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Abstract— This paper studies the mean square stability of a
quantized Markov jump linear system (MJLS) that closes its
feedback path closed over digital networks. It investigates the
effects of the finite constant feedback bit rate on the MJLS’
stability. A lower bound is placed on all constant bit rates which
could stabilize the MJLS. It also provides a sufficient bit rate for
the MJLS, which is shown to be enough to stabilize the system
through constructing an appropriate quantization policy. So it
is possible to stabilize a quantized MJLS at a finite bit rate.
Moreover, it can determine a bit rate range, within which the
minimum bit rate required for stability lies. An example is used
to verify the achieved theoretical results.

I. INTRODUCTION

Markov jump linear systems (MJLS) are often encoun-
tered in telecommunication, manufacturing and transporta-
tion, whose parameters may be abruptly changed according
to a Markov chain [1]. In last few decades, there has been
much research on MJLS [2] [3].

Most results on MJLS are built upon the perfect feedback
assumption, i.e., the transmitted feedback signal is accurately
received. The assumption, however, may be violated when
the feedback path is closed over digital communication
networks [4]. Due to the digital nature of such networks, all
data must be quantized before transmission, which will incur
feedback information error, i.e., quantization error. Then a
question arises, will quantization error destroy the estab-
lished properties of MJLS? As the most important property
of MJLS, stability is the first to check under perturbation
of quantization error. Here we are concerned with mean
square stability (MSS) [2]. Quantization error is determined
by the feedback network’s bit rate (the higher bit rate, the
smaller quantization error). This paper establishes two bit
rate conditions required for MSS of a MJLS, including

• Necessary bit rate condition: For a given MJLS, we
find a lower bound on all constant bit rates which can
guarantee MSS.

• Sufficient bit rate condition: A constant bit rate deter-
mined by the parameters of the given MJLS is shown
to be able to stabilize that MJLS through constructing
appropriate quantization policies.
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With the above two conditions, we can determine a bit rate
range, within which the minimum bit rate to stabilize the
MJLS lie.

Now we briefly review the relevant literature. The quan-
tization literature mainly focuses on the single dynami-
cal system case, i.e., there is no parameter jumping. The
available quantization policies can be categorized into two
groups, static one and dynamic one [5]. Static quantization
policies take a constant quantization range, map each bit to
a specific subset of that range in a fixed (static) manner.
The attraction of static policies is the simplicity of their
coding/decoding schemes[6] [7]. Their main drawback is
that only the ultimate boundedness of the state, instead
of asymptotic stability, can be guaranteed at a finite bit
rate [8][9][10][11]. Compared with static policies, dynamic
quantization policies may choose a time-varying quantization
range and their mapping between the quantization bits and
the subsets of the quantization range can also be time-
varying. Although more complicated, the dynamic policies
can asymptotically stabilize noise-free linear systems at a
finite bit rate [12] [13] . The minimum bit rate to maintain
asymptotic stability is given in [14] [15]. Due to their
efficiency, dynamic quantization polices are chosen in the
present paper.

There are some results on stability of quantized Markov
jump linear systems. In [16] [17], static logarithmic quan-
tization policies are constructed to stabilize the MJLS in
the mean square sense. These policies, however, require an
infinite bit rate (or an infinite number of bits per sample).
In [18], a finite bit rate is needed to stabilize a scalar MJLS
in the moment sense. Moreover, the minimum stabilizing
bit rate is derived in [18]. Some efforts were made in [19]
to extend the results in [18] to the more general multi-
dimensional case. Due to the abrupt parameter switching, the
dynamics of a multi-dimensional MJLS can be much more
complicated than that of a scalar MJLS and the necessary
and sufficient stability condition in [19] is flawed, which
motivated the research in the present paper.

The rest of this paper is organized as follows. Section II
presents the mathematical model of the quantized MJLS and
some assumptions. Section III derives a lower bound on all
bit rates being able to stabilize a MJLS. Section IV finds
a bit rate for a MJLS and proves that rate is enough for
stability through constructing a dynamic quantizer. Section
V concludes this paper with some final remarks.

II. MATHEMATICAL MODELS

This paper focuses on the system in Fig. 1.
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Fig. 1. A quantized Markov Jump Linear System

As shown in Fig. 1, the control plant is a MJLS. Both
the system matrix A(q[k]) ∈ Rn×n and the input B(q[k]) ∈
Rn×m are driven by the mode sequence {q[k]}. Here {q[k]}
is governed by an irreducible homogeneous N -state (q[k] ∈
{q1, q2, · · · , qN}) Markov chain with the probability matrix
T = (tij)N×N (tij = P (q[k +1] = qj |q[k] = i)). x[k] ∈ Rn

is the state at time instant k (= 0, 1, 2, · · ·). x[k] is quantized
into one of 2R symbols, s[k], and sent over the digital
communication network. Note that the fixed length coding is
employed here due to its bandwidth efficiency. It is assumed
that the transmitted symbol s[k] is reliably received with 1-
step delay, i.e., s[k] = s[k−1]. The decoder uses all received
symbols {s[k], s[k − 1], · · · , s[1]} to estimate the state x[k].
The state estimate is denoted as x̂[k], which can also be
viewed as a quantized version of x[k] with the quantization
error

e[k] = x[k] − x̂[k]. (1)

The control input u[k] ∈ Rm is then constructed from x̂[k]
according to a mode-dependent static feedback law u[k] =
K(q[k])x̂[k]. For reference convenience, the system in Fig.
1 is mathematically described as{

x[k + 1] = A(q[k])x[k] + B(q[k])u[k]
u[k] = K(q[k])x̂[k] . (2)

It is assumed that the un-quantized system, i.e., eq. 2 with
x̂[k] = x[k] (e[k] = 0), is mean square stable (MSS) under
the gains K(q[k]), which is expressed as [2]

lim
k→∞

‖x[k]‖2
2 = 0,∀x[0] ∈ Rn, (3)

where ‖·‖2 denotes the Euclidean norm of a vector. It is also
assumed that the mode sequence {q[k]} is known by both the
encoder and the decoder. Our problem is to check whether
eq. 3 still holds under the non-zero quantization error {e[k]}.

For notational simplicity, A(q[k]), B(q[k]) and K(q[k])
are respectively denoted as Ai, Bi and Ki when q[k] = qi

(i = 1, · · · , N ).

III. A NECESSARY BIT RATE CONDITION TO STABILIZE A

QUANTIZED MJLS

In order to establish the necessary bit rate condition, we
need the concept of uncertainty set [12] [14]. At time k,
the controller/decoder cannot know the exact value of the

state x[k]. It just knows that x[k] lies within an uncertainty
set P [k], which is comprised of all possible states generated
from all initial states x[0] ∈ P [0] and the mode sequence
{q[0], · · · , q[k − 1]}, i.e.,

P [k] = {z|z = x[k], x[0] ∈ P [0], {q[0], · · · q[k − 1]}} .

Define the volume of P [k] as

vol(P [k]) =
∫

x∈P [k]

1dx.

Now we study the evolution of vol(P [k]) with the transmis-
sion of s[k] (∈ S = {0, 1, · · · , 2R − 1}). s[k] is generated
by partitioning P [k] into 2R disjoint subsets denoted as
P0[k], P1[k], · · · , P2R−1[k], and mapping each subset to one
symbol among S. With the mapping policy and s[k], the
controller knows which subset x[k] lies in, to say x[k] ∈
Pj [k]. So

vol(P [k + 1])
= vol ({z|z = A(q[k])x[k] + B(q[k])u[k],

x[k] ∈ Pj [k]})
= vol ({z|z = A(q[k])x[k], x[k] ∈ Pj [k]})
= |det(A(q[k]))|vol ({z|z = x[k], x[k] ∈ Pj [k]})
= |det(A(q[k]))|vol(Pj [k]). (4)

Because vol(P [k]) =
∑2R−1

i=0 vol(Pi[k]), we know
maxi vol(Pi[k]) ≥ 1

2R vol(P [k]). Pj [k] can be the subset
with the largest volume, which is combined with eq. 4 to
yield

vol(P [k + 1]) ≥ |det(A(q[k]))|
2R

vol(P [k]). (5)

Define V [k] = n
√

vol(P [k]). Then eq. 5 can be expressed in
terms of V [k] as

V [k + 1] ≥ c(q[k])
2R/n

V [k], (6)

where

c(q[k]) = n
√
|det(A(q[k]))|. (7)

According to the definition of V [k], we can place an upper
bound on V [k] in Lemma 3.1, whose proof is simple and
omitted here.

Lemma 3.1:

V [k] ≤ 2 max
x′[k]∈P [k]

‖x′[k]‖2. (8)

When the quantized MJLS in eq. 2 is mean square stable,
limk→∞ E

[‖x[k]‖2
2

]
= 0 for ∀x[0] ∈ P [0]. Considering eq.

8, we get

lim
k→∞

E
[
(V [k])2

]
= 0. (9)

Because V [k] is nonnegative and satisfies eq. 6, eq. 9 implies
the following scalar MJLS is mean square stable

V ′[k + 1] = c(q[k])V ′[k], (10)

where c(q[k]) is defined in eq. 7. By [20], the mean square
stability of the system in eq. 10 is equivalent to the stability
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of the following matrix S1, i.e., all eigenvalues of S1 lie
within the unit circle.

S1 =
1

22R/n
T ′ × diag([c2

1, c
2
2, · · · , c2

N ]), (11)

where T ′ is the transposition of T and ci = c(qi) (i =
1, · · · , N ).

Based on the above argument, we can place a lower bound
on R, which is necessary for stabilizing eq. 2.

Theorem 3.2: The quantized MJLS in eq. 2 is mean
square stable only if

R >
n

2
log2 (λmax(S)) , (12)

where λmax(·) denotes the maximum eigen-
value magnitude of a matrix, S = T ′ ×
diag

([
n
√|det(A1)|2, n

√|det(A2)|2, · · · , n
√|det(AN )|2

])
.

Remark: Due to the constant bit rate constraint, R has to
be an integer. So eq. 12 is equivalent to

R ≥
⌈n

2
log2 (λmax(S))

⌉
, (13)

where �·� stands for the ceiling operation over a real number.
Remark: The above procedure can be repeated for the r-th
moment stability. Without proof, we write down the neces-
sary bit rate condition that a r-th moment stable quantized
MJLS has to satisfy.

R >
n

r
log2 (λmax(Sr)) , (14)

where

Sr = T ′ × diag
([

n
√
|det(A1)|r , n

√
|det(A2)|r, · · · ,

n
√
|det(AN )|r

])
.

The result in eq. 14 agrees with that of [18] in the scalar
quantized MJLS case.

IV. A SUFFICIENT BIT RATE CONDITION TO STABILIZE A

QUANTIZED MJLS

The last section provides a lower bound on constant bit
rates to stabilize a MJLS. This section will give a bit rate
and show it is enough to stabilize the MJLS. That result
is presented in the following Theorem 4.1 and the rest of
Subsection IV-A is dedicated to its proof. An example is
included in Subsection IV-B to verify the theoretical results.

A. A bit rate to stabilize the quantized MJLS

Theorem 4.1: The quantized MJLS in eq. 2 can be stabi-
lized in the mean square sense if

R ≥ nR0, (15)

where

R0 =
⌈
log2

(
1
2
λmax(S)

)⌉
, (16)

where S = (T ′ ⊗ In2) × diag([|A1| ⊗ |A1|, |A2| ⊗
|A2|, · · · , |AN | ⊗ |AN |]) with |Ai| standing for the element-
wise absolute value of Ai (i = 1, · · · , N ) and ⊗ the
Kronecker product [21].

By Theorem 4.1, we know it is possible to stabilize a
quantized MJLS at a finite bit rate. Furthermore, we can
determine a range, within which the minimum stabilizing bit
rate lies.

Corollary 4.2: Denote by Rmin the minimum constant bit
rate to stabilize the MJLS in eq. 2. Rmin is bounded as
⌈n

2
log2 (λmax(S))

⌉
≤ Rmin ≤ n

⌈
log2

(
1
2
λmax(S)

)⌉
,

where S and S are defined as eq. 12 and 15.
In order to prove Theorem 4.1, we first substitute eq. 1 into
eq. 2 to get

x[k + 1] = (A(q[k]) + K(q[k])B(q[k]))x[k] (17)

+B(q[k])e[k].

By the assumption in Section II, we know the MJLS z[k +
1] = (A(q[k]) + K(q[k])B(q[k])) z[k] is mean square stable.
So the MJLS in eq. 17 (eq. 2) is also mean square stable if

lim
k→∞

‖e[k]‖2
2 = 0. (18)

Next we construct a quantizer (encoder and decoder) to
guarantee eq. 18. In Section III, we defined an uncertainty
set P [k], which comprises of all possible x[k] at time k.
P [k], however, may not have a good shape. We can over-
bound P [k] with a rectangle U [k], which is characterized
by its center zU [k] and its side length vector L[k] =
[L1[k], L2[k], · · · , LN [k]]T . A rectangle with the center of
the origin and the side length L is denoted as rect(L).
Because x[k] ∈ P [k] and P [k] ⊆ U [k],

x[k] ∈ U [k] = zU [k] + rect(L[k]).

We estimate x[k] with the center zU [k] of U [k], i.e., x̂[k] =
zU [k]. So U [k] can be expressed as

U [k] = x̂[k] + rect(L[k]).

The quantization error e[k](= x[k] − x̂[k]) is bounded as

|ei[k]| ≤ 0.5Li[k]. (19)

So the mean square convergence of {e[k]} is implied
by that of {L[k]}. The following quantizer can guarantee
limk→∞ ‖L[k]‖2

2 = 0.
Partition all n sides of U [k] into 2R0 equal parts, which

can be indexed by R0-bit symbols si(i = 1, · · · , n; si =
0, · · · , 2R0 − 1). All n symbols comprises a symbol vector
s = [s1, s2, · · · , sn], which is actually a R-bit (R = nR0)
symbol. After partitioning all sides, we get a modified side
length vector

L̂[k] =
1

2R0
L[k]. (20)

Now the original set U [k] = x̂[k] + rect(L[k]) is partitioned
into 2nR0 smaller subsets Us[k],

Us[k] = x̂s[k] + rect(L̂[k]),

where x̂s[k] = x̂[k] + [xs1 [k], xs2 [k], · · · , xsn [k]]T with
xsi [k] = −2R0+(2si+1)

2R0+1 Li[k] (i = 1, · · · , n). Because U [k]
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is comprised of these 2nR0 smaller subsets and x[k] ∈ U [k],
there must exist s0 such that x[k] ∈ Us0 [k]. Set s[k] =
s0, code s[k] into nR0 bits and send these bits to the
decoder through the network. Due to the reliable network
transmission assumption, the decoder must receive s[k] (with
1 step delay). So the encoder and the decoder agree upon
x[k] ∈ x̂s[k][k] + rect(L̂[k]). Based on the system equation
2, the encoder and decoder update the state set U [k + 1], in
which x[k + 1] lies, as{

L[k + 1] = |A(q[k])|L̂[k]
x̂[k + 1] = A(q[k])x̂s[k][k] + Bu[k]

, (21)

where |A(q[k])| stands for the element-wise absolute value
of A(q[k]) and the control variable is computed as

u[k] = K(q[k])x̂[k]. (22)

The above quantization policy is summarized into the fol-
lowing algorithm.

Algorithm 1: Quantization algorithm:
Encoder/Decoder initialization:
Initialize x̂[0] and L[0] so that x[0] ∈ x̂[0] + rect(L[0]) and
set k = 0.
Encoder Algorithm:

1) Quantize the state x[k] by setting s[k] = s if x[k] ∈
x̂s[k] + rect(L̂[k]).

2) Transmit the quantized symbol s[k].
3) Update ẑ[k + 1] and L[k + 1] by eq. 21 immediately

before time k + 1. Update time index, k = k + 1 and
return to step 1.

Decoder Algorithm:
1) Compute the control variable for time k by eq. 22.
2) Wait for the quantized data, s[k], from the encoder.
3) Update ẑ[k + 1] and L[k + 1] by eq. 21 immediately

before time k + 1. Update time index, k = k + 1 and
return to step 1.

It can be shown that there is no state overflow, which is
presented as

Proposition 4.3: Under Algorithm 1,

x[k] ∈ U [k] = x̂[k] + rect(L[k]),∀k ≥ 0. (23)
Combining eq. 20 and 21, we know

L[k + 1] =
1

2R0
|A(q[k])|L[k]. (24)

The above equation is a standard MJLS. By [20], we get
Proposition 4.4: Under the updating rule in eq. 24,

lim k → ∞‖L[k]‖2
2 = 0 if and only if

R0 > log2
(

1
2
λmax(S)

)
, (25)

where S is defined as eq. 16.
By eq. 17 and 19, we know lim k → ∞‖L[k]‖2

2 = 0 implies
the mean square stability of the original system in eq. 2. So
eq. 15 is enough for stabilizing the MJLS in the mean square
sense. ♦
Remark: Algorithm 1 requires that the initial state x[0] lies
within a known set U [0]. The mean square stability, however,

requires that the initial state x[0] can be any vector in Rn [2].
It is possible that x[0] /∈ U [0]. This issue could be resolved
by the “zoom-out” method in [12], whose main idea is that,
at the beginning of quantization, the encoder and the decoder
find a large enough set which the state fall in.
Remark: For a scalar MJLS (n = 1), it can be seen that the
necessary condition in eq. 13 (eq. 12) is actually the same as
the sufficient condition in eq. 15. So the minimum constant
bit rate R = R0 has been achieved, which agrees with [18].
For multi-dimensional systems, the sufficient condition in eq.
15 usually requires a higher bit rate R than the necessary
condition in 13 (eq. 12). How to narrow the gap between
these two conditions is one of future research directions.

B. An example

Consider an example MJLS with N = 2, n = 2,

A1 =
[

0 1
1.8 −0.3

]
, A2 =

[
0.7 1
1.8 −0.3

]
, B1 =[

1
1

]
, B2 =

[
0
1

]
, K1 =

[ −0.8846 −0.3611
]
,

K2 =
[ −1.8 1.1507

]
and T =

[
0.1 0.9
0.3 0.7

]
. We get

λmax(S) = 1.96. According to Theorem 3.2, we know any
stabilizing R must satisfy

R ≥ 1. (26)

We know λmax(S) = 3.10. So R0 = 1 by eq. 16. According
to Theorem 4.1, we know the quantized MJLS can be
stabilized if

R ≥ nR0 = 2. (27)

So we choose R = 2 (bits/step). 10000 sample paths are
run to compute E

[‖x[k]‖2
2

]
, E

[‖e[k]‖2
2

]
and E

[‖L[k]‖2
2

]
,

which are shown in Fig. 2.
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Fig. 2. Simulations results

From Fig. 2, we observe that

1) E
[‖e[k]‖2

2

]
is not larger than 0.25E

[‖L[k]‖2
2

]
, which

confirms the no-overflow assertion of Proposition 4.3;
2) E

[‖L[k]‖2
2

]
converges to 0 as predicted by Proposition

4.4;
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3) E
[‖x[k]‖2

2

]
converges to 0, which verifies the mean

square stability of the quantized MJLS in eq. 2 of
Theorem 4.1.

By Corollary 4.2, we know the minimum stabilizing bit rate
Rmin satisfies

1 ≤ Rmin ≤ 2.

In this example, we get a very narrow range of Rmin.

V. CONCLUSIONS

In this paper, we investigate the relationship between the
mean square stability and the constant feedback bit rate of a
quantized Markov jump linear system. We propose a lower
bit rate bound, below which stability cannot be achieved.
We also propose a quantization policy and show that policy
can stabilize the system when the feedback bit rate is above
some level. Unfortunately there is a gap between the achieved
necessary and sufficient bit rate conditions (to guarantee the
system’s stability). How to narrow that gap will be one of
future research directions.
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