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Abstract— In this paper, the stability analysis for a class of
second order switched LTI systems with possible marginally
stable subsystems is investigated. The main contribution here
is the derivation of a necessary and sufficient condition for
stability of such a switched system under arbitrary switching.
The condition can be easily checked which is illustrated by an
example.

I. INTRODUCTION

The stability issues of switched systems, especially

switched linear systems, have attracted considerable interest

in the recent decade, see for example the survey papers

[1],[2], the recent book [3] and the references cited therein.

It is known that the stability of switched systems depends

on not only the dynamics of the subsystems but also the

properties of the switching signals. One of the basic problems

for switched systems is to identify conditions that guarantee

the stability of a switched system under all possible switching

signals, or arbitrary switching. A popular way to deal with

this problem is based on finding a common Lyapunov

function. This approach is justified by the converse Lyapunov

theorem proposed in [4] for arbitrary switching systems.

However, most existing efforts, e.g. [5], [6], [7], are based

on or imply the existence of a common quadratic Lyapunov

function (CQLF), which is known to be sufficient only.

Therefore, the study of non-quadratic Lyapunov functions

has been attracting more and more attentions, e.g. [8], [9].

However, these non-quadratic Lyapunov functions are not

easy to determine in general.

Another approach to derive both necessary and sufficient

conditions for the stability of switched systems is based on

the characterization of the worst case switching signal. The

idea is very simple: if the switched system remains stable

under the worst case switching signal, then the switched

system must be stable for all possible switching signals.

Similar idea has been used in [11] to derive a necessary

and sufficient condition for absolute stability of second-order

systems. However, the condition proposed in [11] is restricted

to some special classes and not obvious to generalize. In

addition, the checking of the condition in [11] could be

computationally challenging. This motivates the development

of an easily verifiable, necessary and sufficient condition

for arbitrarily switched second order LTI systems with two

asymptotically stable subsystems in [12]. In this paper, we

further generalize the results in [12] to the case that the

switched system may contain marginally stable subsystems.
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The switched systems considered here can be formulated

as

Sij : ẋ = σx, σ ∈ {Ai, Bj} (1)

where Ai and Bj are both stable in sense of Lyapunov, and

i, j ∈ {1, 2, 3} denote the types of A and B respectively. A

matrix A ∈ R2×2 was classified into three types according to

its eigenvalue and eigenstructure. Type I: A has real eigenval-

ues and diagonalizable; Type II: A has real eigenvalues but

undiagonalizable; Type III: A has two complex eigenvalues.

The problem studied here is under what condition the

switched system (1) remains stability under all possible

switching signals. Please note that the stability discussed

in this paper is regarding the boundedness of the states.

A switched system is said to be stable if its trajectory is

bounded under all possible switching signals.

The rest of the paper is organized as follows. In Section II,

some useful results presented in [12] are reviewed. In Section

III, the main result, its proofs and examples are given. And

the final section concludes the paper.

II. PRELIMINARIES

In this section, some results and definitions in [12] are

briefly reviewed. Interested readers may refer to [12] for

further details and proofs.

A. Solution of single subsystem in polar coordinates

Consider a second-order LTI system

ẋ = Ax =

[

a b

c d

]

x (2)

and define x1 = rcosθ, x2 = rsinθ, it follows that

dr

dt
= r[a cos2 θ + d sin2 θ + (b + c) sin θ cos θ] (3)

dθ

dt
= c cos2 θ − b sin2 θ + (d − a) sin θ cos θ (4)

Lemma 2.1: The trajectories of system (2) in r-θ co-

ordinates, except the ones lie on the eigenvectors1, can be

expressed as

r(t) = Cu(θ(t)) (5)

where C is a positive constant depending on initial state

(r0, θ0) and u(θ) is positive.

1The case that the trajectory stays along an eigenvector corresponds to
dθ

dt
= 0, which will be dealt with separately later.
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B. Solution for switched LTI systems in polar coordinates

Consider the switched LTI system (1), and denote the two

subsystems as:

ΣA : ẋ = Ax =

[

a1 b1

c1 d1

]

x (6)

ΣB : ẋ = Bx =

[

a2 b2

c2 d2

]

x (7)

It follows from Lemma 2.1 that r = CAuA(θ), r =
CBuB(θ), then the solution of the switched system is ob-

tained by a combination of the solutions of two subsystems.

r = hA(θ)uA(θ) (8)

where

hA(θ) =

{

CA, σ = A

CB
uB(θ)
uA(θ) , σ = B

(9)

or similarly

r = hB(θ)uB(θ) (10)

where

hB(θ) =

{

CA
uA(θ)
uB(θ) , σ = A

CB , σ = B
(11)

With reference to (8), u(θ) is bounded for stable A and

hA is constant when σ = A, so the interesting part is the

variation of hA, which is described by
dhA

dt
when σ = B.

For convenience, we denote

HA(θ(t)) ,
dhA

dt

∣

∣

∣

∣

σ=B

, HB(θ(t)) ,
dhB

dt

∣

∣

∣

∣

σ=A

(12)

QA(θ(t)) ,
dθ

dt

∣

∣

∣

∣

σ=A

, QB(θ(t)) ,
dθ

dt

∣

∣

∣

∣

σ=B

(13)

To find the worst case switching signal for a given

switched system (1), we need to know which subsystem is

the worst for every θ and how θ varies with time t. The

former one is determined by the signs of HA(θ) and HB(θ)
while the latter one depends on the signs of QA(θ) and

QB(θ). The geometrically meaning of positive HA(θ) is that

the vector field of subsystem ΣB points outwards relative

to ΣA. And a positive QA implies a counter clockwise

trajectory of ΣA in x − y coordinates.

It has been shown in [12] that it is sufficient to study sta-

bility of a switched system (1) in an interval of θ ∈ [−π
2 , π

2 ).
Denote k = tgθ, the functions of θ can be transformed to

the functions of k. Straightforward algebraic manipulations

yield

sgn(HA(k)) = sgn

(

N(k)

DA(k)

)

(14)

sgn(HB(k)) = − sgn

(

N(k)

DB(k)

)

(15)

sgn(QA(k)) = − sgn(DA(k)) (16)

sgn(QB(k)) = − sgn(DB(k)) (17)

Fig. 1. The region where both HA and HB are positive

where DA(k) = b1k
2 + (a1 − d1)k − c1, DB(k) = b2k

2 +
(a2 − d2)k − c2 and

N(k) = (b1d2 − b2d1)k
2 + (b1c2 + a1d2 − b2c1 − a2d1)k

+a1c2 − a2c1 , p2k
2 + p1k + p0.

(18)

Denote two distinct real solutions of N(k) = 0, if exist, by

k1 and k2, and assume k2 < k1. Define a continuous interval

of k, in which the signs of (14)-(17) preserve, as a region of

k. Some useful properties are obtained from (14)-(17)

1) If the signs of QA and QB are the same (opposite),

then the signs of HA and HB are opposite (same).

2) The boundaries of regions of k, if exist, are real

eigenvectors of subsystems (DA(k) = 0 or DB(k) =
0) and the vectors where dr

dθ

∣

∣

σ=A
= dr

dθ

∣

∣

σ=B
(N(k)=0).

3) When trajectories cross boundaries of k1 or k2, the

trajectory directions will not change, but the signs of

HA(k) and HB(k) change simultaneously.

4) For two neighbor regions whose common boundary

are an eigenvector of ΣA, the trajectory along A can

not cross the boundary and the directions are opposite

in these two region. Moreover, the signs of HA(k)
changes when trajectory of ΣB across the boundary.

C. Criteria of the worst case switching signal (WCSS)

1) Both HA and HB are positive:

Lemma 2.2: The switched system (1) is not stable under

arbitrary switching if there exists a region of k, where both

HA and HB are positive.

Fig.1 shows that the trajectories of the switched system

will go to infinity by keeping switching in the region bounded

by l1 and l2.

2) HA is positive and HB is negative: The worse subsys-

tem is ΣB . Fig.2 shows that the trajectories of ΣB always

have a larger magnitude than the corresponding ones of ΣA

for all θ in this region.

3) HA is negative and HB is positive: Similarly, the

worse subsystem is ΣA.

4) Both HA and HB are negative:

Lemma 2.3: The switched system (1) is stable under

arbitrary swiching if one of HA(k) and HB(k) is non-

positive for all k.

Based on Lemma 2.3, if the trajectory stays in this

region, the switched system is stable. Hence, the worst case
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Fig. 2. The region where HA is positive and HB is negative

switching signal is the subsystem whose trajectory is able to

go out of this region.

If both trajectories can go out, we need to consider two

different cases: If one of the boundaries is k1 or k2, it follows

from (14) and (15) that there is an unstable region near this

region. The switched system is not stable under arbitrary

switching; Otherwise, the boundaries are eigenvectors of

subsystems, both trajectories can go out and can not come

back. Hence no matter which subsystem is chosen, trajectory

will leave this region and the stability of the system is not

affected.

5) Both HA and HB are zero: In this case, we can choose

either one as the worse case switching signal.

6) On real eigenvectors: It can be readily shown that the

worse subsystem is ΣA if trajectory is on the eigenvector of

B, and vice versa.

III. MAIN RESULT

Without loss of generality, we define the standard form Ji

for different types of second order matrix.

J1 =

[

λ1 0
0 λ2

]

, J2 =

[

λ 0
1 λ

]

, J3 =

[

µ −ω

ω µ

]

(19)

where

λ2 ≤ λ1 ≤ 0, λ < 0, µ ≤ 0, ω > 0 (20)

for stable matrix. The trivial case when λ2 = λ1 = 0 is

excluded in general proofs.

It is assumed that one of subsystems of (1) is in its

standard form, ie., Ai = Ji. Then, the other one can be

expressed as Bj = QjJjQ
−1
j with i ≤ j. If Ai and Bj

do not share a real eigenvector (these cases will be proved

separately), then transformation matrix Qj can be obtained

in the following structures based on the eigenvector of Bj .

Q1 =

[

1 1
α β

]

, Q2 =

[

0 1
β α

]

, Q3 =

[

0 1
β α

]

(21)

Additional assumptions are required for individual combi-

nations.

1) If Sij = S11, β < 0
2) If Sij = S12, α < 0
3) If Sij = S13, k1, k2 ≤ 0 (if exist)

4) If Sij = S33, p2 6= 0 (if A 6= B)

5) If Sij = S33, p2 < 0 (if N(k) has two distinct real

roots)

Any given switched linear systems (1) can be transformed

to satisfy these assumptions by coordinates transformation

while stability properties of the switched system preserve.

Assumptions 1-3 can be satisfied by the transformation

x̄1 = −x1 and assumption 4-5 can be satisfied by similarity

transformation with a unitary matrix P =

[

γ −η

η γ

]

when

necessary, where det(P ) =
√

γ2 + η2 = 1.

Theorem 3.1: Switched system (1) is not stable under

arbitrary switching signals if and only if N(k) (18) has two

distinct real roots, k2 < k1, satisfying
{

N ≤ k2 < k1 ≤ M if det(Qj) < 0
∥

∥eBjTBeAiTAx(0)
∥

∥

2
> ‖x(0)‖2 if det(Qj) > 0

(22)

where
{

N = α, M = 0 Sij = S11

N → −∞, M → +∞ otherwise
(23)

TA =

∫ θ1

θ2

1

c1 cos2 θ − b1 sin2 θ + (d1 − a1) sin θ cos θ
dθ

(24)

TB =

∫ θ2+π

θ1

1

c2 cos2 θ − b2 sin2 θ + (d2 − a2) sin θ cos θ
dθ

(25)

where θ1 = tg−1k1, θ2 = tg−1k2 and x(0) = [1, k2]
T .

A. Proof of the special cases

If A and B share a common real eigenvector, then A

and B can be transformed to lower-triangular matrix Ā and

B̄ simultaneously by a nonsingular matrix whose second

column is the common real eigenvector. The switched system

after transformation is ẋ =

[

aσ(t) 0
cσ(t) dσ(t)

]

x, and the

solution of the switched system can be obtained by studying

the two states x1(t), x2(t) separately

x1(t) = x1(0)e

∫ t

0
aσ(τ)dτ

(26)

x2(t) = e

∫ t

0 dσ(τ)dτ

[
∫ t

0

cσ(τ)x1(τ)e−
∫ τ

0 dσ(ξ)dξdτ + x2(0)

]

(27)

It can be readily shown that both states x1(t) and x2(t)
are bounded due to non-positive aσ(t), dσ(t) and stable

subsystems.

The result can also be obtained by using Theorem 3.1.

Since b1 = b2 = 0 violate the condition N(k) = 0 has two

distinct eigenvalues, the switched system is stable.

Comment: If one subsystem is of type I and has identical

eigenvalues, then all real vectors in the phase plane are the

eigenvectors of this subsystem. If the other subsystem is of

type I or type II, which happens in S11 and S12, then these

two subsystems share a common real eigenvectors and the

switched system is stable.

Now, we proceed to prove general cases of Sij with

marginally stable subsystems.
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B. Proof for Sij = S11

A1 =

[

λ1a 0
0 λ2a

]

(28)

B1 =
1

β − α

[

βλ1b − αλ2b λ2b − λ1b

αβ(λ1b − λ2b) βλ2b − αλ1b

]

(29)

Define λ1a = kAλ2a, λ1b = kAλ2b. Note that kA = 1,kB =
1 or α = 0 correspond to special cases, then we have

λ2a, λ2b < 0, kA, kB ∈ [0, 1), α 6= 0. In addition, we have

kAkB = 0 for at least one marginally stable subsystem and

β < 0 by assumption. Substitute (28) and (29) to (14)-(18),

it follows that

N(k) = λ2aλ2b(1 − kA)
N̄(k)

α − β
(30)

where N̄(k) is a monic polynomial with the same solutions

as N(k).

N̄(k) = k2 +
(kA − kB)β + (1 − kAkB)α

kB − 1
k + αβkA

(31)

sgn(HA(k)) = sgn(α − β) sgn(N̄(k)) sgn(k) (32)

sgn(HB(k)) = − sgn(N̄(k)) sgn(k − α) sgn(k − β) (33)

sgn(QA(k)) = − sgn(k) (34)

sgn(QB(k)) = − sgn(α − β) sgn(k − α) sgn(k − β) (35)

In order to determine the signs of above equations, we need

to know the locations of k1, k2 relative to α, β and 0, which

correspond to the eigenvectors of the two subsystems.

(α − k1)(α − k2) =
kBα(1 − kA)(α − β)

kB − 1
(36)

1) N̄(k) do not have two distinct real roots:

sgn(N̄(k)) ≥ 0, then what we care is the relative positions

among α, β and 0. Note that (36) ≥ 0 is assured in this case.

It follows from (31) and (36) ≥ 0 that β < α < 0. Then the

signs of (32)-(34) are determined.

Fig. 3. The signs of HA(k) and HB(k) for S11 when N(k) does not
have two distinct real roots, the switched system is stable.

With reference to Fig.3, Region I, III are stable since both

HA(k) and HB(k) are negative in these regions. Further-

more, none of the trajectories can go out of the region III.

• If the initial state is in region III, it can not go out of

this region.

• If the initial state is in region II or IV, it will be brought

into region III by the worst case switching signal, which

is ΣA in region II and ΣB in region IV.

• If the initial state is in region I, it must be brought out

because region I is stable. Then the trajectory will go to

region II or region IV, and go to region III eventually.

Therefore, the switched system is stable since all the trajec-

tories under the worst switching signal will go into a stable

region and can not go out again.

2) N̄(k) has two distinct real roots and det(Q1) < 0:

α > β, with reference to (31) and (36), there are only three

possibilities:

a) β < α ≤ k2 < k1 ≤ 0: In this case, the switched

system is not stable under arbitrary switching since HA(k)
and HB(k) are both positive when k ∈ (k2, k1). In Fig.4,

k1 = 0 only when kB = 0 and k2 = α only when kA = 0.

This result corresponds to the first inequality in Theorem 3.1.

Fig. 4. The signs of HA(k) and HB(k) for S11 when N(k) has two
distinct real roots between α and 0, the switched system is not stable under
arbitrary switching.

b) β = k2 < k1 < α < 0: Similar process shows that

all trajectories along WCSS will go into the region, bounded

by α and 0, can not go out again. The switched system is

stable since HA(k) and HB(k) are negative in this region.

c) β < k2 ≤ 0 < α ≤ k1: It can be readily shown that

the switched system is stable by similar process.

3) N̄(k) has two distinct real roots and det(Q1) > 0:

α < β, it follows from (31) and (36) that k2 ≤ α < β <

k1 ≤ 0.

Fig. 5. The signs of HA(k) and HB(k) for S11 when trajectories can
rotate towards the origin.

With reference to Fig.5, it is straightforward that the worst

case switching signal is ΣB in region I and V because HA is

positive and HB are negative. Similarly, the WCSS is ΣA in

region II and IV because HA is positive and HB are negative.

In region III, both of HA and HB are negative, but ΣA is

the only subsystem whose trajectory can go out of region

III because the boundaries of region III are α and β that

correspond to the eigenvectors of B. Similarly, the WCSS is

ΣB in region VI. On k1 and k2, without loss of generality,
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we choose ΣB as the WCSS. Based on above analysis, it is

concluded that the WCSS in the whole interval of k is
{

σ = A k2 < k < k1,

σ = B otherwise.
(37)

The simplest way to determine stability of this system is

to follow a trajectory under WCSS originating from a line

l until it gets to l again and evaluate its expansion or

contraction in the radial direction. Without loss of generality,

let x(0) = [1, k2], the system is not stable under arbitrary

switching if and only if ‖exp(B1TB) exp(A1TA)x(0)‖2 >

‖x(0)‖2, which follows the second inequality in Theorem

3.1.

C. Proof of Sij = S12

In this case, two subsystems are expressed as

A1 =

[

λ1a 0
0 λ2a

]

, B2 =
1

β

[

βλb − α 1
−α2 βλb + α

]

where β < 0 by assumption, λ1a = 0 for marginally stable

cases and λ2a, λb < 0. Denote λ1a = kAλ2a, then kA = 0.

Substitute the entries of A1 and B2 into (14)-(17), it follows

that

sgn(HA(k) = sgn(β) sgn(N̄(k)) sgn(k) (38)

sgn(HB(k) = − sgn(N̄(k)) (39)

sgn(QA(k)) = − sgn(k) (40)

sgn(QB(k)) = − sgn(β) (41)

where

N̄(k) = k2 − [(kA − 1)βλb + (kA + 1)α]k + kAα2 (42)

Similarly with S11, we need to know the locations of k1, k2

relative to α, which is based on the sign of (43)

sgn((α − k1)(α − k2)) = sgn((1 − kA)(λbα)β) = sgn(β)
(43)

1) N̄(k) does not have two distinct real roots: (39) is

non-positive for all k, the switched system is stable based

on Lemma 2.3.

2) N̄(k) has two distinct real roots and det(Q2) < 0:

β > 0, k1 and k2 are in the same side of α and |k1k2| =
kAα2 < α2, so we have α < k2 < k1 = 0. Both (38)

and (39) are positive when k ∈ (k2, k1). Therefore, the

switched system is not stable under arbitrary switching based

on Lemma 2.2.

3) N̄(k) has two distinct real roots and det(Q2) > 0:

β < 0, with reference to (42) and (43), we have k2 < α <

k1 = 0. Since both k1 and k2 are non-positive, the worst

case switching signal is obtained which is the same as (37)

in case S11.

D. Proof of Sij = S13

A1 =

[

λ1a 0
0 λ2a

]

, B3 =
ω

β

[

βξ − α 1
−(α2 + β2) βξ + α

]

where µ ≤ 0, ω > 0, and ξ =
µ
ω ≤ 0. Substitute the entries

of A1 and B3 into (14)-(17), it follows that

sgn(HA(k)) = sgn(β) sgn(N̄(k)) sgn(k) (44)

sgn(HB(k)) = − sgn(N̄(k)) (45)

sgn(QA(k)) = − sgn(k) (46)

sgn(QB(k)) = − sgn(β) (47)

where

N̄(k) = k2 − [(kA − 1)βξ + (kA + 1)α]k + kA(α2 + β2)
(48)

1) N̄(k) does not have two distinct real roots: (45) is

non-positive for all k, the switched system is stable based

on Lemma 2.3.

2) N̄(k) has two distinct real roots and det(Q3) < 0:

We have β > 0 and k1, k2 ≤ 0 by assumption. It follows that

HA(k) and HB(k) are positive when k ∈ (k2 k1), thus the

switched system is not stable under arbitrary switching.

3) N̄(k) has two distinct real roots and det(Q3) > 0:

β < 0, Similarly, we obtain the WCSS as (37).

E. Proof of Sij = S22

In this case, there is no marginally stable subsystem, which

was considered in [12].

F. Proof of Sij = S23

A =

[

λa 0
1 λa

]

, B =
ω

β

[

βξ − α 1
−(α2 + β2) βξ + α

]

where µ = 0, ω > 0, and ξ =
µ
ω = 0.

sgn(HA(k)) = − sgn(β) sgn(N̄(k)) (49)

sgn(HB(k)) = − sgn(N̄(k)) (50)

sgn(QA(k)) = 1 (51)

sgn(QB(k)) = − sgn(β) (52)

where

N̄(k) = k2 −
2αλa − 1

λa

k +
λa(α2 + β2) + (βξ − α)

λa

(53)

1) N̄(k) does not have two distinct real roots: (50) is

non-positive for all k, the switched system is stable based

on Lemma 2.3.

2) N̄(k) has two distinct real roots and det(Q3) < 0:

β > 0, both of (49) and (50) are positive when k ∈ (k2, k1),
thus the switched system is not stable under arbitrary switch-

ing as long as the two roots k2 < k1 exist.

3) N̄(k) has two distinct real roots and det(Q3) > 0:

β < 0, Similarly, we obtain the WCSS as (37).
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G. Proof of Sij = S33

A3 =

[

µa −1
1 µa

]

, B3 =
ωb

β

[

βξ − α 1
−(α2 + β2) βξ + α

]

where µa, µb ≤ 0, ωb > 0 and ξ =
µb
ωb

≤ 0. Similarly, we

have

sgn(HA(k)) = − sgn(N(k)) (54)

sgn(HB(k)) = − sgn(β) sgn(N(k)) (55)

sgn(QA(k)) = 1 (56)

sgn(QB(k)) = − sgn(β) (57)

1) N(k) does not have two distinct real roots:

a) β < 0: At least one of (54) and (55) is negative for

all k regardless of the sign of leading coefficient of N(k).
b) β > 0 and the leading coefficient of N(k) is positive:

In this case, (54) is negative for all k. The switched system

is stable under arbitrary switching based on Lemma 2.3.

c) β > 0 and the leading coefficient of N(k) is

negative.: It can be proved by contradiction that leading

coefficient of N(k) is not possible to be negative if N(k)
has no distinct real roots and β > 0.

2) N(k) has two distinct real roots and det(Q3) < 0:

Note that the sign of N(k) is positive when k ∈ (k2, k1)
because p2, the leading coefficient of N(k), was assumed

to be negative. In this case, β > 0, both of (54) and (55)

are positive when k ∈ (k2, k1), thus the switched system is

not stable under arbitrary switching as long as the two roots

k2 < k1 exist.

3) N(k) has two distinct real roots and det(Q3) > 0:

β < 0, Similarly, we obtain the WCSS as (37).

H. An example

Consider a switched linear system with two subsystems

A =

[

0 −1
1 0

]

, B =

[

−1 1
−5 1

]

(58)

1) Step 1: Simple checking yields that A has two eigen-

values ±i and B has two eigenvalues ±2i. So it is the

case S33 with two marginally stable cases. And J3 =
[

−1 −1
1 −1

]

is obtained based on the eigenvalues of B.

2) Step 2: It is noticed that A is already in its standard

form and the Assumption 4 and 5 for S33 are satisfied since

p2 = b1d2−b2d1 = −1. Thus no further transformations are

needed. Since B and the standard form of B are known, we

can obtain Q3 =

[

0 1
2 1

]

according to (21).

3) Step 3: Substitute entries of A and B into (18), we

have k2 = −0.236, k1 = 4.236 and det(Q) = −2 < 0. It

follows from Theorem 3.1 that the switched system (58) is

not stable for arbitrary switching. It is shown in Fig.6 that

there exists a switching signal (x(t0) → x(t1) → x(t2)...)
that makes the system unstable.

Fig. 6. A switched system with two marginally stable subsystems is not
stable under arbitrary switching. Solid curves belong to ΣA and dashed
curves belong to ΣB

IV. CONCLUSION

In this paper, a necessary and sufficient condition for

stability of arbitrarily switched second order LTI systems

with marginally stable subsystem was derived. It turns out

that the condition for the marginally stable case is similar

with the one for asymptotically stable except boundary

conditions are included.
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