
stable, we consider Problem (ii) for the switched system.
We propose a class of time-controlled switching law which

specifies the total activation time ratio between unstable
subsystems and stable ones.

For simplicity, we suppose that Ac1 and Ad1 are unstable,
and all the other subsystems are stable. It will be seen later
that other cases can be dealt with using the completely same
manner.

According to Lemma 1, there exists an orthogonal matrix
Qc1 such that

QT
c1(A

T
c1 + Ac1)Qc1

= diag{2λc1
1 , · · · , 2λc1

r1, 2ηc1
1 , 2ηc1

1 , · · · , 2ηc1
s1, 2ηc1

s1} ,
(26)

where λc1
1 , · · · , λc1

r1 are Ac1’s real eigenvalues, and
ηc1
1 , · · · , ηc1

s1 are the real parts of Ac1’s complex eigenvalues.
Since Ac1 is not Hurwitz stable, there is at least one
nonnegative number among them. For design purpose, we
define the scalar

βc = max
{
λc1

1 , · · · , λc1
r1, η

c1
1 , · · · , ηc1

s1

}
. (27)

It is then easy to see that βc ≥ 0 and

AT
c1 + Ac1 ≤ 2βcI . (28)

Similarly, for Schur unstable Ad1, there exists an orthogonal
matrix Qd1 such that

QT
d1(A

T
d1Ad1)Qd1 = diag{(λd1

1 )2, · · · , (λd1
u1)2,

(ηd1
1 )2, (ηd1

1 )2, · · · , (ηd1
v1)2, (ηd1

v1)2} ,
(29)

where λd1
1 , · · · , λd1

u1 are Ad1’s real eigenvalues, and
ηd1
1 , · · · , ηd1

v1 are the absolute values of Ad1’s complex
eigenvalues. Since Ad1 is not Schur stable, there is at least
one number among them which is not less than 1. If we
define

βd = max
{
λd1

1 , · · · , λd1
u1, η

d1
1 , · · · , ηd1

v1

}
, (30)

then βd ≥ 1 and
AT

d1Ad1 ≤ β2
dI . (31)

From now on, we use the Lyapunov function candidate
V (x) = xT x to discuss the system’s stability. According to
(28), when subsystem Ac1 is activated, we obtain V̇ (x(t)) ≤
2βcV (x(t)). According to (31), when subsystem Ad1 is
activated, we obtain V (x(k + 1)) ≤ β2

dV (x(k)). Except
these two subsystems, we assume that (17) is satisfied for
i �= 1 and j �= 1.

Now, for any time t > 0 (when a discrete-time subsystem
is active at t, we refer to t tacitly as the last sampling point
since the state does not change until the next sampling
point), we assume that the time interval [0, t] is divided
as t = tc1 + tcs + md1τ + mdsτ , where tc1 is the total
activation time of Ac1, tcs is the total activation time
of other continuous-time subsystems, md1τ is the total
activation time of Ad1, and mdsτ is total activation time
of other discrete-time subsystems. Then, it is easy to obtain

V (x(t)) ≤ e2βctc1e−2αctcsβ2md1
d α2mds

d V (x(0)) . (32)
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Using β = max{βc,
ln(βd)

τ } in the above leads to

V (x(t)) ≤ e2β(tc1+md1τ)e−2α(tcs+mdsτ)V (x(0)) , (33)

where α is the same as defined in the proof of Theorem 1.
Noting that Tu = tc1 + md1τ is the total activation time of
unstable subsystems, and Ts = tcs+mdsτ is total activation
time of stable subsystems, we consider the following time-
controlled switching law:

Time-controlled switching law: Let Tu and Ts be the total
activation time of all unstable subsystems and stable ones,
respectively, and let α∗ < α be desired decay rate of the
overall system. Keep the ratio between Tu and Ts satisfying

Tu

Ts
≤ α − α∗

β + α∗ . (34)

In fact, we obtain from (34) that

(β + α∗)Tu ≤ (α − α∗)Ts . (35)

Then, combined with (33), we obtain

|x(t)| ≤ e−α∗t|x(0)| . (36)

We summarize the above discussion in the following
theorem.

Theorem 2: Under Assumption 1 and the time-controlled
switching law (34), the switched system is exponentially
stable with decay rate α∗.

Remark 3: Compared with the existing result in [14],
where switched systems including both stable and unstable
subsystems were also dealt with, there is no requirement on
average dwell time concerning any single subsystem. It is
easy to see that the time-controlled switching law (34) is
not involved with the number of switchings, which usually
appears in the average dwell time scheme. The reason is
that for the switched normal systems under consideration,
we have shown that V (x) = xT x together with the time-
controlled switching law is in fact a kind of common
quadratic Lyapunov-like function [27] in the present case.
We used “Lyapunov-like” here since it is not a Lyapunov
function in the usual sense, especially for unstable subsys-
tems, yet it is an auxiliary scalar-valued function involved
with a Direct Method and exponential stability of the entire
system is guaranteed.

Example 3: Consider the switched system composed of
one continuous-time subsystem given by

Ac1 =
[

0.6 0.8
−0.8 0.6

]
(37)

and one discrete-time subsystem given by

Ad1 =
[

0.3 0.4
−0.4 0.3

]
. (38)

It is easy to confirm that both Ac1 and Ad1 are normal, Ac1

is Hurwitz unstable and Ad1 is Schur stable. Then, it is easy
to compute

βc = 0.6 , αd = 0.5 . (39)
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Fig. 3. The system trajectory in Example 3

If we choose τ = 1 as the sampling period of Ad1, then

α =
ln(α−1

d )
τ

= 0.69 , β = βc = 0.6 . (40)

According to Theorem 2, if the desired decay rate is α∗ =
0.4, then the time ratio of Ac1 and Ad1 should satisfy

Tu

Ts
≤ α − α∗

β + α∗ =
0.69 − 0.4
0.6 + 0.4

= 0.29 . (41)

In order to meet this requirement, we activate Ac1 and Ad1

alternatively with respectively time period 2.9 and 10 steps.
Fig. 3 shows that the system trajectory still converges to
zero very quickly in this case (with the same initial state
[100 100]T ).

Remark 4: It is finally noted that the discussion and
result in this section can be applied to controller failure
time analysis of feedback control systems when the original
system matrix is normal and the feedback is designed so
that the closed-loop system is also normal. In this case,
the overall system can be viewed as a switched system
composed of the original unstable system and the stable
closed-loop system. For detailed discussion, refer to [28].

V. CONCLUDING REMARKS

In this paper, we have studied stability property for a
class of switched systems which are composed of both
continuous-time and discrete-time LTI normal subsystems.
We have shown that when all continuous-time subsys-
tems are Hurwitz stable and all discrete-time subsystems
are Schur stable, a common quadratic Lyapunov function
V (x) = xT x exists for the subsystems and that the switched
system is exponentially stable under arbitrary switching.
When unstable subsystems are involved, we have shown
that if the activation time ratio between unstable subsystems
and stable ones is less than a specified value, then the
switched system is guaranteed to be exponentially stable
with a desired decay rate.

Compared with the three basic problems mentioned in the
introduction, we note that the results in this paper points
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to Problem (i) and part of Problem (ii). Presently, we are
trying to take advantage of the structure of switched normal
systems in dealing with the stabilization problem (Problem
(iii)). Furthermore, although we still have not proved it, we

are conjecturing that if the expanded matrix

[
A B
C D

]
is

normal, then the stable system with input and output

ẋ = Ax + Bw , z = Cx + Dw (42)

or its discrete-time counterpart will have a quadratic Lya-
punov function V (x) = xT x in L2 sense. If this is true,
then we can prove that the switched system composed of
normal stable subsystems with the same L2 gain γ, will be
stable and keep the L2 gain γ under arbitrary switching.
This problem is also in our future research.
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