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Abstract-The paper studies a class of formation control
problem, i.e. the controllability for multi-agent systems. The
contribution includes several necessary and/or sufficient condi-
tions for the controllability under multiple leaders and switching
topology. The results are not only necessary and/or sufficient,
but also indicate to a certain degree how the controllability
be impacted by the evolvement of the corresponding dynamic
networks and the switched interconnection topologies.

Index Terms-Multi-agent systems, controllability, switched
systems, graph theory.

I. INTRODUCTION

Distributed coordination of networks of dynamic agents has
attracted a great deal of attention in recent years[l]-[10]. This
is partly due to broad applications of multi-agent systems
in, e.g. the cooperative control of unmanned aerial vehicles,
and technology improvements allowing smaller, more versatile
robots and other types of agents.

The controllability problem was put forward for the first
time for multi-agent systems by Tanner in [5], and then
developed in [6], [7], [8], [9], [10]. The problem is on how
the interconnected systems can be steered to specific positions
by regulating the motion of a single system that plays the
role of the group leader. This is what the so-called the
group can be controlled. This requires the characterization of
conditions under which the leaders can move the followers
into any desired position or configuration [6]. That is, to derive
conditions for a group of systems interconnected via nearest
neighbor rules, to be controllable by one of them acting as a
leader [5].

It is essentially a kind of formation control problem. The
problem is transformed to a classical notion of controllability
in [5] with respect to a fixed interconnection topology and a
switched controllability problem in [9], [10] with respect to a
switching topology. One of the features for the controllability
problem studied in [5], [9], [10] is that the leader is assumed
unidirectional, i.e. the leader's neighbors still obey the inter-
connection nearest neighbor rules, but the leader is indifferent,
and is free to pick any agent. Accordingly the leader does not
participate in the typical configuration updates, and merely acts
as an external control signals. The leader is not affected by the
members whereas each member is influenced by the leader and
the other members.

Central to the investigation of formation control is the nature
of interconnection topologies. Some preliminary results on for-
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mation control were derived with respect to the fixed topology,
which is a necessary step toward the more realistic dynamic
setting. For example, in addition to [3], [7], the feasibility
problem of achieving a specified geometric formation of a
group of unicycles was investigated in [4], where necessary
and sufficient graphical conditions for the existence of local
information controller to assure the asymptotic convergence
of the closed system were derived. Our goal is to consider the
formation control, which is reformulated as the controllability
problem in this paper, where the dynamics are influenced
by switching topologies and leaders. The first result is an
algebraic characterization of controllability. The disadvantage
of the result is that it does not provide any insights on the
impact of dynamic/switching topologies to the controllability.
The second result then tries to make up for this shortfall, which
shows that the controllability of multi-agent systems comes
down to the constructively design of a dynamic evolvement
pattern for the topologies of the corresponding dynamic net-
works. The results are helpful to a further understanding of the
relationship between the formation control and the dynamic
evolution of interconnection networks.

II. GRAPH THEORY PRELIMINARIES

Some notions in graph theory are recalled in this section.
An undirected graph g consists of a vertex set V

{1, 2,2 ,N + 1} and an edge set 6 {(i,j) i,j C V},
where an edge is an unordered pair of distinct vertices of V.
Two vertices i and j are neighbors if (i, J) C 6, and the
neighboring relation is indicated with j 'i. In this case we
say that j is a neighbor of i. The number of neighbors of each
vertex is its valency or degree. A path ioi1 ... is is a finite
sequence of nodes such that ik 1 'k, k = 1 ... s, and a
graph 9 is connected if there is a path between any pair of
distinct nodes. The adjacency matrix A(Q) of 9 is an IVI x IVI
matrix of whose ijth entry is 1 if (i, J) is one of 9's edges
and 0 if it is not. Any undirected graph can be represented
by its adjacency matrix, A(Q), which is a symmetric matrix
with 0-1 elements. The valency matrix A(g) of a graph 9 is
a diagonal matrix with rows and columns indexed by V, in
which the (i, j)-entry is the valency of vertex i.

The incidence matrix In(9) of 9 is an IVI x 1S6 matrix,
with one row for each node and one column for each edge.
Suppose edge e = (i,j). Then column e of In(9) is zero
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except for the i-th and j-th entries, which are +1 and -1,
respectively. The Laplacian matrix L(!Q) of a graph 9, where
9 = (V, 8) is an undirected, unweighted graph without graph
loops (i, i) or multiple edges from one node to another, is an
V x V symmetric matrix with one row and column for each
node defined by

rdi, if i j (number of incident edges)
L(Q)ij -1, if i 7tj and 3 edge (i, j)

10, otherwise.

Given a graph 9, its associated matrices In(!9) and L(9) have
the following properties: (a) L(9) is always symmetric and
positive semidefinite; (b) zero is always a eigenvalue of L(!9)
with i1, the vector of ones, being the associated eigenvector,
and the algebraic multiplicity of the zero eigenvalue is equal
to the number of connected components in the graph; (c)
Inh(9)(Inh(9))T = L(9), and L(9) = A(9) - A(9).

III. PROBLEM FORMULATION AND MAIN RESULTS

Consider a multi-agent system consisting of N + nr agents
with simple, first order dynamics:

{ i i,i = l, . ., N(1

zN+j = zUN+j: j= 1 ... , ni

where XN+j are leaders. The dimension of xi could be
arbitrary, as long as it is the same for all agents. For the
simplicity of presentation, we will analyze only for the one-
dimensional case. The analysis is valid for any dimension n,
with the difference being that expressions should be rewritten
in terms of Kronecker products. Once the linkages between
agents are known, an interconnection graph can be defined to
describe the interconnection network.

Definition 1. [5] The interconnection graph, 9 {V, 4}, is
being defined as an undirected graph consisting of:

* a set of nodes, V {v= *Vl.. VN ±1N+1...* VN+nl}
indexed by the agents in the group, and

. a set of edges, S {(=ni, nj) C V x Vrni - n},
containing unordered pairs of nodes that correspond to
interconnected agents.

Interconnections come true through the input ui

vi=-,(iz i=1, ..,N; 1= ... : N+nl,

(2)
where JVi {j v i v- vj;j t'} is the set of indices of
the agents that are interconnected to vi, i.e., the neighboring
set of vi. Interconnections with the leader are now assumed
unidirectional: the leader's neighbors still obey (2), but the
leader is indifferent, and is free to pick UN±+J j n1...., 12
arbitrarily. With x = (X, , N+nl )T being the stack vector
of all the agent states, we will have

LxT, (3)

where L is the Laplacian matrix of the graph of intercon-
nections. Rename the agents and then the multi-agent system
reads

9
{Yixi~ ti 1,...,N
Zj XN+j: g = 1: ... ,ni

with y being the stack vector of all yi, z the stack vector of
all zj, and u the stack vector of all UN+j, j 1,... ni12, one
can write the system in the form:

[Y'f F R y ]+[0

where F is the matrix obtained from L after deleting the last
n1 rows and n1 columns, and R is the N x n1 submatrix
consisting of the first N elements of the deleted columns.
Then the dynamics of the followers that correspond to the y
component of the equation can be extracted as

y =-Fy-Rz. (4)

Remark 1. The selection of leaders XN+j, j = 1,... ni, is
indifferent, and it is free to pick any agents. The subsequent
analysis is effective for any selected leaders.

Definition 2. A follower subgraph !Qf of the interconnection
graph is the subgraph induced by the follower set Vf. Simi-
larly, A leader subgraph !Qf is the subgraph induced by the
leader set Vl.

Definition 3. The multi-agent system (1) is said to be control-
lable under leaders XN±+J j 1,... n12, andfixed topology if
system (4) is controllable.

Since the interconnection graph g is time variant, the
dynamic (4) can be viewed more reasonably as a system in
switching networks, which can be written in the form

y =-Fu(t)y -R(t)z, (5)

where (X(t) : R+ =X-{1, 2,., M} is the switching
signal/sequence to be designed. Given a switching signal
(X(t) : [to, tf] -> , we refer to to, ti, , _ with
to < ti < ... < ts as the switching time sequence, and
(J(to) = io, ur(ti) =1, ,u(ts_ ) =sis_ as the switching
index sequence. Let hi-tti+t =, 0 1,... ,s -1,

A A .
and ts tf. We denote by 7w {(toho)... (is-1hs- )} a

switching signal. The length of 7 is s. Throughout the pa-
per, we denote by L(7w) the length of 7. To investigate the
controllability under switched dynamic networks and selected
leaders, we give the following definitions.

Definition 4. The multi-agent system (1) is said to be control-
lable under leaders XN+j, 1, .. , n1 and switched topology
if system (5) is controllable.

The system (5) is controllable if for any nonzero state y C
RN, there exist a switching sequence 7 and input z such that
y(O) = y, and y(tf) = 0. We denote by C the controllable
state set of system (5).
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Definition 5. {F1,. , FM } is said to be the switching
topology set of system (1).

Since a given oX(t) represents an evolvement of the inter-
connection topology, we give the following definition.

Definition 6. A given switching signal or(t) is said to be a
dynamic evolvement pattern of the corresponding dynamic
networks of the multi-agent system (1). A dynamic evolve-
ment pattern is said to be periodic, if there is a subset
fj'l:-.. } of such that the switching index sequence
is {ji,***f ,js j1,... js,...}; otherwise it is said to be
aperiodic.

The interconnection topology is embodied in Fi. The
switching topology set {F1,... , FM } contains all the possible
topology structures. The switching signal o(Xt) describes the
dynamic behavior of networks. Naturally, the problem that
how controllability is impacted by the evolution of switching
dynamical networks deserves careful study. In particular, we
will denote ourselves to the study of how to determine o(Xt)
so that the interconnection system is controllable.

Definition 7. Assume !Q1, 92 are two subgraphs induced from
the original graph 9. It is said that g, and 92 are linked if
there is a path between one of the nodes of Q1 and one of the
nodes of 92.

We denote by 9,,,..., g,a, the ai connected components
in the follower subgraph !9f. In subsequent arguments, the
following assumption is made.

Assumption 1. The leader subgraph 91 is linked to each of the
connected components 9,,,..., 9c of the follower subgraph
9f.

It is worth noting that the assumption does not require the
interconnection graph 9 be connected.Accordingly it is a less
conservative condition than connectedness.

Let L = (aij) be the (N + ni) x (N + ni) Laplacian matrix
of g associated with multi-agent systems (1). Assume that
Lil,...,i is such a submatrix obtained by deleting the i1th,....
it.th rows and ilth,. ..., 4th columns of L, i1,1 ....,i7
{1, ... , N + n, }. The following is required for investigation
of the controllability.

Lemma 1. Under Assumption 1, LN+1,...,N+n, is a positive
definite N x N matrix.

The proof of this lemma is omitted due to the space
limitation. The readers are referred to [16] for the detailed
proof of this result.

Given a matrix A C RNXN, and a linear subspace W C
N A EN~~RN,We denote (AW)-V , A1 ')/W. It follows that (A W)

is a minimum A-invariant subspace that contains W. Given
B E RNXp let ImB denote the image space of B. For
notational simplicity, we denote by (A B) the (A mB) . For

system (5), consider the nested subspace sequence defined by

M

Wi =I:
k=l

M
-Fk -rk) ,VVs+1 = E

k=l
-FkI)NsV S = 1, 2,

(6)
The following result is on the controllability of system (5).

Lemma 2. System (5) is controllable if and only if WN
N

Proof: The result is a direct consequence of Theorem 1
in [14], or the main result in [15] and [11]. a

Theorem 1. Consider an interconnected system with nr lead-
ers and switching networks described by (5). Denote Ri =

[rli, ..., rnji]. Then z can control the dynamics of all the other
states if the following conditions are satisfied:

1) With respect to each Fi, the eigenvalues of Fi are distinct
from each other, i= 1,... , M.

2) With respect to each Fi, the eigenvectors of Fi are not
orthogonal to rki; k l,...,ni; i 1, ,M.

Proof: In order to facilitate the statement, we prove the
result only for the situation N = 3, n = 2, and M = 2.
The general case can be proved in the same manner. In what
follows, WN will be calculated at first.

Since Fi is symmetric, it can be expressed as

-Fi=-DiT = =iiCTHi, 1 M,
A

where Di= Di, Ui is an orthogonal matrix. Denote
Fi,- Ri) (Hi, Bi), one has

N

(Hi Bi) = Z H3 1ImB:
j=l

N

UtZD1JmBj,
j=l

whre BA A rwhere Bi= UfTBi. Set Di=dia,gd'li *... dNi }
A F A F1 (N)1]

B, bi1,bi2jb, and bik = , it can be
seen t at

I

d

dl

dh
d24

dN4

with

il

A irj-Ui i

b(N)

- i2)

&i2)

b()

(7)

{libil)djli-b(l)

6(l2) ... d
1lb(2),(2i~~~~~~~~~~~~~~~~~~~~~

AVi(N) -... b(N)

2i) &dN -1b(l)
i
(2) d^N_ 1(2)

i2 i~~2

i& N) *.** dNi &ib(N)
12 Nii 1

Ai2 L
[Ui, Ui L Ail
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I,-A

bik) j L I

dii
d2i

dNi I
Wi = Im9l, (8)

where
A

91 [Ui, Ul, U2,U2] diag{All, 12, 21,A22}

x diag{Bi,Bi,B2,B2}.

Next, we consider W2. By definition, it is given by

W2 = (H1 VW1) + (H2 VW1)
(HiB) +(H2lB2)+ H1 (H2B2)+ H 2(H2lB2)
+ H2 (H1 B1) + H22 (H1 |B1.) (9)

Let UT, =UTUj. Then Uij is an orthogonal matrix since

Ui, Uj are orthogonal matrices. To express W2 further, the
following matrix 02 is introduced.

92A [U1, Ul , U2D2U2A, U2D2U2A U2UD2U1, U2D2U1,

U2, U2, U, -,UT , U, -,UT2 U1D 2UT2 UDU 12]T
X diag [A, 12, Aii, 12, Aii, 12, 21, 22, 21,

A22, A21, A22]

x di'ag [1,7 1 ,7 77 , 1 ,7 1 717, 2,~7 2,~ 2,~7 2,~ 2,7 2]

It follows from (7),(8) and (9) that

WV2 = Im 2. (10)

Now we are in a position to compute WN =W3. By definition,
one has

W3 (-F1|W2) + (-F21W2) = (H1|W2) + (H21W2)
=W2+ H VW2+ H2V2 + H2W2 + H22W2
=W2+ H1H2 (H1 |B1) + HiH22 (H1 B1)
+ H 2H2 (Hi1B1) + H 2H22 (Hi |BI)
+ H2H1 (H2B2) + H2H 2 (H2 B2)+ H22H1 (H2 B2)
+ H22H12 (H2IB2) (11)

To proceed, the following two matrices are defined.

8H3, 1

A[UiDiU17,D2Ui2, U1D1U1T D2U1 U1D1U1T DU12,

UD U1j2D2U12, UiDiU1j2D U2] 22UU1D 112D2 U1 2, U1D 121 D2 U12, U1iDj1U1T2D2 U12,
Ul 1212D2 U1 2, 1D U1T2D2 U12]
x diag {All,A12,AAll,A12,AAll,A12,Aii,A12}
x diag {B1, B1, B1, B1, 1, 1, B1, B1}

and

A[U2D2U2TDlU2, U2D2U2D1 U21, U2D2U2D U21,
U2D2U2T1D U21, U2D2U21 D1 U21, U2D2U21 DlU21,

U2D 2 U2TD 2U21, U2D 2 U2T1 D2 U21]
X diag {A21,A22, 21,A22,A21,A22,A21,A22}
X dtag {B2, .2, .2, .2, .2, .2, .2, .21

It can be seen from (7) that

Im(93,1 =H1H2 (H1 IB1) + HiH22 (H1 |B1)
+ H 2H2 (Hi B1) + H 2H22 (Hi1B1) (I

and

Im(3,2 =H2H1 (H2IB2) + H2H2 (H2IB2)
+ H22H1 (H2B2) + H22H12 (H2B2

Combining (10),(11),(12) with (13) yields

W3 = Im [92, 9(93,1, 9(93,2].

12)

(13)

Furthermore, by computation, one has

A

[(92, (3,1, (3,2]
=[Ui, Ui ,U2D2U1,U2D2UA,)U2D2Ul, U2D2UA,-221D UT2, UD1UT2 1D 2, U1 2IUT2

[Ul 12D2U, Ul DU222 2 U12 D21 2, U21D U 2 2U1 2

U1D12U1"2D22U12, U1D12U1"2D22U12, U2D2UATD1 U21,

U2D2U2UD1 U21, U2D2U21 DU21, U2D2U2D2 U21,

U2D2 U2" D1 U21 U2D U2"1D1 U21, U2D U, D U212

U2D22U21 D1 UU2i]

22, 21, 22A11, 12, 11, 12, 11, 12, 11, 12,

21, 22, 21, 22, 21, A22, A21, 22}

1, 1, 1, 1, 1, 1, 12, 1, 2 22

,D,D ,UD,U2,D,l2,2D 21,U1

It can

=

be found that

[U1,U1 U2,U2, U2, U2, U2, U2, U1, U1, U1, U1, U1, U1,

U1, U1, U1, U1, U1, U1, U2, U2, U2, U2, U2, U2, U2, U21

xddiag fI,I,D2,D2,DD2,D2, ,1,D1,D,,Dl2,Dl2,

D,,D,,D,,Dl,D,DlD, Dl, Dl,D2,D2,D2,D2,

D2 D2 D2 D22

x diag {I,I UT UT UFT UT I U T UT UT21'U21' )21' -21' [,[ 12 t-' 12' 12'

U12, 12, Ul2: 120U12: U12, U12:
U12, U12, U2l, l2l,U2lU21,2,u2l, U2D:U2D:U211

. di'ag {I,1, 1, 1, , 1, 1,,II,1, 1, 1,D2,D2 ,D2 2,
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bik

Aiks

As a consequence,

IN-1

^N-1

*..

d^N-1
*-Ni
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D2,D2,D22,D22,Dil,Dil,DiDl2,Di,D 1,Di2 ,Di2
x diag{I, I, I, I, I, I, I, I, I, I, I, I, U12, U12, U12,

U12, U12, U12, U12, U12, U21, U21, U21, U21,
U21, U21, U21, U21}

. diag A1,2, A11, A12, A11, A12, A21, A22, A21,

A22, A21, A22A11, A12, A11, A12, A11, A12, A11,
A12, A21, A22, A21, A22, A21, A22, A21, A22}

x dt'agf 1771 71 7 177 772,72,72 772 72 72,
xig{1, B1, B1, B1, B1, B1, 12, 12, 2, ~2, ~2, 2

2,2,~72,7 72, 21 -

Since Fi, and then Di =-Di is nonsingular due to Lemma
1, and both Ui and Uij are orthogonal matrices, one has

rank98 =N if Alik #0, and i#Ei 0,

i= 1,...,M;k= 1,...,nj. Denote U=[UliAU2i, . UNiA
Ri = [r1i,... ,rnli. Then () -urk; i 1,...,M;
k = , ...,nl;j 1, . . .,N. It follows that

lAikl :7~to i= 1, ..,M;k= 1l,... ,ni.
<\bik) =- Ujirki :4 O, i = 1, .. ., M; k = 1, ... ., ni;

j 1,...,N,
<#-==For each Fi, the eigenvectors of Fi are not orthogonal

to 'rki; k =I,. ,ni; =i=1, .. M,

and

O,i 1=,... ,JM,
1 d'N-
1 d2id,I . 2 . ..

2

1 dNi dN. 1

= II (dpi -dqi)7#0, 1,... ,M
1<q<p<N

-##~For each Fi, the eigenvalues of Fi are distinct
from each other, i 1,... , M.

The above analysis shows that rank9 = N if Conditions 1,
2 are fulfilled. Since dimiWN = N rank9 = N, the
result then follows from Lemma 2. The proof of the general
situation can be conducted in the same way. The difference
consists in the expression of WN, which becomes more and
more complex as the state dimension N and the number of
subsystems M increase. U

Although Theorem 1 presents a condition on controllability,
it does not exhibit any information on the evolution of dynamic
interconnection networks. In what follows we will consider
the design of switching signals. To this end, the following
definition is necessary.

Definition 8. Given a dynamic evolvement pattern 7
{(io, ho) ...(i s1,h_lh ) }, denote tf = Y s_1 hj, the control-
lable state set C(X) of wr with respect to system (5) is defined

by

C(X) {y there exists an input z(t),t C [O,tf],such that

y(O) y and y(tf) = 0}.
Clearly, C U= C (7). To state the result, we need to

introduce some notations. Let ,u = min{k Wk = Wk+1, k =
1, 2,... }, where Wk is the subspace iteratively defined in (6).
It can be seen that ,u can be equivalently defined by ,u =

min{k dimWk =dimWk+, k =1,2, }. Denotedk =

dimVk, 1 = di, k = dk dk 1, k 2,3, .. ,,p, and
d = dimWN. Obviously, d,A d, and W,= WN. Let Pk =
dim (-Fk-rk),k , and = maxkC{pk}. We have
the following observations.

Lemma 3. The multi-agent system (1) is controllable under
switching topology and the leaders XN, j = 1, ... , nl; ifand
only if there exists an aperiodic dynamic evolvement pattern
7b such that the controllable state set of 7b, i.e. C(7b) satisfies

C(wb) =R .

Moreover the evolvement pattern 7b can be constructively
designed with its length, i.e. the number of switchings involved
in 7b, satisfying

2
< L(7Tb) < Z k1k

k=l

Q+ 1. (14)

Proof: It follows from the Theorem 1 in [12](or the
Theorem 1 in [13]) that for systems (5), there exists a switching
signal 7b with its length satisfying (14) such that C(Wb) = C,
where C is the controllable subspace of systems (5), namely
the controllable subspace of systems (1) under the leader XN+1
and switching topology. Accordingly, the multi-agent system
(1) is controllable if and only if C(wb) = RN. Moreover, due
to the proof of the Theorem 1 in [12](or the Theorem 1 in
[13]), the evolvement pattern 7b can be designed according to
the following steps:

1) Compute W1, and choose a group of basis vectors
41,... , for W1. A concrete procedure is as fol-
lows: Firstly, choose a group of basis vectors ii,...,&l
for (-F1 -R1) Then expand them to 4,... ,
T,I±1,.. ,&T2,1, which form a basis for (-F1 R1) +
(-F2 R2) Continuing this process, one can find
a basis 41l,T T11±T , ,IT2,11 * I*Tj j_11+11
* , T1, , for W1, where T11,1 = di.

2) The choosing process divides the basis vectors
41, ,d, into 11 groups, namely, { 1,.. , (Tj l}:
{T ,±1,*1*.,IT2,1 {.T. llj-1,1±1 ,IT1j} With
respect to each group, one can design a switching sig-
nal. Consequently there are totally 11 switching signals
~1r,1,. , 7Fl ,1 designed for W1.

3) Since Wj C W2, the basis vectors of W1 can be
expanded to i1,. , d1, d±1, ---, d2 which form a
basis of AV2. Because (d,±1, * * * , (d2 belong to W2 \Wl,
(dl+1, - , d2 can be divided into 12 groups of vectors,
namely, {idh+e1, pte, TJ,2ag,ro,2+1u pI*T2,2 one* *

{f7T 2 - 1, 2+ 1, ..

I* ,Tr2, 2 } * With respect to each group, one
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can design a switching signal. Consequently there are
totally 12 switching signals W1,2,**7*12,2 designed for
W2.

4) Repeating the same process as step 3) for A'V,
s = 3, . ,u, one can design i5 switching signals
71,s... I1,s for Ws. Then, one can set 7s = 71,s A
*-- A 1, s.

5) Finally, the desired aperiodic dynamic evolvement pat-
tern 7b can be designed as follows:

7b = 71 A ... A 7Ap
= (71,1 A ... A 71,j) A ... A (7 A ... A 1 )

We refer to [12], [13] for the concrete design process and
expressions of 1,s5,** * ,s 1,s *

A
Let 7hl,... ,hM {(1, hl)... (M, hM)}, hi > O,i

1,... M. One has the following result.

Lemma 4. The multi-agent system (1) is controllable under
switching topology and the leaders XN+j, j = 1,... nl; if
and only if there is a periodic dynamic evolvement pattern
7rAd such thathl,. ,hM

1hl,*-- hm)

Proof: The Theorem 2 in [11] shows that
C (7h... hM)= C. The result then follows from this
fact. M

Clearly, the number of switchings involved in 1rd is
dM. To sum up, we state the following result.

Theorem 2. The multi-agent system (1) is controllable under
switching topology and the leaders XN+j,j = 1,... ,Inl; if
and only if there is a dynamic evolvement pattern 7 such that
C(T) = RN. If 7 is aperiodic, it can be constructively designed
according to 1)-5) with the number of switchings satisfying
(14). If 7 is a periodic one, it can be in the form of 7Fhd... hM
with the number of switchings not more than dM.

Remark 2. Theorem 2 implies that the dynamic evolvement of
switching networks plays an important role in the formation
control of multi-agent systems. It is shown that not only the
controllability can be characterized by the algebraic condition
in Theorem 1, but also the associated dynamic evolvement
pattern can be constructively designed according to Theorem
2. Note that all the results hold under the Assumption 1, which
is much less conservative the condition of connectedness.
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IV. CONCLUSION

In this paper we study the controllability of multi-agent
systems in the framework of leader-follower, in which the
followers are interconnected via nearest neighbor rules, and
the leader takes the role of control input. Necessary and/or
sufficient conditions are derived as well as the dynamic
evolvement patterns are constructively designed for the system
to be controllable. The results show in some sense that the
formation of multi-agent systems could be greatly affected by
the evolution of dynamic interconnection topologies.
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