
Development of a Comprehensive Software System

for Implementing Cooperative Control of Multiple

Unmanned Aerial Vehicles

Xiangxu Dong, Ben M. Chen, Guowei Cai, Hai Lin, Tong H. Lee

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576

Email: {dong07, bmchen, elelh, eleleeth}@nus.edu.sg

Abstract—In this work, we focus on establishing a framework
and developing a comprehensive real-time software platform
for verifying and realizing flight coordination among multiple
unmanned aerial vehicles (UAVs). The framework is capable of
providing flexible architecture for design of cooperative control
laws. The overall software platform incorporates the onboard
real-time software for UAVs and that for the ground control
station. It employs a distributed architecture to facilitate the
deployment of experiments with multiple unmanned vehicles,
efficient monitoring and commanding the UAVs from the ground
station. The system has been successfully tested in the hardware-
in-the-loop simulation and in actual flight formation experiment
involving multiple UAVs.

I. INTRODUCTION

In recent years, more research efforts have been focused

on the development of cooperative behaviors among multiple

unmanned aerial vehicles in both military and civilian applica-

tions. The multiple vehicles possess more powerful capability

when executing certain tasks in a cooperative way than in

the single UAV. The potential application scenarios may in-

clude urban collaborative surveillance, geographic mapping,

mobile sensor network, emergent rescue and fire detection,

etc. However, all these scenarios propose critical requirements

for the real time software system design. Due to the real-

time nature of these tasks, all tasks must be finished within

a predetermined specifiable time boundary with an acceptable

quality of service (QoS), and possibly in a distributed approach

in a multi-agent systems (MAS). Hence, the software design

plays a critical role in the overall system performance. The

architectures of communication, control and sensing are the

three main principle aspects of the cooperative multi-agent

systems [6].

Many UAV research groups have developed their own MAS

system platforms. In [2], the authors develop the software

architecture based on the Server-Client with inter-process

communication and synchronization mechanisms. Also in [3],

the authors propose to use a Datahub to resolve the issue

of data consistency and inter-process messaging. Similarly,

the use of Datahub can also be found in [4]. In the MIT

group, the platform is more complex as their hardware-in-

the-loop configuration consists of up to eight aircrafts and a

cluster of planning CPUs as well. There are also other valuable

platforms worldwide focusing on the coordinate control of a

fleet of UAVs. However, the design of achieving modularity

and efficiency of the overall software system is a nontrivial

task.

This paper first describes the overall system architecture for

coordination and control in Section II. Section III gives a de-

tailed description of software architecture for both distributed

onboard systems and the ground control station (GCS). Section

IV presents the formation flight results of two UAVs both in

indoor simulation and outdoor tests, with conclusions given in

section V.

II. SYSTEMS OVERALL ARCHITECTURE

A. Introduction

The overall scenario of cooperative control and coordination

of multiple UAVs is shown in Fig. 1. Our current aim is to

develop a distributed real-time multi-agent systems which can

accomplish a task in a real-time, distributed and cooperative

approach. All UAVs are primarily identical both in the configu-

ration of hardware and software. And in coordinated scenarios,

such as in cooperative formation control application, one can

be assigned as a leader while the other two are assigned

as two followers. The ground station has the capabilities

of monitoring and controlling all the UAVs simultaneously.

All the flight information of individual UAV and cooperated

behaviors status (such as flight path, communication activities)

are available for the ground operator. Besides, the ground

operator can send commands to control one individual UAV or

broadcast commands to the fleet to execute a cooperative fleet

behavior. With such systems, the user specifies a task and all

the entities of this infrastructure will finish the assigned task

in an intelligent, distributed and cooperative manner.

B. Architecture of Coordination and Control

The architecture of the coordination and control for multiple

UAVs determines the overall performance of the system, such

as efficiency, stability, scalability, modularity and etc. Thus,

the coordinate architecture should be organized in hierarchical

layers to accommodate requirements as much as possible.

There are three abstract layers. The highest layer coordinates

the dynamic transitions from one state to another in the overall

coordination task. For example, in the formation flight, all the

UAVs will first finish the rendezvous action before being ready

2009 IEEE International Conference on Control and Automation
Christchurch, New Zealand, December 9-11, 2009

FrAT3.6

978-1-4244-4707-7/09/$25.00 ©2009 IEEE 1629

Fig. 1. Scenario of multi-UAV systems.

for the following formation flight task. The next abstract layer

is for coordination task dispatch based on the coordination

mechanism: to assign the proper task to the corresponding

UAV. The bottom level is to realize full automatic control

based on its assigned task. The idea of the adopted architecture

for our application-oriented project comes from [1]. Fig. 2

illustrates the block diagrams of the proposed architecture in

our multiple-UAV system. In this architecture, Si represents

the dynamic model of the ith UAV, with the control input

vector ui and the measurable output vector yi.

The higher layer of the local UAV is the coordinator C.

It receives coordinate performance input vector from all or

selected UAVs, then process and encapsulate the performance

evaluation result vector zC to the top layer according to the

coordination mechanism. And it will adjust its coordination

mechanism based on the performance feedback yG from top

layer. The output of coordinator ξi behaves as the interaction

between the local UAV and the global team and can be

broadcast or multicast to the UAV team. In the case of leader-

follower based formation flight, the information of the leader

is the coordination mechanism. In other words, the coordinator

will dispatch the tasks to each follower based on the leader

information update. The system G locating at the highest

level is a discrete-event system, which acts as a supervisor

to regulate the performance of coordination for the multiple-

UAV system.

C. Information Architecture

The information architecture in the coordination system

plays the role of broadcasting or multicasting the coordina-

tion information to the UAVs. The information flow includes

communication data, control data and coordination data.

1) Centralized Architecture: With centralized network ar-

chitecture, all the information of the UAVs are sent back to

a central node and processed at this node (such as GCS).

This approach can reach global optimization with the cost

of burdening the central node both in communication and

processing, while there is no information exchange among the

UAVs. All the information exchange is buffered and trans-

mitted via the central node, GCS. This information exchange

Fig. 2. Architecture for coordinated control among multiple UAVs.

architecture is applicable to the situation where coordination

information flow is less or the central node has powerful

processing unit. In addition, the centralized form facilitate the

information consistency and ease for tracking and analyzing

the performance of coordination and control.

2) Decentralized Architecture: With decentralized architec-

ture, each UAV node shares the information of its neighbor-

hood nodes. Thus the global coordinate behaviors can be sub-

optimal instead of global optimal if the number of UAVs is

large. On the other side, with this distributed architecture,

the overall coordinate system is more robust and scalable

than that with the centralized architecture in case of node

lost and information topology change. In this architecture, the

information exchange only happens among peer nodes where

coordinate behaviors are accomplished. In this architecture,

the GCS plays the role of only monitoring the flight status of

all the UAVs without participation in the coordination of the

cooperative behavior.

3) Hybrid Architecture: With hybrid architecture, the over-

all multi-agent systems consist of both decentralized and

centralized architectures to achieve a trade off in the global

performance as well as local burden in communication and

computing. In the initial development of coordinate behaviors,

the GCS acts as the central node to assist the fulfillment

of cooperative behavior while the coordination information

exchange is realized in the decentralized approach. Also, with

the assistance from the GCS in the coordination procedure, the

coordination status of the team can be reflected in real-time

in the GCS for monitoring and analysis.

III. SOFTWARE DEVELOPMENT

A. UAV Onboard System

The current fully developed helicopters in our research team

at the National University of Singapore are named HeLion

and SheLion, respectively. Both of them have realized full

envelop automatic flight, including automatic vertical take off

and landing, path tracking and vision-based tracking. The

onboard system is composed of a PC/104 computer stack, an

1630

inertial measurement unit (IMU), a data acquisition board, a

sonar chip, a wi-fi card, a wireless communication module and

servo drivers [5]. Our developed helicopter is shown in Fig. 3.

Fig. 3. Raptor 90 helicopter.

1) Onboard System Tasks and Architecture: For real-time

systems, the one-process-multiple-tasks (threads) architecture

can accommodate most real-time applications with reasonable

real-time performance. For the onboard system, we have

peripheral hardwares such as wireless transceivers, wi-fi card,

inertial measurement unit, data acquisition board and servos.

To realize coordinate control, the block of supervisor and

coordinator and the control block are also defined as subtasks

onboard. The hierarchical architecture of onboard tasks com-

posed of five layers is illustrated in Fig. 4.

Fig. 4. Architecture of onboard tasks.

The communication module realizes the information ex-

change among UAVs and status data feedback to GCS. And

information exchange among UAVs can be selected as cen-

tralized or decentralized. Also the communication block can

respond to user commands to perform tasks. The commands

received by the communication block is parsed and dispatched

into the corresponding behaviors with the properly designed

control law. The communication module incorporates the

mechanisms of both serial wireless and the wi-fi. Furthermore,

the wi-fi is implemented in a client-server architecture, where

client task is mainly for sending query coordination data and

server task is mainly for sending replied coordination data.

The following onboard data flow comes from the output

measurement which consists of IMU and data acquisition

board (DAQ). The measurable output includes position, veloc-

ity, attitude from IMU, and rotor rpm, sonar height readings

from DAQ. Since the altitude from GPS has a relative large

error, the sonar is used to obtain accurate height data to assist

height control such as take-off and landing. On the other hand,

to facilitate indoor simulation, another simulation block is

developed to substitute the measurement output from IMU.

The simulation is based on the UAV model derived in the

procedure of system identification.

The supervisor and coordinator are employed to combine

the data received from the communication block (such as

coordination variable and flight status of other UAVs) and

itself status to derive the coordination behavior according to

the identity of the UAV. For example, in a centralized form

of formation flight, the supervisor in the leader determines the

state transition based on the input from its coordinator. In the

followers, the coordinator will receive the task assigned by the

leader while the supervisor does nothing.

With the updated status and dispatched coordinate behavior,

the control system block will be activated to derive the control

signal output for the execution block.

The execution block refers to the servo driving. It will

feed the output of controller to the servos (including aileron,

elevator, auxiliary and rudder) to drive the surface deflections

to the desired positions. And the correct behaviors will be

executed such as fly forward, hover, head turning and etc.

2) Onboard Task Management: The onboard system on

each UAV is the primary component to realize distributed,

cooperative behavior. It consists of the following tasks: sensor

information retrieval, cooperative information processing, con-

trol algorithms computation, servo driving execution, coordi-

nation and control, client and server, wireless communication

and data logging. The onboard tasks run in a multi-thread man-

ner and task thread architecture is shown in Fig. 4. The task

sequences are executed in the following order: IMU and DAQ

are executed first to retrieve the sensor information, then SVR

receives the coordination data, then CTL algorithms including

coordination and supervision are calculated, and the output

control signals are dispatched to the servos SVO, followed by

data communication CMM and CLT and data logging DLG.

The execution of all the task threads are managed by the

onboard main program. The overall tasks are coordinated to

run like a lotus one by one. The onboard real-time system

is implemented on the QNX Neutrino RTOS 6.3.2, which

suits for the embedded real-time applications. It provides

multitasking, threads, priority-driven preemptive scheduling,

1631

Fig. 5. Onboard task management.

Fig. 6. The architecture of the control system.

and fast context-switching [8]. The task management is shown

in Fig. 5.

We verify our software system in the formation flight

cooperative scenario. Cooperative formation flight control is

implemented based on the behavior-based control architecture

on each UAV. The control architecture has two parts, the

task scheduling and the control system. The task scheduling

is to generate a sequence of behaviors from user commands

and environment information, while the control system is for

executions of behaviors. Interested reader may find details in

[7]. The overall control architecture is shown in Fig. 6. It is

composed of two parts: the outer-loop controller and the inner-

loop controller. The inner-loop is to realize stable attitude

control and outer-loop is to provide velocity reference signals

for inner-loop to realize trajectory tracking. Therefore, for the

control of formation flight, the outer-loop can be regarded as a

reference path generator. The task of the inner-loop controller

is to follow the output of the outer-loop controller.

B. Ground Control Station

In this multiple-UAV system, the GCS is capable of mon-

itoring and commanding one individual UAV or the fleet of

UAVs. In the flight tests, the status information of all the UAVs

are transferred to the GCS and displayed in the GCS. The

flight status are shown in different visual perspectives. One

great feature of the GCS is that the cooperative paths of the

fleet can be demonstrated in a Google Map view.

The software system on the GCS is realized with MFC

(Microsoft Foundation Class) in a laptop with the Windows

XP Professional operating system. The overall architecture is

realized via the MDI (Multiple Document Interface) approach,

as shown in Fig. 7. We integrate several visual perspectives

for the demonstration of flight status data from multiple UAVs.

The document class is for the management of data sending and

receiving, and periodic update of all the views consisting of

status view, command window, gauge view, curve view and

Google Map waypoint view.

The GCS is composed of background tasks and foreground

tasks. The background layer has mainly two tasks, receiving

flight status from and sending commands to multiple UAVs,

both of which interact with the UAV onboard CMM task.

The receiving thread accepts all the data from the fleet of

UAVs, and identify each status data via the telegraph packet

header. Consequently, the corresponding multiple display in

the foreground layer is executed, and the cooperative way-

points of the paths are demonstrated. Similarly, the upload

link can broadcast the commands to all UAVs, or alternatively

send command to a specific UAV, both via the sending task.

The global data are dynamically updated from the background

layer.

Specifically, based on our previous development for sin-

gle UAV, we incorporate the Google Map view to better

demonstrate the cooperative behaviors of the fleet of multiple

UAVs. We capture the map from Google Earth where we will

conduct outdoor flight test and record the GPS data on the

corners of the map. In the flight test, the GPS signal from the

onboard system will keep updated on the global shared data

and the cooperative paths of multiple UAVs are displayed on

the Google Map waypoint view. For indoor flight test, since

the GPS signal is not available, we utilize the relative position

information to simulate this functionality in the Google Map

view.

IV. RESULTS OF INDOOR SIMULATION AND OUTDOOR

FLIGHT TEST

A. Indoor Simulation

Indoor simulation is useful to test the overall behaviors

of both onboard systems and the GCS. With a built-in UAV

model, we can conduct the hardware-in-the-loop simulation.

In such simulation, the interactions among multiple UAVs

and GCS and precautions under different failure situations are

tested so that we can guarantee the UAV can render predictable

performances in the outdoor flight.

1) Simulation Scenario: In the formation flight, the leader

is commanded to perform a predefined path tracking, and

the task of the follower is to follow the leader with a 10

m distance offset in the axis of longitudinal and lateral in

the coordinate of the leader. In this two-UAV cooperative

situation, HeLion is assigned as the leader, while SheLion is

the follower. The final overall formation flight scenario with

1632

Fig. 7. Architecture of the ground control station.

a circle path is demonstrated in Fig. 8, where L0 and F0 are

the initial reference rendezvous positions for the leader and

the follower respectively. The points Li (i = 1, 2, ...,N) refer

to the predefined trajectory for the leader, and the points Fi

(i = 1, 2, ..., N) refer to the reference points that the follower

receives from the coordinator of the GCS.

Fig. 8. Leader-follower circle formation scenario.

2) Simulation Results: In the simulation, the initial starting

point of the leader and follower can be determined on the

Google Map. And the information exchange frequency is set to

2 updates per second in the GCS. In this simulation, the leader

is commanded to perform a circle path tracking with a radius

of 10 m with an average velocity of 1 m/s. The simulation

results in the GCS can be seen in Fig. 9.

In addition, Fig. 10 and Fig. 11 show the performance of

the formation flight. It is obvious that in Fig. 10, the follower

Fig. 9. Leader-follower formation in the GCS.

tracks the reference path given from the GCS correctly and

timely. The tracking error between the trajectory of the fol-

lower and its reference is due to the inherent delay in tracking

control. Another point is that since the distance between the

leader and the follower is less than the required distance at

first, the follower performs a rendezvous task such that two

UAVs are ready for the formation task. On the other hand, the

heading angle tracking is quite accurate despite the delay.

B. Outdoor Flight Test Results

In the outdoor flight, we conduct the line path based

formation flight at first. In this scenario, the leader performs

a 30 m line path tracking with an average velocity of 1 m/s.

And the separation distance is set to 15 m for safety. The flight

test is shown in Fig. 12 and Fig. 13.

It can be seen that the basic line path formation flight

is achieved with our developed software system. It should

be noted that the small fluctuations in the yaw angle

comes from the inherent inaccuracy in the inertial naviga-

1633

−30 −20 −10 0 10 20 30
−20

−10

0

10

20

30

40

x (m)

y
 (

m
)

x−y plane of formation flight

Leader

Follower

Follower reference

Fig. 10. Leader-follower in a circle formation - trajectory.

40 60 80 100 120 140 160
−4

−3

−2

−1

0

1

2

3

4

y
a
w

 a
n
g
le

 (
ra

d
/s

)

time (s)

Yaw angle

Leader

Follower

Follower’s reference

Fig. 11. Leader-follower in a circle formation - heading angle.

−30 −25 −20 −15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20

25

x(m)

y
(m

)

x−y plane

Leader

Follower

Follower reference

Fig. 12. Leader-follower in a line formation - trajectory.

tion system. Interested readers may visit our video link at:

http://uav.ece.nus.edu.sg/∼uav/videos.htm.

V. CONCLUSION

The onboard software architecture fulfills the need of real-

izing real-time cooperative behaviors among multiple UAVs.

290 300 310 320 330 340 350 360 370 380
−2.64

−2.62

−2.6

−2.58

−2.56

−2.54

−2.52

−2.5

time(s)

Y
a

w
 a

n
g

le
(r

a
d

/s
)

Yaw angle

Leader

Follower

Follower reference

Fig. 13. Leader-follower in a line formation - heading angle.

In addition, the ground control station also meets the need

of monitoring and commanding multiple UAVs. Finally, sim-

ulation of leader follower based formation is given and the

outdoor experiments are performed to further verify our system

performance. The software system is proved to be efficient to

fulfill the real-time requirements in the multiple-UAV system.

Our future work includes the formation flight with automatic

take off and landing, split and merge in case of obstacles and

performance enhancement. One possible approach is to deploy

the differential GPS (DGPS) to obtain more accurate position

and heading angle data.

REFERENCES

[1] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination architecture

for spacecraft formation control,” IEEE Transactions on Control Systems
Technology, vol. 9, no. 6, pp. 777 C 790, Nov. 2001.

[2] J. S. Jang and C. J. Tomlin, “Design and implementation of a low

cost, hierarchical and modular avionics – architecture for the Dragonfly
UAVs,” Proceedings of AIAA Guidance, Navigation, and Control Con-

ference, Monterey, California, pp. 4465-4477, 2002.

[3] J. Tisdale, A. Ryan, M. Zennaro etc. “The software architecture of the
Berkeley UAV platform,” Proceedings of the 2006 IEEE International

Conference on Control Applications, Munich, Germany, 2006.
[4] J. How, E. King and Y. Kuwata,“Flight demonstrations of cooperative

control for UAV teams,” Proceedings of the 3rd AIAA Unmanned

Unlimited Technical Conference, Workshop and Exhibit, Chicago, IL,
2004.

[5] G. Cai, K. Peng, B. M. Chen,and T. H. Lee, “Design and Assembling

of a UAV Helicopter System,” Proceedings of the 5th International

Conference on Control & Automation, Budapest, Hungary, pp. 697-702,
2005.

[6] B. D. O. Anderson, C. Yu and F. Baris, “Information Architecture and
Control Design for Rigid Formations,” Proceedings of the 26th Chinese

Control Conference, Zhangjiajie, China, 2007.
[7] M. Dong, B. M. Chen, G. Cai and K. Peng, “Development of a Real-time

Onboard and Ground Station Software System for UAV Helicopter”,

Journal of Aerospace Computing, Information and Communication, Vol.
4, pp. 933-955, 2007.

[8] QNX Neutrino RTOS v6.3, System Architecture, Sixth Edition, QNX

Software Systems Corporation.
[9] A. Attoui, Real-Time and Multi-Agent Systems, Springer, New York,

2000.

1634

