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Abstract— We analyze stability for switched systems which
are composed of both continuous-time and discrete-time
subsystems. By considering a Lie algebra generated by all
subsystem matrices, we show that if all subsystems are Hur-
witz/Schur stable and this Lie algebra is solvable, then there
is a common quadratic Lyapunov function for all subsystems
and thus the switched system is exponentially stable under
arbitrary switching. When not all subsystems are stable and
the same Lie algebra is solvable, we show that there is a
common quadratic Lyapunov-like function for all subsystems
and the switched system is exponentially stable under a
dwell time scheme. Two numerical examples are provided to
demonstrate the result.

Index Terms—Switched systems, common quadratic Lya-
punov (Lyapunov-like) functions, Lie algebra, exponential
stability, arbitrary switching, dwell time scheme.

I. INTRODUCTION

In the last two decades, there has been increasing interest
in stability analysis and controller design for switched
systems; see the survey papers [1], [2], the recent book [3]
and the references cited therein. It is pointed out in [1], [3]
that there are three basic problems in stability and design
of switched systems: (i) find conditions for stability under
arbitrary switching; (ii) identify the limited but useful class
of stabilizing switching laws; and (iii) construct a stabilizing
switching law. The necessary condition for the first problem
is that all subsystems are stable. When arbitrary switching
can not be guaranteed, including the case where unstable
subsystems are involved, we have to consider the second
and the third problems.

In this paper, we focus our attention on the first problem.
There are several existing works on Problem (i), most
of which deal with the case where the switched systems
are composed of continuous-time subsystems. Ref. [4]
showed that when all subsystems are stable and pairwise
commutative, the switched linear system is stable under
arbitrary switching. Ref. [5] extended this result from the
commutation condition to a Lie algebraic condition. Ref.

GZ is supported in part by the Japan Ministry of Education, Sciences
and Culture under Grants-in-Aids for Scientific Research (B) 15760320 &
17760356.

G. ZHAI is with Department of Mechanical Engineering, Osaka Prefec-
ture University, Sakai, Osaka 599-8531, Japan. Email: zhai@me.osakafu-
u.ac.jp

X. XU is with Department of Electrical and Computer Engineering,
Penn State Erie, Erie, PA 16563-1701, USA. Email: Xuping-Xu@psu.edu

H. LIN is with Department of Electrical Engineering, University of
Notre Dame, Notre Dame, Indiana 46556, USA. Email: hlin1@nd.edu

D. LIU is with Department of Electrical and Computer Engineer-
ing, University of Illinois at Chicago, Chicago, IL 60607-7053, USA.
Email: dliu@ece.uic.edu

[6] showed that a class of switched symmetric systems
are asymptotically stable under arbitrary switching since
a common quadratic Lyapunov function, in the form of
V (x) = xT x, exists for all subsystems. Refs. [6]-[9]
extended the consideration to stability analysis problems for
switched systems composed of discrete-time subsystems.

Motivated by the observation that all these papers deal
with switched systems composed of only continuous-time
subsystems or only discrete-time ones, the authors con-
sidered in [10] the new type of switched systems which
are composed of both continuous-time and discrete-time
dynamical subsystems. As also pointed out in [10], it is easy
to find many applications involving such kind of switched
systems. For example, a continuous-time systems with
impulsive effects, where the impulsive effect/state jump can
be modeled as discrete-time subsystems. Another example
of a system of this kind is a continuous-time plant con-
trolled either by a physically implemented regulator or by
a digitally implemented one (and a switching rule between
them). We also point out that a lot of other practical systems,
including bipedal robot and networked control systems,
can be modeled in this framework. Ref. [10] gave some
analysis and design results for several kinds of such mixed-
type switched systems. For example, in the case where
commutation condition holds, and the case of switched
symmetric systems, it is shown that if all subsystems are
stable, then there exists a common quadratic Lyapunov
function for all subsystems and thus the switched system
is exponentially stable under arbitrary switching. Recently,
the authors extended the results for switched symmetric
systems in [10] to switched normal systems in [11]. For
such switched systems, it is shown that when all continuous-
time subsystems are Hurwitz stable and all discrete-time
subsystems are Schur stable, a common quadratic Lyapunov
function exists for the subsystems and that the switched
system is exponentially stable under arbitrary switching.
Some discussions are also given for the case where unstable
subsystems are involved.

In this paper, we aim to apply the Lie algebraic ap-
proach, proposed in [5] and [12], to switched systems which
are composed of both continuous-time and discrete-time
subsystems, where unstable subsystems may be included.
By considering a Lie algebra generated by all subsystem
matrices, we show that if all subsystems are Hurwitz/Schur
stable and this Lie algebra is solvable, then there is a
common quadratic Lyapunov function for all subsystems
and thus the switched system is exponentially stable under
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arbitrary switching. In the case where not all subsystems
are stable and the Lie algebra is solvable, we show that
there is a common quadratic Lyapunov-like function for all
subsystems and the switched system is exponentially stable
with a reasonable decay rate under a dwell time scheme.
Two numerical examples are provided to demonstrate the
results.

It is noted here that this paper is motivated mainly by
three existing papers [5], [10], [13]. The extension of Lie
algebraic condition from the case where all subsystems
are stable [5] to the case where unstable subsystems are
included [13] is not trivial, and the same thing is true to
deal with the case where both continuous-time and discrete-
time subsystems exist [10]. In fact, as can be seen later, we
modify the proof in [5] to fit our present setting where
both continuous-time and discrete-time subsystems, and
furthermore both stable and unstable subsystems, exist.

II. SYSTEM DESCRIPTION & PRELIMINARIES

We consider the switched system which is composed of
a set of continuous-time LTI subsystems

ẋ(t) = Acix(t) , i = 1, · · · , Nc (1)

and a set of discrete-time LTI subsystems

x(k + 1) = Adjx(k) , j = 1, · · · , Nd (2)

where x(t), x(k) ∈ �n are the subsystem states, Aci’s
and Adj’s are constant matrices of appropriate dimension.
Nc ≥ 1 and Nd ≥ 1 are the number of continuous-time
subsystems and discrete-time ones, respectively.

To discuss stability of the overall switched system, we
assume for simplicity that the sampling periods of all the
discrete-time subsystems are of the same value τ (the
discussion can be easily extended to the case where the
discrete-time subsystems have different sampling periods).
Since the states of the discrete-time subsystems can be
viewed as piecewise constant vectors between sampling
points, we can consider the value of the entire system states
in continuous-time domain. For example, if subsystem Ac1

is activated on [t0, t1] and then subsystem Ad1 is activated
for m steps and subsystem Ac2 is activated from then to t2,
the time domain is divided into

[t0, t2] = [t0, t1] ∪ [t1, t1 + mτ ] ∪ [t1 + mτ, t2] (3)

and the system state takes the form of

x(t) =




eAc1(t−t0)x(t0) , t ∈ [t0, t1]

Ak−1
d1 x(t1) , t ∈ [t1 + (k − 1)τ, t1 + kτ) ,

1 ≤ k ≤ m

eAc2(t−t1−mτ)Am
d1x(t1) , t ∈ [t1 + mτ, t2].

(4)
Although x(t) is not continuous with respect to time t due
to existence of discrete-time subsystems, the solution x(t)
is uniquely defined at all time instants, and thus various
stability properties can be discussed in continuous-time

domain. This kind of approach has been frequently used
in analysis and design of digital control systems.

Throughout this paper, we assume that at least one
(continuous-time or discrete-time) subsystem exists among
(1) and (2). Without loss of generality, we assume here that
Subsystem Ac1,· · ·, Acsc (0 ≤ sc ≤ Nc) and Subsystem
Ad1,· · ·, Adsd

(0 ≤ sd ≤ Nd; sc + sd ≥ 1) are stable while
the others (if existing) are not stable.

In the end of this section, we give some preliminaries
of Lie algebra for integrity. Most of the material is picked
up from [5], [12]. Interested readers are referred to these
references or more detailed textbooks on Lie algebras [14],
[15].

A Lie algebra L is a finite-dimensional vector space
equipped with a Lie bracket, i.e., a bilinear, skew-symmetric
map L × L → L satisfying the Jacobi identity [a, [b, c]] +
[b, [c, a]] + [c, [a, b]] = 0. In the case of matrix Lie algebra,

the standard Lie bracket is defined as [A,B]
�
= AB−BA. If

L1 and L2 are linear subspaces of a Lie algebra L, we write
[L1,L2] for the linear space spanned by all the products
[L1, L2] with L1 ∈ L1 and L2 ∈ L2, and we define the
sequence L(k) inductively as follows:

L(1) �
= L , L(k+1) �

= [L(k),L(k)] ⊂ L(k) . (5)

If L(k) = 0 for some k sufficiently large, then L is called
solvable. For example, if L is a Lie algebra generated by
two matrices A and B, we have

L(1) = span{A, B, [A,B], [A, [A,B]], · · ·}
L(2) = span{[A, B], [A, [A,B]], [B, [A,B]], · · ·}
L(3) = span{[[A, B], [A, [A,B]]], · · ·}

(6)

and so on.
The following result plays a key role in our subsequent

discussion. It is known as Lie’s Theorem and can be found
in most textbooks on Lie algebra theory [14], [15].

Lemma 1: Let L be a solvable Lie algebra over an
algebraically closed field, and let ρ be a representation of L
on a vector space V of finite dimension n. Then, there exists
a basis {v1, v2, · · · , vn} of V such that for each X ∈ L the
matrix ρ(X) in that basis takes the upper-triangular form


λ1(X) · · · ∗

...
. . .

...

0 · · · λn(X)


 (7)

where λ1(X), · · · , λn(X) are its eigenvalues.
This lemma will be used in Section IV for the Lie algebra

composed of all subsystem matrices in the switched system.

III. STABILITY ANALYSIS USING CQLF/CQLLF

In this section, we discuss the switched system’s stability
using the approach of common quadratic Lyapunov (or
Lyapunov-like) functions.
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Definition 1: If all the subsystems are Hurwitz/Schur
stable (i.e., sc = Nc, sd = Nd) and there is a common
positive definite matrix P satisfying

AT
ciP + PAci < 0 , i = 1, · · · , Nc; (8)

AT
djPAdj − P < 0 , j = 1, · · · , Nd , (9)

then V (x) = xT Px is called a common quadratic Lyapunov
function (CQLF) for all the subsystems.

It is easy to see that when a CQLF exists, there are two
positive scalars αcs and αds < 1 such that

AT
ciP + PAci < −2αcsP

AT
djPAdj − α2

dsP < 0
(10)

hold for all i and j.
Remark 1: Obviously, the necessary condition for the

existence of a CQLF is that all continuous-time subsystems
are Hurwitz stable and all discrete-time subsystems are
Schur stable. There are many switched systems in which all
the subsystems have a CQLF. For example, we have shown
in [6] that if all the subsystems are (Hurwitz or Schur) stable
and symmetric, then V (x) = xT x (P = I) is a CQLF. The
result has been extended in [11] to switched normal systems
(AT

ciAci = AciA
T
ci , AT

djAdj = AdjA
T
dj). In [10], we have

proved constructively that if all the subsystems are (Hurwitz
or Schur) stable and commutative pariwise, then there exists
a CQLF for all the subsystems.

Theorem 1: If there is a CQLF for all the subsystems, the
switched system composed of (1) and (2) is exponentially
stable under arbitrary switching.

Proof: To show the exponential stability of the system,
we first find positive scalars αcs and αds satisfying (10).
Then, in the period where a continuous-time subsystem
is activated, we obtain V̇ (x(t)) < −2αcsV (x(t)), and in
the period where a discrete-time subsystem is activated,
V (x(k + 1)) < α2

dsV (x(k)).
For any time t > 0 (when a discrete-time subsystem

is active at t, we refer to t tacitly as the last sampling
point since the state does not change until the next sampling
point), we can always divide the time interval [0, t] as t =
tc + mτ (m ≥ 0), where tc is the total duration time on
continuous-time subsystems and mτ is the total duration
time on discrete-time subsystems. It is not difficult to obtain
that no matter what the activation order is,

V (x(t)) ≤ e−2αcstcα2m
ds V (x(0)) (11)

and thus

|x(t)| ≤
√

λM (P )
λm(P )

e−αst|x(0)| (12)

where αs = min{αcs,
ln(α−1

ds
)

τ } > 0, λM (P ) and λm(P )
denote the largest and the smallest eigenvalue of P , respec-
tively. Since we did not add any limitation on the switching
signals, the switched system is exponentially stable under
arbitrary switching.

Now, we deal with the case where not all the subsystems
are Hurwitz/Schur stable. To proceed, we need the following
definition.

Definition 2: If not all the subsystems are Hurwitz/Schur
stable and there is a common positive definite matrix P
satisfying

(Aci + αcsI)T P + P (Aci + αcsI) < 0 , (13)

i = 1, · · · , Ncsc

(Aci − αcuI)T P + P (Aci − αcuI) < 0 , (14)

i > Ncsc

(
Adj

αds
)T P (

Adj

αds
) − P < 0 , j = 1, · · · , Ndsd

(15)

(
Adj

αdu
)T P (

Adj

αdu
) − P < 0 , j > Ndsd

(16)

with scalars αcs > 0, αcu > 0, 0 < αds < 1 and
αdu > 1, then V (x) = xT Px is called a common quadratic
Lyapunov-like function (CQLLF) for all the subsystems.

Remark 2: In Definition 2, the matrix inequalities (13)
and (15) are the same as (10), corresponding with the
stable subsystems, while (14) and (16) are for the unstable
subsystems. For any unstable Aci, it is easy to find a positive
αcu such that Aci − αcuI is stable. The same holds with
unstable Adj . The key point is that all the obtained stable
matrices must correspond with a common positive definite
matrix.

Now, let us investigate what happens when Definition 2 is
true. According to the matrix inequalities in Definition 2, in
the period where a continuous-time subsystem is activated,
we obtain

V̇ (x(t)) <

{ −2αcsV (x(t)) when subsystem is stable

2αcuV (x(t)) when subsystem is unstable.
(17)

Similarly, in the period where a discrete-time subsystem is
activated, we obtain

V (x(k+1)) <

{
α2

dsV (x(k)) when subsystem is stable

α2
duV (x(k)) when subsystem is unstable.

(18)
For any time t > 0, we can always divide the time inter-

val [0, t] as t = tcs+tcu+(ms+mu)τ , where tcs and tcu are
the total duration time on stable and unstable continuous-
time subsystems, respectively, and msτ and muτ are the
total duration time on stable and unstable discrete-time
subsystems, respectively. Then, it is not difficult to obtain
that no matter what the activation order is,

V (x(t)) ≤ e−2αcstcs+2αcutcuα2ms

ds α2mu

du V (x(0)) . (19)

Defining αs = min{αcs,
ln(α−1

ds
)

τ } > 0 and αu =
max{αcu, ln(αdu)

τ } > 0, we obtain

V (x(t)) ≤ e−2αsts+2αutuV (x(0)) , (20)
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where ts = tcs + msτ is the total duration time on stable
subsystems and tu = tcu + muτ is the total duration time
on unstable subsystems.

For any given positive scalar α < αs, we consider the
following dwell time scheme

tu
ts

≤ αs − α

αu + α
(21)

which specifies an upper bound between the total duration
time on unstable subsystems and stable ones.

Since (21) is equivalant to

−2αsts + 2αutu ≤ −2α(ts + tu) = −2αt , (22)

we obtain from (20) that

|x(t)| ≤
√

λM (P )
λm(P )

e−αt|x(0)| . (23)

We summarize the above discussion in the following
theorem.

Theorem 2: If there is a CQLLF for all the subsystems
satisfying (13)-(16), the switched system composed of (1)
and (2) is exponentially stable with decay rate α under the
dwell time scheme (21).

Remark 3: If we desire the decay rate αs, then according
to (21), the total activation time on unstable subsystems (tu)
must be zero, which means that unstable subsystems are not
activated. This is in accord with Theorem 1. Further, α can
be very close to αs if tu is chosen sufficiently small, which
is also reasonable.

IV. LIE ALGEBRAIC CONDITIONS

We first state a result which will be used later in the proof
of the main theorem.

Lemma 2: All leading principal minors of a Hermitian
matrix are real. A Hermitian matrix H is positive definite
(i.e., x∗Hx > 0, ∀x 
= 0) if and only if all its leading
principal minors are positive.

Now, we state and prove the first main theorem of this
paper.

Theorem 3: If all the subsystems are Hurwitz/Schur
stable and the Lie algebra{

Aci, i = 1, · · · , Nc; Adj , j = 1, · · · , Nd

}
LA

(24)

is solvable, then there exists a CQLF for all the subsystems
and thus the switched system composed of (1) and (2) is
exponentially stable under arbitrary switching.

Proof: According to Theorem 1, the proof is reduced
to finding a CQLF for all the subsystems. Without loss of
generality, we assume here for simplicity that n = 3.

Translating Lemma 1 into the present situation, we see
that if the Lie algebra (24) is solvable, then there exists a
nonsingular complex matrix U such that for all i, j

Aci = U−1ÃciU , Adj = U−1ÃdjU , (25)

where the complex matrices Ãci, Ãdj are upper-triangular.
We first show that there exists a real positive definite

matrix P̃ such that

Ã∗
ciP̃ + P̃ Ãci < 0 , Ã∗

djP̃ Ãdj − P̃ < 0 . (26)

Especially, we choose P̃ with real diagonal form as P̃ =
diag{p̃1, p̃2, p̃3}, and thus we have

−Ã∗
ciP̃ − P̃ Ãci =


−2p̃1(�Ãci)11 −p̃1(Ãci)12 −p̃1(Ãci)13

∗ −2p̃2(�Ãci)22 −p̃2(Ãci)23

∗ ∗ −2p̃3(�Ãci)33


(27)

and

−Ã∗
djP̃ Ãdj + P̃ =

 p̃1(1 − |(Ãdj)11|2) −p̃1(Ãdj)
∗
11(Ãdj)12

∗ p̃2(1 − |(Ãdj)22|2) − p̃1|(Ãdj)12|2
∗ ∗

−p̃1(Ãdj)
∗
11(Ãdj)13

−p̃1(Ãdj)
∗
12(Ãdj)13 − p̃2(Ãdj)

∗
22(Ãdj)23

p̃3(1 − |(Ãdj)33|2) − p̃1|(Ãdj)13|2 − p̃2|(Ãdj)23|2


 . (28)

Since all the subsystems are assumed to be Hurwitz/Schur
stable, (�Ãci)11 < 0 and |(Ãdj)11| < 1 hold for all i’s
and j’s. Then, we can choose positive p̃1 arbitrarily so that
the first leading principal minors of (27) and (28), namely,
−2p̃1(�Ãci)11 and p̃1(1 − |(Ãdj)11|2), are both positive.

Next, since (�Ãci)22 < 0 and |(Ãdj)22| < 1, we can
always find a positive scalar p̃2 sufficiently large such that
for the fixed p̃1, the second leading principal minors of (27)
and (28), namely, both∣∣∣∣∣ −2p̃1(�Ãci)11 −p̃1(Ãci)12

∗ −2p̃2(�Ãci)22

∣∣∣∣∣ (29)

and∣∣∣∣∣ p̃1(1 − |(Ãdj)11|2) −p̃1(Ãdj)∗11(Ãdj)12
∗ p̃2(1 − |(Ãdj)22|2) − p̃1|(Ãdj)12|2

∣∣∣∣∣ ,

(30)
are both positive.

Finally, since (�Ãci)33 < 0 and |(Ãdj)33| < 1, for the
fixed p̃1 and p̃2, we can always find a positive scalar p̃3

sufficiently large such that the third leading principal minors
(i.e., the determinants) of (27) and (28) are both positive.

In this way, we have chosen p̃1, p̃2 and p̃3 orderly so
that all the leading principal minors of (27) and (28) are
positive. Therefore, according to Lemma 2, (26) is satisfied
with the chosen P̃ . Using the obtained P̃ , we substitute
(25) into (26) to obtain

P̃UAciU
−1 + (U−1)∗AT

ciU
∗P̃ < 0

(U−1)∗AT
djU

∗P̃UAdjU
−1 − P̃ < 0 ,

(31)
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which are respectively equivalent to

PAci + AT
ciP < 0 , AT

djPAdj − P < 0 , (32)

where P = U∗P̃U .
We write the complex matrix P as P = �(P ) +√−1�(P ). Since P is Hermitian, �(P ) is skew-symmetric,

from which xT Px = xT�(P )x > 0 (x 
= 0) is obtained.
Thus, �(P ) is a real positive definite matrix. Similarly, we
can obtain easily

AT
ci�(P ) + �(P )Aci < 0 , AT

dj�(P )Adj −�(P ) < 0 ,
(33)

which implies that �(P ) is the common Lyapunov matrix
we want to compute. This completes the proof.

Remark 4: It is understood from the proof of Theorem 3
that the result can be extended to case where both upper-
triangular and lower-triangular Ãci’s (or Ãdj’s) exist. This
means that if the Lie algebra (24) is not solvable, we can try
to replace some subsystem matrices with their transposes in
(24) and then check the new Lie algebra.

Remark 5: As also pointed out in [5], although we have
showed the existence condition of CQLF constructively, the
computation depends on the value of the transformation
matrix U . Since it may need some efforts obtaining the
value of U when using standard numerical methods, it may
be more efficient to solve the LMIs (8)-(9) with respect to
P > 0 directly, using the existing LMI softwares or the
stochastic method proposed in [16].

Next, we deal with the case where not all the subsystems
are stable.

Theorem 4: If not all the subsystems are stable and the
Lie algebra (24) is solvable, then there exists a CQLLF for
all the subsystems and thus the switched system composed
of (1) and (2) is exponentially stable with decay rate α
under the dwell time scheme (21).

Proof: Since the Lie algebra (24) is solvable, there exists
a nonsigular complex matrix U such that (25) holds for all
i, j, where Ãci, Ãdj are upper-triangular.

For Hurwitz stable Aci’s, there always exists a positive
scalar αcs such that Aci +αcsI remains Hurwitz stable. For
Hurwitz unstable Aci’s, there always exists a positive scalar
αcu such that Aci − αcuI is Hurwitz stable. Similarly, for
discrete-time subsystems, we find a positive scale αds < 1
for Schur stable Adj such that Adj

αds
remains Schur stable,

and αdu > 1 for unstable Adj such that Adj

αdu
becomes Schur

stable.
We compute from (25) that

Aci + αcsI = U−1(Ãci + αcsI)U (34)

i = 1, · · · , Ncsc

Aci − αcuI = U−1(Ãci − αcuI)U (35)

i > Ncsc

Adj

αds
= U−1 Ãdj

αds
U j = 1, · · · , Ndsd

(36)

Adj

αdu
= U−1 Ãdj

αdu
U , j > Ndsd

(37)

and note that all the matrices Ãci + αcsI (1 ≤ i ≤ Ncsc),

Ãci −αcuI (Ncsc < i ≤ Nc), Ãdj

αds
(1 ≤ j ≤ Ndsd

) and Ãdj

αdu

(Ndsd
< j ≤ Nd) are Hurwitz/Schur stable and are still

upper-triangular.
Then, using the same technique as in the proof of

Theorem 3, we can obtain a common positive definite
(diagonal) matrix P for Aci + αcsI (1 ≤ i ≤ Ncsc),
Aci − αcuI (Ncsc < i ≤ Nc), Adj

αds
(1 ≤ j ≤ Ndsd

) and
Adj

αdu
(Ndsd

< j ≤ Nd). This completes the proof of the
existence of CQLLF. According to Theorem 2, the switched
system is exponentially stable with decay rate α under the
dwell time scheme (21).

V. EXAMPLES

Example 1: Consider the switched system with one
continuous-time subsystem and one discrete-time subsystem
whose system matrices are

Ac =

[
−0.5 −0.5

0.1 −0.3

]
, Ad =

[
0.4 0.2
0.2 0.3

]
. (38)

It is easy to confirm that Ac is Hurwitz stable and Ad is
Schur stable.
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Fig.1 The system’s state and its norm in Example 1

Some standard Lie brackets are computed as

[Ac, Ad] =

[ −0.1200 0.0100

0.0500 0.1200

]

[Ac, [Ac, Ad]] =

[ −0.0260 −0.1220

−0.0140 0.0260

]

[Ad, [Ac, Ad]] =

[ −0.0080 0.0490

−0.0530 −0.0080

]

[[Ac, Ad], [Ac, [Ac, Ad]]] =

[ −0.0060 −0.0298

−0.0060 0.0060

]

[[Ac, Ad], [Ad, [Ac, Ad]]] =

[ −0.0030 −0.0119

−0.0119 0.0030

]
(39)
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and

[[[Ac, Ad], [Ac, [Ac, Ad]]] , [[Ac, Ad], [Ad, [Ac, Ad]]]]

=

[
−0.0004 0.0000

0.0001 0.0004

]
. (40)

It is seen from further computation that the Lie algebra
{Ac, Ad}LA is solvable with k = 5, and thus the switched
system is exponentially stable under arbitrary switching.

Suppose that the sampling period of subsystem Ad is
0.01. Fig. 1 shows the convergence of the system state and
the norm when Ac and Ad are activated alternatively with
a randomly generated time series (0.5, 3steps, 0.6, 2steps,
0.25, 4steps) with the initial state [100 100]T . The mark
“*” in the left part of Fig. 1 describes the discrete-time state
change, and the right part of Fig. 1 shows that the norm of
the system state converges to zero quickly.

Example 2: Modify the matrix Ac in Example 1 and use
the same Ad as

Ac =

[
0 −0.5

0.1 0.2

]
, Ad =

[
0.4 0.2
0.2 0.3

]
. (41)

It is easy to confirm that Ac in the above equation is equal
to the matrix Ac in (38) adding 0.5I , and thus the Lie
algebra {Ac, Ad}LA here is also solvable without needing
to compute the Lie brackets.

Since Ac’s eigenvalues are 0.1± 0.2
√−1, we set αcu =

0.2 to make Ac − αcuI Hurwitz stable. Also, since Ad’s
eigenvalues are 0.7±√

0.17
2 , we set αds = 0.9 so that Ad

αds

remains Schur stable. Defining the sampling period as τ =
0.1, we obtain αs = ln(α−1

ds
)

τ = 1.054 and αu = αcu = 0.2.
If we choose the decay rate as α = 0.1, then according
to (21), the dwell time scheme is tu

ts
≤ αs−α

αu+α ≈ 3.17.
To satisfy this requirement, we choose activating Ac with
3.1 and then Ad with 10 steps, alternately. Fig.2 shows the
convergence of the system state and the norm, where the
initial state is [200 100]T .
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Fig.2 The system’s state and its norm in Example 2

VI. CONCLUSION

Lie algebraic conditions have been established for stabil-
ity of a class of switched systems, where both continuous-
time and discrete-time linear subsystems exist and unstable
subsystems may be included. The results are theoretically
attractive, and the computation is not involved. Future work
includes its extention to the case of nonlinear subsystems.
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