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Abstract— This paper focuses on the controllability of multi-
agent systems with tree topology. The connection on control-
lability/uncontrollability between a single leader and multiple
leaders is revealed, as well as the relationship between control-
lability and the common eigenvalues of components is analyzed.
After that, a constructive approach is outlined to find out var-
ious uncontrollable subgraphs when the whole interconnection
tree graph is uncontrollable, and a necessary and sufficient
condition is presented for multi-agent controllability with tree
topology.

I. INTRODUCTION

The distributed coordination and control of multi-agent
networked systems has recently received considerable atten-
tion, see e.g., [1], [2], [3], [4], [5]. Since communications
between agents are essential for the coordination and co-
operation among agents, the characterization of properties
of multi-agent systems relies heavily on the interconnection
topology structure of the graph associated with the network.
This motives the study of controllable/uncontrollable inter-
connection topologies for multi-agent systems in the paper.

Controllability is a crucial concept in classical control.
Multi-agent controllability problem was first proposed by
Tanner in [6], where necessary and sufficient algebraic con-
ditions were derived. He also pointed out that the building of
controllable interconnection topologies calls for a graph the-
oretic characterization of the controllability property. From
then on, the controllability study of multi-agent networks
aroused more and more attention. In [7], [8], [9], [10], the
relationship between symmetric structure of the network and
the controllability of the corresponding multi-agent systems
was explored, as well as algebraic conditions on control-
lability in terms of, e.g., eigenvalues. Controllability under
switching topology and time-delay was studied in [11], [12],
[13], and uncontrollable topology structures and graph theo-
retic properties were given in [14], [15]. Recently, a control-
lability decomposition through quotient graphs was presented
by Martini, Egerstedt and Bicchi [16]. The controllability
and observability of several interconnection configurations
were analyzed in [17]. The structural controllability and
higher order integrator agents controllability were studied
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in [18] and [19], respectively. The controllability of state-
dependent dynamic graphs and the observability of networks
were investigated in [20][21].

Inspired by these works, we study multi-agent controllabil-
ity problem for tree interconnection topology. The problem
is analyzed under leader-follower framework. Necessary and
sufficient conditions are derived from the viewpoint of both
leaders role and the common eigenvalues of components.
To further examine the structural properties of tree topology
with respect to controllability, we present a partition of tree
graph by taking advantage of the eigenvector property of
trees. It turns out that uncontrollable subgraphs could be
found out via several designed steps. Finally, a necessary and
sufficient condition is derived for multi-agent controllability
with tree interconnection graph.

II. PRELIMINARIES

A. Graph preliminaries

We denote by G = (V, ℰ) an undirected graph, with V =
{v1, ⋅ ⋅ ⋅ , vn} being the node set and ℰ ⊆ V × V the edge
set, where an edge is an unordered pair of distinct nodes of
V. Two nodes vi and vj are neighbors if (vi, vj) ∈ ℰ , and
the neighboring relation is indicated with vj ∼ vi. In this
case we say that vj is incident to vi. Let G = (V, ℰ) and
G′ = (V ′, ℰ ′) be two graphs. We call G′ a subgraph of G
if V ′ ⊆ V and ℰ ′ ⊆ ℰ , and we denote this by G′ ⊆ G. A
subgraph G′ is said to be induced from the original graph G if
it is obtained by deleting a subset of nodes and all the edges
connecting to those nodes. G′ ⊆ G is a spanning subgraph
of G if V ′ = V. An undirected graph is said to be connected
if there exists a path between any two distinct nodes of the
graph. An induced subgraph of an undirected graph, which is
maximal and connected, is said to be a connected component
of the undirected graph. A tree is a connected graph which
contains no circuits.

In association with G, a Laplacian matrix ℒ = (lij) ∈
Rn×n is defined by

lij =

{
−aij , if i ∕= j∑n
j=1,j ∕=i aij , if i = j

(1)

where aij > 0 is a weight if (j, i) ∈ ℰ , and aij = 0 if (j, i) /∈
ℰ . A symmetric real n×n matrix A is said to be a generalized
Laplacian of an undirected graph G if aij < 0 when vi and
vj are adjacent vertices of G and aij = 0 when i and j
are distinct and not adjacent. There are no constraints on the
diagonal entries of A. Clearly, the Laplacian defined in (1) is
a special kind of generalized Laplacian matrix. Throughout
the paper all graphs are assumed to be simple, i.e., graph
without multiple or directed edges, and without loops, and
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all matrices are assumed to be real. The eigenvalues and
eigenvectors of G are, respectively, referred to those of
Laplacian ℒ.

B. Problem formulation

Consider a multi-agent system given by{
ẋi = ui, i = 1, . . . , N

ẋN+j = uN+j , j = 1, . . . , l
(2)

where xi is the state of the ith agent; N and l are the number
of followers and leaders, respectively, i = 1, ⋅ ⋅ ⋅ , N + l.

Definition 1: [6] The interconnection graph, G = {V, ℰ},
is an undirected graph consisting of a set of nodes, V =
{v1, . . . , vN , vN+1, . . . , vN+l}, indexed by the agents in the
group; and a set of edges, ℰ = {(vi, vj) ∈ V × V∣ vi ∼
vj}, containing unordered pairs of nodes that correspond to
interconnected agents.

The topology of an interconnection graph G is said to
be fixed if each node of G has a fixed neighbor set. Let
Ni = {j ∣ vi ∼ vj ; j ∕= i}, which is the neighboring set of
vi; and define the protocol as follows:

ui = −
∑
j∈Ni

aij(xi − xj). (3)

Take xN+1, ⋅ ⋅ ⋅ , xN+l to play leaders role, and rename the
agents as {

yi
Δ
=xi, i = 1, . . . , N ;

zj
Δ
=xN+j , j = 1, . . . , l.

Let y, z and u denote the stack vectors of all yi, zj , and
uN+j , respectively, i = 1, ⋅ ⋅ ⋅ , N ; j = 1, . . . , l. In this
leader-follower framework, the leaders’ neighbors still obey
(3), but the leaders are free of such a constraint and are
allowed to pick uN+j arbitrarily, j = 1, . . . , l. Then, under
protocol (3), the multi-agent system (2) reads[

ẏ
ż

]
= −

[
ℱ ℛ
0 0

] [
y
z

]
+

[
0
u

]
,

where ℱ is the matrix obtained from the Laplacian matrix ℒ
of G after deleting the last l rows and l columns.ℛ is the N×
l submatrix consisting of the first N elements of the deleted
columns. The dynamics of the followers that correspond to
the y component of the equation is extracted as

ẏ = −ℱy −ℛz. (4)

Definition 2: The multi-agent system (2) is said to be
controllable under leaders xN+j , j = 1, . . . , l, and fixed
topology if system (4) is controllable under control input
z. Otherwise, it is said to be uncontrollable.

III. MAIN RESULTS

Lemma 1: (Lemma 2.2, [8]) Suppose the interconnection
graph G is connected, the multi-agent system (2) is control-
lable if and only if ℒ and ℱ do not share any common
eigenvalues.

Lemma 2: [14] The multi-agent system with (undirected)
weighted interconnection graphs is controllable if and only

if there is no eigenvector of Laplacian matrix ℒ taking 0 on
the elements corresponding to the leaders.

The following notations are borrowed from [22]. If � ⊆
{1, ⋅ ⋅ ⋅ , N + l} is an index set of agents, we denote the
principal submatrix of A resulting from deletion (retention)
of the rows and columns � by A(�)(A[�]). If � consists of
a single index i, the A({i}) is abbreviated to A(i). We see
that A(v) corresponds to the subgraph T − v of T . Here, T
represents a tree graph. Let mA(�) denotes the multiplicity
of an eigenvalue � of A. If mA(i)(�) = mA(�)+1, the vertex
i in T is said to be a Parter vertex for an eigenvalue � and a
Hermitian matrix A whose graph is T . A collection � ⊆ N
is said to be a Parter set when mA(�)(�) = mA(�) + ∣�∣.

Lemma 3: (Theorem 14, [22]) Let A be a Hermitian
matrix whose graph is a tree T and let � be an eigenvalue
of A. Then, there is a vertex v of T such that A and A(v)
share a common eigenvalue � if and only if there is a Parter
set S of cardinality k ≥ 1 such that � is an eigenvalue of
mA(�) + k direct summands of A(S).

Proposition 1: For a multi-agent system with tree inter-
connection graph T , the following conclusions hold:
(i) the system is uncontrollable under a single leader if and

only if there exist a group of vertices v1, ⋅ ⋅ ⋅ , vk, such
that the system is uncontrollable if v1, ⋅ ⋅ ⋅ , vk are taken
to play the leaders role.

(ii) the system is uncontrollable if and only if there exist
a group of vertices v1, ⋅ ⋅ ⋅ , vk, and an eigenvalue � of
ℒ, so that mℒ(�)+k components of T −{v1, ⋅ ⋅ ⋅ , vk}
share � as a common eigenvalue.
Proof: Part I: The Laplacian ℒ of a tree T is a

Hermitian matrix whose graph is a tree. By Lemma 1, the
multi-agent system is uncontrollable under the single leader
v if and only if ℒ and ℒ(v) share a common eigenvalue �.
By Lemma 3, ℒ and ℒ(v) share a common eigenvalue �
if and only if there is a Parter set S of cardinality k ≥ 1
such that � is an eigenvalue of mℒ(�)+ k direct summands
of ℒ(S). Since each direct summand of ℒ(S) corresponds
to a component of T − S, � is a common eigenvalue of
mℒ(�)+k components of T −S. Accordingly, � is a multiple
eigenvalue of ℒ(S) with multiplicity not less than mℒ(�)+k.
Suppose the Parter set S consists of vertices v1, ⋅ ⋅ ⋅ , vk. It
follows that ℒ and ℒ(v1, ⋅ ⋅ ⋅ , vk) share a common eigenvalue
�. Again, by Lemma 1, the system is uncontrollable under
leaders v1, ⋅ ⋅ ⋅ , vk.

For the converse, suppose the system is uncontrol-
lable under leaders v1, ⋅ ⋅ ⋅ , vk. By Lemma 2, there is
an eigenvector y associated with an eigenvalue � of ℒ,
and the eigenvector can be written in the form of y =
[y1, ⋅ ⋅ ⋅ , yN+l−k, 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸

k

]T . It follows from ℒy = �y and

the specific form of y that � is also an eigenvalue of ℒ(vi)
for any i ∈ {1, ⋅ ⋅ ⋅ , k}. Then ℒ and ℒ(vi) share a common
eigenvalue �. By Lemma 1, the system is uncontrollable
under any single leader vi, i = 1, ⋅ ⋅ ⋅ , k. The assertion then
follows from the above arguments.

Part II: In view of the above arguments, if the system is
uncontrollable, take an arbitrary leader agent v, the system
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is still uncontrollable under the single leader v. By Lemma
1, ℒ and ℒ(v) share a common eigenvalue. The conclusion
then follows by combining Lemmas 3, 1 with the arguments
for the proof of the first part.

Leader-follower induced partition: Let Gc1 , . . . , Gc
 be the

 connected components of the follower subgraph Gf , with
Gci on the node set {vni−1+1, . . . , vni}, i = 1, . . . , 
; n0 =
0, n
 = N ; and Gl on the node set Vl = {vN+1, . . . , vN+l}.
Denote by G(i) an induced subgraph of G, which is on the
node set {vni−1+1, . . . , vni , vN+1, . . . , vN+l}. That is, the
node set of G(i) is the union of those of Gci and Gl. Then,
G(1), ⋅ ⋅ ⋅ ,G(
) are considered to constitute a ‘partition’
of G in the sense that G is partitioned into 
 induced
subgraphs G(1), ⋅ ⋅ ⋅ ,G(
), with each one having the same
leader subgraph Gl and the union of them coincides with G.

With this ‘partition’ of interconnection graph G, the Lapla-
cian matrix can be written in the form of

ℒ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℱ1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ℛ1

0 ℱ2
. . .

...
...

...
. . . . . . . . .

...
...

...
. . . ℱ
−1 0

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ℱ
 ℛ

ℛT1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℛT
 ℒ
+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

where ℱi and the matrix pair (ℱi,ℒ
+1) correspond to Gci ,
and G(i), respectively.

Lemma 4: [15] If multi-agent system (2) with fixed topol-
ogy is controllable, then the interconnection graph is leader-
follower connected, and each subgraph G(i) is controllable,
where i ∈ {1, . . . , 
}; 
 is the number of connected
components in Gf .

For a tree interconnection graph T , we introduce the
following partition.

Vanishing coordinates induced partition: Let Z be the set
of all vanishing coordinates of an eigenvector. Take subgraph
on Z to be the leader subgraph and T − Z to be the
follower subgraph. Let Tc1 , ⋅ ⋅ ⋅ , Tc� be the components of
T −Z. Then subgraphs T (1), ⋅ ⋅ ⋅ , T (�) can be defined in the
same way as G(1), ⋅ ⋅ ⋅ ,G(
) in the leader-follower related
partition. We see that T (1), ⋅ ⋅ ⋅ , T (�) can be considered
to constitute another ‘partition’ for the tree interconnection
graph T .

Let v be an arbitrary vertex in Z. Then either v is incident
to a vertex in some Tci , i ∈ {1, ⋅ ⋅ ⋅ , �}; or v is not incident
to any vertex of any Tci . Accordingly, vertices in Z can be
divided into two categories. Denote by Z1 the set of vertices
of the first category, and Z2 the set of second category, i.e.,
vertices in Z which are not incident to any vertex in any Tci .

A vertex v is said to be incident to a subgraph if it is
incident to a vertex in the very subgraph. In this case, we
will also say that the subgraph is incident to the vertex v.
Denote by Z1,i the set of vertices which are incident to the
component Tci . Each Z1,i is not empty since tree graph is
connected. Let T ′ci be the subgraph which is on the vertices
of Tci and Z1,i, i = 1, ⋅ ⋅ ⋅ , �.

Next, we introduce another subgraph with respect to each
fixed vertex vj ∈ Z1. Let T [j] represent the subgraph which
consists of vj itself and all the incident components Tcj of vj ,
j ∈ {1, ⋅ ⋅ ⋅ , �}. By taking advantage of the aforementioned
two kinds of ‘partitions’, these two kinds of subgraphs T [j]

and T ′ci are to be employed to characterize the ‘smaller’
uncontrollable subgraphs once the original interconnection
graph is uncontrollable. The following result contributes to
the understanding of structural property of uncontrollable
graphs.

Theorem 1: For a multi-agent system with tree intercon-
nection graph T , the following assertions hold:
(i) if the system is uncontrollable, then for each vertex

vj ∈ Z1, there is a group of vertices !j,1, ⋅ ⋅ ⋅ , !j,k of
T [j] such that T [j] is uncontrollable if !j,1, ⋅ ⋅ ⋅ , !j,k
are taken to play leaders role.

(ii) if Z1,i ∩ Z1,j = ∅ for some fixed i, where i ∕= j, ∀j ∈
{1, ⋅ ⋅ ⋅ , �}, ∅ is the empty set; then the system is
uncontrollable if and only if the corresponding T ′ci is
uncontrollable with leaders selected from Z1,i.
Proof: Part I: In consideration of clear expression, the

proof is implemented by taking the following five steps.
Step 1: By Lemma 2, if the system is uncontrollable under

l multiple leaders, there is an eigenvector y associated with
an eigenvalue � of ℒ, which is, without loss of generality,
in the form of y = [y1, ⋅ ⋅ ⋅ , yN , 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸

l

]T . Since Z is the

set of all vanishing coordinates of the eigenvector, y can be
further written as

y = [y1, ⋅ ⋅ ⋅ , y� , 0, ⋅ ⋅ ⋅ , 0︸ ︷︷ ︸
∣Z∣

], (6)

where yi ∕= 0, i = 1, ⋅ ⋅ ⋅ , � ; � Δ
=N + l − ∣Z∣. Let

Tc1 , ⋅ ⋅ ⋅ , Tc� be the components of T − Z. The Laplacian
can be conformably written as

ℒ =

⎡⎢⎢⎢⎢⎢⎢⎣
ℒ1 0 ⋅ ⋅ ⋅ 0 ℛ1

0
. . . . . .

...
...

...
. . . ℒ�−1 0

...
0 ⋅ ⋅ ⋅ 0 ℒ� ℛ�
ℛT1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℛT� ℒ�+1

⎤⎥⎥⎥⎥⎥⎥⎦ , (7)

and the eigenvector can be conformably partitioned as y =
[�T1 , ⋅ ⋅ ⋅ , �T� , 0T ]T , where �i are vectors corresponding to ℒi,
i = 1, ⋅ ⋅ ⋅ , �; and the vector 0 corresponds to ℒ�+1. Then
ℛi is (mi−mi−1)×∣Z∣, where mi−mi−1 is the number of
vertices of Tci . To proceed with the proof, we need to write
out ℛi, which is as follows:

ℛi =

⎡⎢⎣ rmi−1+1,�+1 ⋅ ⋅ ⋅ rmi−1+1,N+l

...
. . .

...
rmi,�+1 ⋅ ⋅ ⋅ rmi,N+l

⎤⎥⎦ , i = 1, ⋅ ⋅ ⋅ , �,

(8)
where m0 = 0,m� = N + l − ∣Z∣. One advantage of this
vanishing coordinates related partition is the property yi ∕= 0
for any i ∈ {1, ⋅ ⋅ ⋅ , �}, which is important for subsequent
derivation.
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Step 2: For the leader agents in Z, they can be divided into
two categories: one is the vertex which is incident to another
vertex in some component Tci , i ∈ {1, ⋅ ⋅ ⋅ , �}; the other is
the vertex which does not belong to the first category.

Let us first consider the leader agents belonging to the
second category. Since the vertices of the second category
are not incident to vertices in any component Tci , the row
vectors corresponding to these vertices in [ℛT1 , ⋅ ⋅ ⋅ ,ℛT� ] are
all zero vectors. For the convenience of statement, we assume
that the vertex set of the second category consists of the
last two vertices vN+l−1, vN+l. The general case can be
proved in the same manner. Then the remaining ∣Z∣ − 2
vertices v�+1, ⋅ ⋅ ⋅ , vN+l−2 constitute the vertex set of the
first category.

Consider ℒ(vN+l−1, vN+l), which corresponds to the
subgraph T − {vN+l−1, vN+l}. The interconnection rela-
tionship (information flow) between components Tci and
the leader agents group remains unchanged from T to
T − {vN+l−1, vN+l}. This is because vN+l−1, vN+l are
vertices of second category which are not incident to vertices
of any component Tci , and accordingly the (N+ l−1)th and
(N+l)th row vectors of [ℛT1 , ⋅ ⋅ ⋅ ,ℛT� ] are both zeroes. This,
together with ℒy = �y and the specific structure of y, yields
that ℒ, ℒ(vN+l), and ℒ(vN+l−1, vN+l) share the common
eigenvalue �.

We see that the removing of vertices of second category
does not affect the components Tc1 , ⋅ ⋅ ⋅ , Tc� of T −Z, as well
as the controllability of the original interconnection graph T .
This is because with respect to the second category vertices,
the corresponding columns associated with these vertices in
[ℛT1 , ⋅ ⋅ ⋅ ,ℛT� ]T are all zero vectors. These zero columns do
not affect the rank of the controllability matrix.

Step 3: We proceed to consider
ℒ(vN+l−2, vN+l−1, vN+l), the information flow
between components Tci and the leader agents in
T − {vN+l−2, vN+l−1, vN+l} is altered, which is different
from that between Tci and the leader agents group in
T − {vN+l−1, vN+l}. More specifically, the removing
of vertex vN+l−2 together with its incident edges in
T − {vN+l−1, vN+l} may bring the following changes for
components:
(i) ‘isolated’ components among Tci occur, i = 1, ⋅ ⋅ ⋅ , �.

In this case, only leader agent vN+l−2 is incident to
a vertex in each of these isolated components in the
original subgraph T − {vN+l−1, vN+l}. So isolated
components occur once vN+l−2 is removed from T −
{vN+l−1, vN+l}. Note that these isolated components
only consist of follower vertices.

(ii) ‘separated’ subtrees occur. Each of these subtrees con-
tains both follower and leader agent vertices. This is
what separated subtree differs from the aforementioned
isolated component. The latter only consists of follower
vertices. In this case, at least two leader vertices are
incident to at least one of vertices in each separated
subtree in the original subgraph T − {vN+l−1, vN+l}.
So the removing of one leader vertex is not enough
to isolate the corresponding component from the leader

agents group.
Note that ‘isolated’ components and ‘separated’ subtrees

may occur simultaneously.
Step 4: Repeat this process, suppose vertices

v�+2, ⋅ ⋅ ⋅ , vN+l−2 are all successively removed
from T − {vN+l−1, vN+l}. We consider T −
{v�+2, ⋅ ⋅ ⋅ , vN+l−2, vN+l−1, vN+l}. At this moment, the
remaining v�+1 is the unique leader, and accordingly only
‘isolated’ components could occur in T −{v�+2, ⋅ ⋅ ⋅ , vN+l}.
To simplify presentation, we assume � = 4, and that the
components corresponding to ℒ1 and ℒ4 are isolated. The
general analysis can be conducted in the same manner. In
this case, ℒ2,ℒ3 and the leader vertex v�+1 constitute a
connected subtree. The principle submatrix of Laplacian ℒ,
which corresponds to T − {v�+2, ⋅ ⋅ ⋅ , vN+l}, is

ℒ(v�+2, ⋅ ⋅ ⋅ , vN+l) =

⎡⎢⎢⎢⎢⎣
ℒ1 0 0 0 0
0 ℒ2 0 0 r2

0 0 ℒ3 0 r3

0 0 0 ℒ4 0
0T rT2 rT3 0T l1,1

⎤⎥⎥⎥⎥⎦ . (9)

Since T − {v�+2, ⋅ ⋅ ⋅ , vN+l} is a subtree and T2, T3 are
components, r2, r3 are vectors with a unique element be-
ing nonzero, respectively. Partition the eigenvector y con-
formably with the Laplacian ℒ in (7) as follows: y =
[ŷT1 , ⋅ ⋅ ⋅ , ŷT� , 0T�+1]

T . Again, it follows from ℒy = �y and
the specific form of y that

ℒ(v�+2, ⋅ ⋅ ⋅ , vN+l)y(v�+2, ⋅ ⋅ ⋅ , vN+l)

=�y(v�+2, ⋅ ⋅ ⋅ , vN+l), (10)

where y(v�+2, ⋅ ⋅ ⋅ , vN+l) = [ŷT1 , ŷ
T
2 , ŷ

T
3 , ŷ

T
4 , 0]

T . Combin-
ing (9) with (10) gives rise to

ℒ[�+1]

⎡⎣ ŷ2

ŷ3

0

⎤⎦ = �

⎡⎣ ŷ2

ŷ3

0

⎤⎦ , (11)

where ℒ[�+1] Δ
=

⎡⎣ ℒ2 0 r2

0 ℒ3 r3

rT2 rT3 l1,1

⎤⎦ . Since ℒi corresponds

to Tci , ℒ[�+1] is a generalized Laplacian of the induced
subgraph on the vertex set union of v�+1, Tc2 , and Tc3 . In
other words, ℒ[�+1] is a generalized Laplacian of the induced
subgraph which consists of the incident components Tc2 , Tc3
of v�+1 and the vertex v�+1 itself.

It follows from (11) that ℒ[�+1] and
[
ℒ2 0
0 ℒ3

]
share

the common eigenvalue � since ŷ2, ŷ3 are both nonzero
vectors. By Lemma 3, there are k vertices, say !1, ⋅ ⋅ ⋅ , !k in
T [�+1], so that � is a common eigenvalue of mℒ[�+1](�)+k
components of T [�+1] − {!1, ⋅ ⋅ ⋅ , !k}. As a consequence,
if !1, ⋅ ⋅ ⋅ , !k are chosen to play leaders role in the subtree
T [�+1], the corresponding Laplacian and the associated sys-
tem matrix share the common eigenvalue �. Moreover, by
Lemma 1, T [�+1] is uncontrollable with !1, ⋅ ⋅ ⋅ , !k being
leaders.

Step 5: As mentioned above, the vertex set of the first
category is {v�+1, ⋅ ⋅ ⋅ , vN+l−2}. With respect to each vertex
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vj in this set, there is a subtree T [j], j = �+1, ⋅ ⋅ ⋅ , N+l−2;
which is obtained by removing, except vj , the other leader
vertices and their incident edges, as well as the isolated
components caused by the removing of vertices in T . Re-
peating Steps 1-4, we see that there is also a group of vertices
!̂1, ⋅ ⋅ ⋅ , !̂k̂ such that T [j] is uncontrollable with !̂1, ⋅ ⋅ ⋅ , !̂k̂
taking leaders role. Accordingly, the first assertion holds.

Part II: (Necessity) Suppose that the system is uncon-
trollable. The proof in Step 1 of the Part I shows that the
Lalacian has an eigenvector y in the form of (6). Recall
that i ∈ {1, ⋅ ⋅ ⋅ , �} is a fixed index. For the simplicity
of presentation, we assume Z1,i consists of vertices, say
v�+1, v�+2, i.e., Z1,i = {v�+1, v�+2}, where � = N+l−∣Z∣.
The same reasonings apply to the general situation. Note that
the Laplacian is

ℒ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℒ1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ℛ1

0
. . . . . .

...
...

...
. . . ℒi

. . .
... ℛi

...
. . . . . . 0

...
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ℒ� ℛ�
ℛT1 ⋅ ⋅ ⋅ ℛTi ⋅ ⋅ ⋅ ℛT� ℒ�+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the eigenvector can be conformably partitioned as y =
[�T1 , ⋅ ⋅ ⋅ , �T� , 0T ]T , with �i being nonzero vectors. It follows
from the definition of Z1,i that the columns ofℛi are all zero
vectors except the first two columns. Since Z1,i ∩ Z1,j = ∅,
i ∕= j,∀j ∈ {1, ⋅ ⋅ ⋅ , �}, v�+1 and v�+2 are not incident
vertices of other components Tcj , j ∕= i, and accordingly
the first two columns of ℛj are all zero vectors, j ∕= i, j ∈
{1, ⋅ ⋅ ⋅ , �}. Recall that ℛi is represented by (8). Then the
first two rows of [ ℛT1 ⋅ ⋅ ⋅ ℛTi ⋅ ⋅ ⋅ ℛT� ] are in the
form of[

0 ⋅ ⋅ ⋅ 0 rmi−1+1,�+1 ⋅ ⋅ ⋅ rmi,�+1 0 ⋅ ⋅ ⋅ 0
0 ⋅ ⋅ ⋅ 0 rmi−1+1,�+2 ⋅ ⋅ ⋅ rmi,�+2 0 ⋅ ⋅ ⋅ 0

]T
(12)

Let

ℛ̂i
Δ
=

⎡⎢⎣ rmi−1+1,�+1 rmi−1+1,�+2

...
...

rmi,�+1 rmi,�+2

⎤⎥⎦ ,
that is, ℛ̂i constitutes of the first two columns of ℛi.
Consider the following submatrix ℒ̂i of ℒ

ℒ̂i
Δ
=

[
ℒi ℛ̂i
ℛ̂Ti ℒ̂�+1

]
, (13)

where ℒ̂�+1 is the submatrix obtained from ℒ�+1 by select-
ing the first two rows and columns of ℒ�+1. It follows from
ℒy = �y and the specific forms of y and the first two rows
of [ ℛT1 ⋅ ⋅ ⋅ ℛTi ⋅ ⋅ ⋅ ℛT� ] in (12) that

ℒ̂i
[
�i
0

]
= �

[
�i
0

]
,ℒi�i = ��i, (14)

that is, ℒ̂i and and ℒi share a common eigenvalue. Since ℒ̂i
is the Laplacian matrix corresponding to T ′ci , by Lemma 1,
T ′ci is uncontrollable.

(Sufficiency) Note that ℒ̂i expressed by (13) is the Lapla-
cian matrix of subtree T ′ci . Suppose T ′ci is uncontrollable
with leaders selected from Z1,i. By Lemma 2, there exists an
eigenvector in the form of [�i, 0]T such that the first equation
of (14) holds.

Since Z1,i∩Z1,j = ∅ for i ∕= j, ∀j ∈ {1, ⋅ ⋅ ⋅ , �}, the other
leader vertices in Z are not incident to Tci . Consequently,
one can always find matrices ℛ̃i and ℒi so that

ℒ̃i
Δ
=

⎡⎢⎣ ℒi ℛ̂i 0

ℛ̂Ti ℒ̂�+1 ℛ̃i
0 ℛ̃Ti ℒi

⎤⎥⎦
constitutes the Laplacian matrix of T (i). Let
�̃

Δ
=[ �Ti , 0, 0 ]T . It follows from (14) that

ℒ̃i�̃ = ��̃.

Since ℒi�i = ��i, ℒ̃i and ℒi share the common eigenvalue
�. Then, by Lemma 1, T (i) is uncontrollable. Moreover, by
Lemma 4, the system is uncontrollable.

In case the leader is single, we assume that the eigenvalues
of ℱ are �1 ≤ ⋅ ⋅ ⋅ ≤ �N , and the eigenvalues of ℒ are
�1 ≤ ⋅ ⋅ ⋅ ≤ �N+1.

Proposition 2: The multi-agent system is controllable un-
der a single leader v if and only if the eigenvalues of ℱ
strictly interlace those of ℒ, i.e., �1 < �1 < �2 < ⋅ ⋅ ⋅ <
�N < �N < �N+1.

Proof: It follows from Cauchy’s interlace theorem that

�1 ≤ �1 ≤ �2 ≤ ⋅ ⋅ ⋅ ≤ �N ≤ �N ≤ �N+1. (15)

By Lemma 1, the system is controllable if and only if ℒ and
ℱ do not share any common eigenvalues. This, together with
(15), gives the result.

Proposition 3: For a multi-agent system with tree inter-
connection graph, if the system is uncontrollable under a
single leader, then
∙ there is a principle submatrix ℱi in (5), which shares a

common eigenvalue with ℒ, and its determinant value
is one, i.e., ∣ℱi∣ = 1, i ∈ {1, ⋅ ⋅ ⋅ , 
}.

∙ for principle submatrices ℒi in (7), each ℒi shares a
common eigenvalue with ℒ, and for each ℒi, ∣ℒi∣ = 1,
i = 1, ⋅ ⋅ ⋅ , �.
Proof: In case of the single leader, Laplacian (5) takes

the form

ℒ =

⎡⎢⎢⎢⎢⎢⎢⎣

ℱ1 0 ⋅ ⋅ ⋅ 0 r1

0
. . . . . .

...
...

...
. . . . . . 0

...
0 ⋅ ⋅ ⋅ 0 ℱ
 r

rT1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ rT
 l1,1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ri are vectors and l1,1 is a scalar. By Lemma 2,
the uncontrollability of the system implies that there is
an eigenvector y associated with an eigenvalue � of ℒ,
which can be partitioned conformably with ℒ in the form of
y = [yT1 , ⋅ ⋅ ⋅ , yT
 , 0]T . Since y is nonzero, it can be assumed
that at least one yi, say y1, is nonzero. Then, ℱ1y1 = �y1
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follows from ℒy = �y, that is, ℒ and ℱ1 share the common
eigenvalue �.

On the other hand, since the interconnection graph is
a tree, each Gci corresponding to ℱi is a subtree and in
each Gci there is only one vertex incident to the leader
vertex vN+1. Accordingly, each ri is an identity vector,
i = 1, ⋅ ⋅ ⋅ , 
. We assume without loss of generality that
the first element of each ri is not zero, i.e., 1. It follows that
ℱi = ℒ(Gci)+E1,1, where ℒ(Gci) is the Laplacian matrix of
Gci , and E1,1 is the matrix whose only nonzero entry is a one
in position (1, 1). Then, ∣ℱi∣ = ∣ℒ(Gci)∣+ ∣ℒ(Gci)11∣, where
ℒ(Gci)11 is the submatrix of ℒ(Gci) obtained by eliminating
its first row and column. Since ∣ℒ(Gci)∣ = 0, and by the
Matrix-Tree Theorem, ∣ℒ(Gci)11∣ = 1, the result follows.

With respect to ℒi in (7), the proofs of Theorem 1
show that the eigenvector y can be partitioned as y =
[ŷT1 , ⋅ ⋅ ⋅ , ŷT� , 0T�+1]

T conformably with ℒ in (7), where each
ŷi is a nonzero vector, i = 1, ⋅ ⋅ ⋅ , �. Then ℒy = �y leads
to ℒiŷi = �ŷi for each i = 1, ⋅ ⋅ ⋅ , �. So each ℒi shares
a common eigenvalue with ℒ. Following the same lines of
arguments as the first assertion, we see that ∣ℒi∣ = 1, for
each i = 1, ⋅ ⋅ ⋅ , �.

IV. CONCLUSIONS

Controllability of multi-agent systems has been given
special attention lately. The multi-agent controllability con-
cept contributes to understanding the mechanisms of ef-
fective leadership for leader agents. Also, it is a signifi-
cant approach for formation control. How the controllabil-
ity/uncontrollability is affected by the interconnection graph
topologies is a central problem to answer. In this paper, we
cope with this problem with respect to tree interconnection
graph. The uncontrollability of the tree graph is studied
via a decomposition of the whole graph. It is shown that
the uncontrollability of the whole graph leads to various
uncontrollable subgraphs. The result is proved via a construc-
tive approach. In addition, the uncontrollability under single
and multiple leaders, as well as the relationship between
controllability and the common eigenvalues of components
are discussed. Also, a necessary and sufficient condition on
controllability is obtained for tree topology. The results add
new understandings to the controllability/uncontrollability of
multi-agent systems from the graphic point of view.
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