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a b s t r a c t

In this paper, we investigate the reliable decentralized supervisory control of discrete event systems
(DESs) under the general architecture, where the decision for controllable events is a combination of the
conjunctive and disjunctive fusion rules. By reliable control, we mean that the performance of closed-
loop systems will not be degraded even in the face of possible failures of some local supervisors. The
main contributions are twofold. First, a necessary and sufficient condition for the existence of a k-
reliable decentralized supervisor under the general architecture is presented after introducing notions
of Σ̃uc-controllability and k-reliable Σ̃c-coobservability. Second, a polynomial-time algorithm to verify
the reliable Σ̃c-coobservability of a specification is proposed.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Motivated by the fact that more and more man-made systems
built nowadays are becoming distributed and networked, the de-
centralized framework of discrete event systems (DESs) has at-
tractedmany researchers’ attention (Kumar& Takai, 2007; Liu, Qiu,
Xing, & Fan, 2008; Park & Cho, 2007; Rohloff & Lafortune, 2003).
In particular, Yoo and Lafortune (2002) presented a framework
named the general architecture for decentralized supervisory con-
trol of DESs based on a combination of the conjunctive and disjunc-
tive fusion rules for local decisions. Up to now, this kind of general
architecture has been extensively adopted. For example, Rohloff
and Lafortune (2003) presented a newapproach for safe controllers
synthesis of DESs under the general architecture. Kumar and Takai
(2007) investigated inference-based ambiguitymanagement in de-
centralized decision-making for the general decentralized frame-
work. In Yoo and Lafortune (2004), the decentralized supervisory
control for conditional decisions under the general architecture
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was studied. Park and Cho (2007) dealt with the decentralized con-
trol of DESs with conjunctive and permissive decision structures
under communication delays.
In this paper, the problem of reliable control under the general

decentralized architecture is investigated, and the results in Liu
and Lin (2009) are extended. By reliable supervisory control, we
mean that the performance of a closed-loop system will not
be degraded even in the face of possible failures of some local
supervisors. In fact, the reliable control issue has been considered
for the control of continuous variable systems, stochastic systems,
and switched systems (e.g. Zhang, Guan, & Feng, 2008, and the
references therein). Recently, the reliable control of DESs was also
addressed (Liu & Lin, 2009; Takai & Ushio, 2000, 2003a). In the
view of Takai and Ushio (2000), a decentralized supervisor of a DES
equippedwith n local supervisors is called k-reliable (1 ≤ k ≤ n) if
it achieves the given specification under possible failure of nomore
than n−k local supervisors. A necessary and sufficient condition for
the existence of a k-reliable decentralized supervisor was deduced
in Takai and Ushio (2000), which was then extended to the case
of non-closed marked language specifications in Takai and Ushio
(2003a). We also dealt with reliable decentralized supervisory
control of DESs with communication delays in Liu and Lin (2009).
This paper aims to investigate the following issues for reliable

decentralized supervisory control of DESs under the general
architecture:

Existence problem: Given a specification and a plant equipped
with a number of local supervisors, does there exist a reliable
decentralized supervisor such that it can achieve exactly the
specification under possible failures of some local supervisors?
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Verification problem: If positive, then how to formalize
the verification of the reliable decentralized supervisor with an
efficient algorithm?

To answer these questions, we first introduce the concepts of
Σ̃uc-controllability and k-reliable Σ̃c-coobservability under the
general architecture, and then a necessary and sufficient condition
for the existence of a k-reliable decentralized supervisor is
proposed. We notice that the general architecture for reliable
control is also considered in Takai and Ushio (2003b), but
there exist several distinctive features between our current work
and Takai and Ushio (2003b). First, the definition of a reliable
decentralized supervisor employed here is different from that
defined in Takai andUshio (2003b). Second, in order to characterize
the existence of a reliable decentralized supervisor, we introduce a
new concept, namely k-reliable Σ̃c-coobservability, to describe the
requirement for the controllable events. By contrast, the authors
of Takai and Ushio (2003b) partitioned the controllable event
set into four subsets and defined the corresponding notion of
reliable coobservability over the four subsets. The third difference
is the verification of the reliable decentralized supervisor. In
this paper, a constructive methodology for verifying such a k-
reliable decentralized supervisor is presented, which is based on
the construction of two nondeterministic automata to track the
violation of k-reliable Σ̃c-coobservability.

2. Problem formulation

A DES is modeled by an automaton G = (Q ,Σ, δ, q0,Qm),
where Q is the set of states with the initial state q0,Σ is the finite
set of events, δ is the transition function, and Qm ⊆ Q is the
marked state set. LetΣ∗ denote the set of all finite strings overΣ ,
including the empty string ε. δ can be extended to domain Q ×Σ∗
in a usual manner. A subset ofΣ∗ is usually called a language. The
languages generated and marked by G are L(G) = {s ∈ Σ∗ :

δ(q0, s) is defined} and Lm(G) = {s ∈ L(G) : δ(q0, s) ∈ Qm},
respectively. A language K ⊆ Σ∗ is prefix-closed if K = K , where
K is the set of all prefixes of strings in K ; and K is Lm(G)-closed if
K = K ∩ Lm(G).
In the decentralized architecture, a plant is jointly controlled by

n local supervisors, each of which observes the locally observable
events and controls the locally controllable events. Let I =
{1, . . . , n}. For i ∈ I , denote Σi,c and Σi,uc as the sets of locally
controllable and uncontrollable events, respectively, and denote
Σi,o and Σi,uo as the sets of locally observable and unobservable
events, respectively. Denote Σuc = Σ − Σc and Σuo = Σ − Σo
where Σc = ∪i∈I Σi,c and Σo = ∪i∈I Σi,o. In particular, for the
general decentralized architecture proposed in Yoo and Lafortune
(2002), the decision fusion for global enable and disable events
is a fixed combination of the conjunctive and disjunctive fusions.
Formally, the set of controllable events Σc is further partitioned
into Σc,e and Σc,d, i.e., Σc = Σc,e∪̇Σc,d, where the local decisions
over Σc,e are processed by the conjunctive fusion rule, while the
local decisions over Σc,d are made by the disjunctive fusion rule.
The local supervisor is defined as a function SPi : Pi(Σ

∗) → Γ =

{γ ∈ 2Σ : Σuc ∪ (Σc,e−Σi,c) ⊆ γ , (Σc,d−Σi,c)∩ γ = ∅}, where
Pi is projection mapping.
In order to formalize the notion of reliable decentralized

supervisor in the general architecture,we extend the decentralized
supervisor defined in Yoo and Lafortune (2002) to an A-
decentralized supervisor synthesized by a part of the local
supervisors, where A ⊆ I . Denote ΣA,c = ∪i∈AΣi,c and ΣA,uc =
Σ −ΣA,c .

Definition 1. Let SP1 , . . . , SPn be the local supervisors and A ⊆ I .
The A-decentralized supervisor, denoted by {SPi : i ∈ A} or simply
SA, is defined as: for s ∈ Σ∗,
SA(s) = PΣc,e

(⋂
i∈A

SPi(Pi(s))

)
∪ PΣc,d

(⋃
i∈A

SPi(Pi(s))

)
∪ΣA,uc, (1)

where PΣc,e : Σ → Σ∗c,e and PΣc,d : Σ → Σ∗c,d are projection
mappings.

Definition 2. The language generated by SA, denoted by L(G, SA), is
defined recursively in the usual manner: ε ∈ L(G, SA), and sσ ∈
L(G, SA) if and only if s ∈ L(G, SA), sσ ∈ L(G) and σ ∈ SA(s). The
marked language is defined as Lm(G, SA) = L(G, SA) ∩ Lm(G).

Definition 3. Let A ∈ 2I . A language K ⊆ L(G) is said to be ΣA,uc-
controllable (with respect to L(G) andΣA,uc) if KΣA,uc ∩ L(G) ⊆ K .

Definition 4. Let A ∈ 2I . A language K ⊆ L(G) is said to be ΣA,c-
coobservable (with respect to L(G) and ΣA,c), if for any s ∈ K and
σ ∈ ΣA,c , the following conditions hold:

(1) [σ ∈ Σc,e] ∧ [sσ ∈ L(G)− K ] ⇒

(∃i ∈ A ∩ In(σ ))P−1i Pi(s)σ ∩ K = ∅; (2)

(2) [σ ∈ Σc,d] ∧ [sσ ∈ K ] ⇒

(∃i ∈ A ∩ In(σ ))(P−1i Pi(s) ∩ K)σ ∩ L(G) ⊆ K , (3)

where In(σ ) = {i ∈ I : σ ∈ Σi,c}.

Remark 1. If A = I , then Definition 4 degenerates into the
coobservability under the conjunctive architecture and the coob-
servability under the disjunctive architecture whenΣc = Σc,e and
whenΣc = Σc,d, respectively.

Proposition 1. Let A ∈ 2I . For a nonempty language K ⊆ L(G), there
is an A-decentralized supervisor SA such that L(G, SA) = K if and only
if K isΣA,uc-controllable andΣA,c-coobservable.
Proof. The proof is similar to that of Theorem 1 in Liu and Lin
(2009), so we omit it here for lack of space. �

Definition 5. Let SP1 , SP2 , . . . , SPn be the local supervisors and K ⊆
L(G). A decentralized supervisor {SPi : i ∈ I} is said to be k-reliable,
if for any A ∈ 2I with |A| ≥ k,

L(G, SA) = K , (4)

where 1 ≤ k ≤ n, and |A| is the number of elements of A.

Intuitively, a k-reliable decentralized supervisormeans that the
plant may achieve exactly the specification under the control of at
least k arbitrary local supervisors.

Example 1. We consider a DES G with L(G) =

σ1 + σ2 + σ4σ5σ1 + σ3σ5σ2 and a specification K = σ1 + σ2 +
σ4σ5 + σ3σ5. Assume n = 3, and Σ1,o = {σ1, σ2, σ5}, Σ2,o =
{σ1, σ4}, Σ3,o = {σ2, σ3}; Σ1,c = {σ1, σ2}, Σ2,c = {σ1, σ4},
Σ3,c = {σ2, σ3}, whereΣc,e = {σ1, σ3},Σc,d = {σ2, σ4}.
We can design the local supervisors as follows:

SP1(P1(s)) =

{
{σ1, σ2, σ3, σ5}, if P1(s) = ε,
{σ3, σ5}, if P1(s) = σ5,
{σ2, σ3, σ5}, otherwise.

SP2(P2(s)) =
{
{σ1, σ3, σ4, σ5}, if P2(s) = ε,
{σ3, σ4, σ5}, otherwise.

SP3(P3(s)) =

{
{σ1, σ2, σ3, σ5}, if P3(s) = ε,
{σ1, σ5}, if P3(s) = σ3,
{σ1, σ2, σ5}, otherwise.

Then the languages generated by at least two arbitrary local
supervisors can be calculated as L(G, S{1,2}) = L(G, S{1,3}) =
L(G, S{2,3}) = L(G, S{1,2,3}) = σ1 + σ2 + σ4σ5 + σ3σ5 = K , which
indicates that the decentralized supervisor is 2-reliable. �
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3. Existence of reliable decentralized supervisor

First we introduce some notations and notions. For i ∈ I , denote
Σ̃i,uc = Σ − Σ̃i,c , where

Σ̃i,c = {σ ∈ Σi,c : |In(σ )| ≥ n− k+ 1}. (5)

For A ∈ 2I , let Σ̃A,c = ∪i∈A Σ̃i,c and Σ̃A,uc = Σ − Σ̃A,c . For the sake
of simplicity, denote Σ̃c = Σ̃I,c and Σ̃uc = Σ̃I,uc when A = I .

Definition 6. A language K ⊆ L(G) is said to be Σ̃uc-controllable if
KΣ̃uc ∩ L(G) ⊆ K .

Definition 7. Let 1 ≤ k ≤ n. A language K ⊆ L(G) is said to be
k-reliably Σ̃c-coobservable, if for any s ∈ K and σ ∈ Σ̃c , we have
|As,σ | ≥ n− k+ 1, where

As,σ =


{i ∈ In(σ ) : sσ ∈ L(G)− K ⇒
P−1i Pi(s)σ ∩ K = ∅}, if σ ∈ Σc,e;

{i ∈ In(σ ) : sσ ∈ K ⇒
(P−1i Pi(s) ∩ K)σ ∩ L(G) ⊆ K}, if σ ∈ Σc,d.

(6)

Remark 2. The above notion extends the corresponding notion
of reliable (Σ̃c , k)-coobservability presented in Takai and Ushio
(2000) to the general architecture. When Σc = Σc,e, these two
notions are consistent.

Theorem 1. Let 1 ≤ k ≤ n and K ⊆ L(G) be nonempty. There is a
k-reliable decentralized supervisor under the general architecture, if
and only if, K is Σ̃uc-controllable and k-reliably Σ̃c-coobservable.
Proof. (⇒) (1) We first prove the Σ̃uc-controllability of K . For any
s ∈ K and σ ∈ Σ̃uc with sσ ∈ L(G), there is A ∈ 2I with |A| ≥ k
such that σ ∈ ΣA,uc due to |In(σ )| ≤ n − k. From the k-reliability
of the decentralized supervisor, L(G, SA) = K . By Proposition 1, K
is ΣA,uc-controllable, i.e., KΣA,uc ∩ L(G) ⊆ K . Therefore, sσ ∈ K ,
and then KΣ̃uc ∩ L(G) ⊆ K .
(2) Next, we verify the k-reliable Σ̃c-coobservability of K by

contradiction. Suppose that there is s ∈ K and σ ∈ Σ̃c satisfying
|As,σ | ≤ n− k, then |In(σ )− As,σ | ≥ 1 due to |In(σ )| ≥ n− k+ 1.
Therefore, there is j ∈ In(σ ) and B ∈ 2I with |B| ≥ k such that
As,σ ∩ B = ∅ and j ∈ B, which implies σ ∈ ΣB,c . Due to the k-
reliability of the decentralized supervisor, we have L(G, SB) = K .
According to Proposition 1, K isΣB,c-coobservable. By Definition 4,
for the above s and σ , if σ ∈ Σc,e and sσ ∈ L(G) − K , then there
exists ` ∈ B ∩ In(σ ) satisfying P−1` P`(s)σ ∩ K = ∅, i.e., ` ∈ As,σ .
Hence ` ∈ As,σ ∩ B, which is in contradiction with As,σ ∩ B = ∅. On
the other side, if σ ∈ Σc,d and sσ ∈ K , then by Definition 4, there
exists h ∈ B∩ In(σ )with (P−1h Ph(s)∩K)σ ∩L(G) ⊆ K , i.e., h ∈ As,σ .
So h ∈ As,σ ∩ B, which is also in contradiction with As,σ ∩ B = ∅.
(⇐) Define the local supervisor SPi (i ∈ I) as follows:

SPi(Pi(s)) = {σ ∈ Σi,c,e : P
−1
i Pi(s)σ ∩ K 6= ∅}

∪ {σ ∈ Σi,c,d : (P−1i Pi(s) ∩ K)σ ∩ L(G) ⊆ K}

∪ (Σc,e −Σi,c) ∪Σuc . (7)

To prove {SPi : i ∈ I} being k-reliable, by Proposition 1, we
only need to show that K is both ΣA,uc-controllable and ΣA,c-
coobservable for any A ∈ 2I with |A| ≥ k.
(1) Notice that for any A ∈ 2I with |A| ≥ k,ΣA,uc = Σuc ∪ (Σc−

ΣA,c) ⊆ Σuc ∪ {σ ∈ Σc : |In(σ )| ≤ n − k} = Σ̃uc . Therefore,
KΣA,uc ∩ L(G) ⊆ KΣ̃uc ∩ L(G) ⊆ K from the Σ̃uc-controllability of
K . That is, K isΣA,uc-controllable.
(2) For any A ∈ 2I with |A| ≥ k, s ∈ K and σ ∈ ΣA,c , we prove

that K isΣA,c-coobservable from the following two cases.
Case 1: If σ ∈ ΣA,c ∩ Σ̃c , then |As,σ | ≥ n − k + 1 since K is k-
reliably Σ̃c-coobservable. Consequently, A ∩ As,σ 6= ∅, i.e., there is
i0 ∈ A such that i0 ∈ As,σ . When σ ∈ Σc,e and sσ ∈ L(G) − K , by
Eq. (6), i0 ∈ In(σ ) and P−1i0 Pi0(s)σ ∩ K = ∅, i.e., Eq. (2) holds. On
the other hand, when σ ∈ Σc,d and sσ ∈ K , by Eq. (6), we have
i0 ∈ In(σ ) and (P−1i0 Pi0(s) ∩ K)σ ∩ L(G) ⊆ K , i.e., Eq. (3) holds. So
K isΣA,c-coobservable.
Case 2: If σ ∈ ΣA,c − (ΣA,c ∩ Σ̃c), then sσ 6∈ L(G) − K according
to the Σ̃uc-controllability of K . So we only need to prove Eq. (3)
of Definition 4. Due to σ ∈ ΣA,c , A ∩ In(σ ) 6= ∅. Moreover, for
each i ∈ A ∩ In(σ ), we have (P−1i Pi(s) ∩ K)σ ∩ L(G) ⊆ KΣ̃uc ∩
L(G) ⊆ K , i.e., Eq. (3) holds. Therefore, we also obtain that K is
ΣA,c-coobservable in this case. �

Remark 3. Theorem 1 generalizes the results of Takai and Ushio
(2000) to the general architecture. The existence condition of a
k-reliable decentralized supervisor in Takai and Ushio (2000) is a
special case of the above Theorem 1 withΣc = Σc,e.

4. Verification of reliable decentralized supervisors

Theorem 1 illustrates that the existence of k-reliable decen-
tralized supervisors depends on the Σ̃uc-controllability and the k-
reliable Σ̃c-coobservability of specification.
For the conventional controllability of K (i.e., KΣuc ∩L(G) ⊆ K ),

a test algorithm is described in Cassandras and Lafortune (1999).
So, the Σ̃uc-controllability of K (i.e., KΣ̃uc ∩ L(G) ⊆ K ) can be
similarly checked by this test algorithm with a slight change that
Σ̃uc replacesΣuc , which requires the computational complexity of
O(|Q G| · |Q H |), where |Q G| and |Q H | are the sizes of state sets of G
and H , respectively.
For the test of the standard coobservability, a polynomial-time

algorithm was originally presented in Rudie and Willems (1995).
This was then developed in Yoo and Lafortune (2002, 2004) and
others. Next, based on the methodology of Rudie and Willems
(1995), we present an approach to construct two nondeterministic
automata, namely theΣc,e-discriminator (denoted byMe) and the
Σc,d-discriminator (denoted by Md), to check the k-reliable Σ̃c-
coobservability |As,σ | ≥ n − k + 1 for σ ∈ Σ̃c ∩ Σc,e and
σ ∈ Σ̃c ∩Σc,d, respectively.
Let specification K be generated by automaton H , i.e.,

K = Lm(H) and K = L(H). For checking the k-reliable Σ̃c-
coobservability ofK , we introduce a symbol f (for ‘‘failure’’) to label
the local supervisors out of operation, where f 6∈ Q H ∪ Q G.

Definition 8. Given a specification automaton H = (Q H ,Σ, δH ,
qH0 ,Q

H
m ) and a plant G = (Q G,Σ, δG, qG0 ,Q

G
m) with n local super-

visors. The Σc,e-discriminator of k-reliable Σ̃c-coobservability is
defined as a nondeterministic automaton

Me = (QMe ,Σ, δMe , q
Me
0 ,Q

Me
m ), (8)

where
(1) the state space is

QMe = (Q H ∪ {f })× · · · × (Q H ∪ {f })︸ ︷︷ ︸
n

×Q H × Q G.

(2) qMe0 = (q
H
0 , . . . , q

H
0 , q

H
0 , q

G
0) ∈ Q

Me is the initial state.
(3) The transition function δMe : QMe×Σ → 2Q

Me will be given
in Definition 9.
(4) The marked state set QMem will be defined in Definition 11.

Before defining the transition function δMe , we first give the
following conditions: for (p1, . . . , pn, pn+1, pn+2) ∈ QMe and σ ∈
Σ̃c , conditions (C1), . . . , (Cn) and (C0) are defined as

Condition (Ci): either σ 6∈ Σi,c or δH(pi, σ ) and δG(pn+2, σ ) are
defined but δH(pn+1, σ ) is undefined, where i ∈ I .

Condition (C0): σ ∈ Σ̃c∩Σc,e and at least one of the conditions
(C1), . . . , (Cn) holds.
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Definition 9. The transition function of Me is defined as a partial
function δMe : QMe × Σ → 2Q

Me , for qMe = (p1, . . . , pn, pn+1,
pn+2) ∈ QMe and σ ∈ Σ , δMe(qMe , σ ) is informally defined as all
possible states. In particular, if Condition (C0) holds, δMe(qMe , σ ) =
(∆1, . . . ,∆n, pn+1, pn+2), where for each i ∈ I ,∆i = f if Condition
(Ci) holds; otherwise, ∆i = pi. For simplicity, we formally define
δMe for the case of three local supervisors (i.e., n = 3), which
can be extended directly to the case of any finite number of local
supervisors:
(i) For σ 6∈ (Σ1,o ∪Σ2,o ∪Σ3,o),

δMe((p1, p2, p3, p4, p5), σ )

=



(δH(p1, σ ), p2, p3, p4, p5),
(p1, δH(p2, σ ), p3, p4, p5),
(p1, p2, δH(p3, σ ), p4, p5),
(p1, p2, p3, δH(p4, σ ), δG(p5, σ )),
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(ii) For σ ∈ Σ1,o \ (Σ2,o ∪Σ3,o),

δMe((p1, p2, p3, p4, p5), σ )

=


(p1, δH(p2, σ ), p3, p4, p5),
(p1, p2, δH(p3, σ ), p4, p5),
(δH(p1, σ ), p2, p3, δH(p4, σ ), δG(p5, σ )),
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(iii) For σ ∈ Σ2,o \ (Σ1,o ∪Σ3,o),

δMe((p1, p2, p3, p4, p5), σ )

=


(δH(p1, σ ), p2, p3, p4, p5),
(p1, p2, δH(p3, σ ), p4, p5),
(p1, δH(p2, σ ), p3, δH(p4, σ ), δG(p5, σ )),
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(iv) For σ ∈ Σ3,o \ (Σ1,o ∪Σ2,o),

δMe((p1, p2, p3, p4, p5), σ )

=


(δH(p1, σ ), p2, p3, p4, p5),
(p1, δH(p2, σ ), p3, p4, p5),
(p1, p2, δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(v) For σ ∈ (Σ1,o ∩Σ2,o) \Σ3,o,

δMe((p1, p2, p3, p4, p5), σ )

=


(p1, p2, δH(p3, σ ), p4, p5),
(δH(p1, σ ), δH(p2, σ ), p3, δH(p4, σ ), δG(p5, σ )),
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(vi) For σ ∈ (Σ1,o ∩Σ3,o) \Σ2,o,

δMe((p1, p2, p3, p4, p5), σ )

=


(p1, δH(p2, σ ), p3, p4, p5),
(δH(p1, σ ), p2, δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(vii) For σ ∈ (Σ2,o ∩Σ3,o) \Σ1,o,

δMe((p1, p2, p3, p4, p5), σ )
=


(δH(p1, σ ), p2, p3, p4, p5),
(p1, δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(viii) For σ ∈ (Σ1,o ∩Σ2,o ∩Σ3,o),

δMe((p1, p2, p3, p4, p5), σ )

=

{
(δH(p1, σ ), δH(p2, σ ), δH(p3, σ ), δH(p4, σ ), δG(p5, σ )),
(∆1,∆2,∆3, p4, p5), if Condition (C0) holds.

(ix) δMe((p1, p2, p3, p4, p5), σ ) is undefined for any σ if p1 = f
or p2 = f or p3 = f .

The aim of constructing Me is to trace all possible strings
that could happen and have the same projection in the local
supervisors, and check i ∈ As,σ . If δMe(q

Me
0 , t) = q

Me where qMe =
(p1, . . . , pn, pn+1, pn+2), then there are s1, . . . , sn, s ∈ Σ∗ with
Pi(s) = Pi(si), where each si leads to pi, s leads to pn+1 and pn+2
and i ∈ I . If both conditions (C0) and (Ci) are satisfied, then σ ∈
Σ̃c ∩Σc,e, and either i 6∈ In(σ ) or sσ ∈ L(G)−L(H) and siσ ∈ L(H),
i.e., i 6∈ As,σ . So i 6∈ As,σ is captured by conditions (C0) and (Ci),
where i ∈ I .

Definition 10. For state qMe = (p1, . . . , pn, pn+1, pn+2) ∈ QMe ,
each pi is a component of qMe . In particular, pi is called an f -
component of qMe if pi = f , where i ∈ I . qMe is said to be a j-f
state of Me if there are j f -components in qMe , where 1 ≤ j ≤ n.

Definition 11. The marked state set of the Σc,e-discriminator Me is
defined as

QMem =
n⋃
j=k

{
qMe ∈ QMe : qMe is a j-f state

}
. (9)

Definition 12. Given a specification automaton H = (Q H ,Σ, δH ,
qH0 ,Q

H
m ) and a plant G = (Q G,Σ, δG, qG0 ,Q

G
m) with n local

supervisors. TheΣc,d-discriminator of k-reliable Σ̃c-coobservability
is defined as a nondeterministic automaton

Md = (QMd ,Σ, δMd , q
Md
0 ,Q

Md
m ), (10)

where
(1) the state space

QMd = Q G × (Q H ∪ {f })× · · · × Q G × (Q H ∪ {f })︸ ︷︷ ︸
2n

×Q H .

(2) The initial state is qMd0 = (q
G
0 , q

H
0 , . . . , q

G
0 , q

H
0 , q

H
0 ) ∈ Q

Md .
(3) The transition function δMd : QMd × Σ → 2Q

Md will be
defined in Definition 13.
(4) The marked state set QMdm will be defined in Definition 15.

Before defining δMd , we give the following conditions: for
qMd = (pG1 , p

H
1 , . . . , p

G
n , p

H
n , p

H
n+1) ∈ Q

Md and σ ∈ Σ̃c , conditions
(D1), . . . , (Dn) and (D0) are defined as

Condition (Di): either σ 6∈ Σi,c or δG(pGi , σ ) and δ
H(pHn+1, σ )

are defined but δH(pHi , σ ) is undefined, where i ∈ I .
Condition (D0):σ ∈ Σ̃c∩Σc,d and at least one of the conditions

(D1), . . . , (Dn) holds.

Definition 13. The transition function ofMd is defined as a partial
function δMd : QMd × Σ → 2Q

Md , for qMd = (pG1 , p
H
1 , . . . , p

G
n ,

pHn , p
H
n+1) ∈ Q

Md and σ ∈ Σ , δMd(qMd , σ ) is informally defined
as all possible states. In particular, if Condition (D0) holds, then
δMd(qMd , σ ) = (pG1 ,Λ1, . . . , p

G
n ,Λn, p

H
n+1), where for each i ∈ I ,

Λi = f if Condition (Di) holds; otherwise,Λi = pHi . For simplicity,
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we formally define δMd for the case of three local supervisors
(i.e., n = 3), which can be extended directly to the case of any
finite number of local supervisors:
(i) For σ 6∈ (Σ1,o ∪Σ2,o ∪Σ3,o),

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )

=



(δG(pG1 , σ ), δ
H(pH1 , σ ), p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ),

(pG1 , p
H
1 , δ

G(pG2 , σ ), δ
H(pH2 , σ ), p

G
3 , p

H
3 , p

H
4 ),

(pG1 , p
H
1 , p

G
2 , p

H
2 , δ

G(pG3 , σ ), δ
H(pH3 , σ ), p

H
4 ),

(pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , δ

H(pH4 , σ )),
(δG(pG1 , σ ), δ

H(pH1 , σ ), δ
G(pG2 , σ ), δ

H(pH2 , σ ),
δG(pG3 , σ ), δ

H(pH3 , σ ), δ
H(pH4 , σ )),

(pG1 ,Λ1, p
G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(ii) For σ ∈ Σ1,o \ (Σ2,o ∪Σ3,o),

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )

=



(δG(pG1 , σ ), δ
H(pH1 , σ ), p

G
2 , p

H
2 , p

G
3 , p

H
3 , δ

H(pH4 , σ )),
(pG1 , p

H
1 , δ

G(pG2 , σ ), δ
H(pH2 , σ ), p

G
3 , p

H
3 , p

H
4 ),

(pG1 , p
H
1 , p

G
2 , p

H
2 , δ

G(pG3 , σ ), δ
H(pH3 , σ ), p

H
4 ),

(δG(pG1 , σ ), δ
H(pH1 , σ ), δ

G(pG2 , σ ), δ
H(pH2 , σ ),

δG(pG3 , σ ), δ
H(pH3 , σ ), δ

H(pH4 , σ )),
(pG1 ,Λ1, p

G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(iii) For σ ∈ Σ2,o \ (Σ1,o ∪Σ3,o),

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )

=



(δG(pG1 , σ ), δ
H(pH1 , σ ), p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ),

(pG1 , p
H
1 , δ

G(pG2 , σ ), δ
H(pH2 , σ ), p

G
3 , p

H
3 , δ

H(pH4 , σ )),
(pG1 , p

H
1 , p

G
2 , p

H
2 , δ

G(pG3 , σ ), δ
H(pH3 , σ ), p

H
4 ),

(δG(pG1 , σ ), δ
H(pH1 , σ ), δ

G(pG2 , σ ), δ
H(pH2 , σ ),

δG(pG3 , σ ), δ
H(pH3 , σ ), δ

H(pH4 , σ )),
(pG1 ,Λ1, p

G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(iv) For σ ∈ Σ3,o \ (Σ1,o ∪Σ2,o),

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )

=



(δG(pG1 , σ ), δ
H(pH1 , σ ), p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ),

(pG1 , p
H
1 , δ

G(pG2 , σ ), δ
H(pH2 , σ ), p

G
3 , p

H
3 , p

H
4 ),

(pG1 , p
H
1 , p

G
2 , p

H
2 , δ

G(pG3 , σ ), δ
H(pH3 , σ ), δ

H(pH4 , σ )),
(δG(pG1 , σ ), δ

H(pH1 , σ ), δ
G(pG2 , σ ), δ

H(pH2 , σ ),
δG(pG3 , σ ), δ

H(pH3 , σ ), δ
H(pH4 , σ )),

(pG1 ,Λ1, p
G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(v) For σ ∈ (Σ1,o ∩Σ2,o) \Σ3,o,

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )

=



(δG(pG1 , σ ), δ
H(pH1 , σ ), δ

G(pG2 , σ ), δ
H(pH2 , σ ),

pG3 , p
H
3 , δ

H(pH4 , σ )),
(pG1 , p

H
1 , p

G
2 , p

H
2 , δ

G(pG3 , σ ), δ
H(pH3 , σ ), p

H
4 ),

(δG(pG1 , σ ), δ
H(pH1 , σ ), δ

G(pG2 , σ ), δ
H(pH2 , σ ),

δG(pG3 , σ ), δ
H(pH3 , σ ), δ

H(pH4 , σ )),
(pG1 ,Λ1, p

G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(vi) For σ ∈ (Σ1,o ∩Σ3,o) \Σ2,o,

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )
=



(δG(pG1 , σ ), δ
H(pH1 , σ ), p

G
2 , p

H
2 ,

δG(pG3 , σ ), δ
H(pH3 , σ ), δ

H(pH4 , σ )),
(pG1 , p

H
1 , δ

G(pG2 , σ ), δ
H(pH2 , σ ), p

G
3 , p

H
3 , p

H
4 ),

(δG(pG1 , σ ), δ
H(pH1 , σ ), δ

G(pG2 , σ ), δ
H(pH2 , σ ),

δG(pG3 , σ ), δ
H(pH3 , σ ), δ

H(pH4 , σ )),
(pG1 ,Λ1, p

G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(vii) For σ ∈ (Σ2,o ∩Σ3,o) \Σ1,o,

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )

=



(δG(pG1 , σ ), δ
H(pH1 , σ ), p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ),

(pG1 , p
H
1 , δ

G(pG2 , σ ), δ
H(pH2 , σ ),

δG(pG3 , σ ), δ
H(pH3 , σ ), δ

H(pH4 , σ )),
(δG(pG1 , σ ), δ

H(pH1 , σ ), δ
G(pG2 , σ ), δ

H(pH2 , σ ),
δG(pG3 , σ ), δ

H(pH3 , σ ), δ
H(pH4 , σ )),

(pG1 ,Λ1, p
G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(viii) For σ ∈ (Σ1,o ∩Σ2,o ∩Σ3,o),

δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ )

=


(δG(pG1 , σ ), δ

H(pH1 , σ ), δ
G(pG2 , σ ), δ

H(pH2 , σ ),
δG(pG3 , σ ), δ

H(pH3 , σ ), δ
H(pH4 , σ )),

(pG1 ,Λ1, p
G
2 ,Λ2, p

G
3 ,Λ3, p

H
4 ), if Condition (D0) holds.

(ix) δMd((pG1 , p
H
1 , p

G
2 , p

H
2 , p

G
3 , p

H
3 , p

H
4 ), σ ) is undefined if p

H
1 = f

or pH2 = f or p
H
3 = f .

In Md, if qMd = (pG1 , p
H
1 , . . . , p

G
n , p

H
n , p

H
n+1) and δ

Md(qMd0 , t) =
qMd , then there are s1, . . . , sn, s ∈ Σ∗ with Pi(s) = Pi(si), where
each si leads to pGi and p

H
i , s leads to p

H
n+1, and i ∈ I . If both

conditions (D0) and (Di) are satisfied, then there is σ ∈ Σ̃c ∩ Σc,d
and s ∈ L(H) such that i 6∈ As,σ . So i 6∈ As,σ is characterized by
conditions (D0) and (Di) in this case, where i ∈ I .
Definition 14. For state qMd = (pG1 , p

H
1 , . . . , p

G
n , p

H
n , p

H
n+1), each p

H
i

is a component in H of qMd . In particular, pHi is called an f -component
if pHi = f , where i ∈ I; and q

Md is a j-f state of Md if there are j f -
components in qMd , where 1 ≤ j ≤ n.

Definition 15. The marked state set of the Σc,d-discriminator Md is
defined as

QMdm =
n⋃
j=k

{
qMd ∈ QMd : qMd is a j-f state

}
. (11)

Proposition 2. (1) Let qMe = (p1, . . . , pn, pn+1, pn+2) ∈

QMe . Assume that qMe is a j-f state of Me whose `1th, . . . , `jth
components are f -components, where `1, . . . , `j ∈ I . Then there is
q
′Me = (p′1, . . . , p

′
n, pn+1, pn+2) ∈ Q

Me without containing any f -
component, and, there are s1, . . . , sn, s ∈ Σ∗ and σ ∈ Σ̃c ∩ Σc,e
satisfying δH(qH0 , s) = pn+1, δ

G(qG0 , s) = pn+2, and for each i ∈ I ,
δH(qH0 , si) = p′i and Pi(s) = Pi(si). Moreover, for each `r , either
σ 6∈ Σ`r ,c or δ

H(p′`r , σ ) and δ
G(pn+2, σ ) are defined but δH(pn+1, σ )

is undefined, where r = 1, . . . , j.
(2) Let qMd1 = (pG11, p

H
11, . . . , p

G
1n, p

H
1n, p

H
n+1) ∈ Q

Md . Assume
that qMd is a j-f state of Md whose `1th, . . . , `jth components
are f -components, where `1, . . . , `j ∈ I . Then there is qMd2 =

(pG21, p
H
21, . . . , p

G
2n, p

H
2n, p

H
n+1) ∈ QMd without containing any f -

component, and, there are s1, . . . , sn, s ∈ Σ∗ and σ ∈ Σ̃c ∩ Σc,d
satisfying δH(qH0 , s) = p

H
n+1, and for each i ∈ I , δ

G(qG0 , si) = p
G
2i,

δH(qH0 , si) = p
H
2i and Pi(s) = Pi(si). Moreover, for each `r , either

σ 6∈ Σ`r ,c or δ
H(pHn+1, σ ) and δ

G(pG2`r , σ ) are defined but δ
H(pH2`r , σ )

is undefined, where r = 1, . . . , j.
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Fig. 1. Σc,e-discriminator of 2-reliable Σ̃c -coobservabilityMe in Example 2.
Fig. 2. Σc,d-discriminator of 2-reliable Σ̃c -coobservabilityMd in Example 2.
Proof. (1) Denote δMe(qMe0 , t) = q
′Me and δMe(q

′Me
0 , σ ) = qMe ,

where t ∈ Σ∗, σ ∈ Σ , and q
′Me = (p′1, . . . , p

′
n, pn+1, pn+2) ∈

QMe . Since in Me, no transition is defined in the states with
f -components, q

′Me does not contain any f -component. Let
δH(qH0 , si) = p

′

i (i ∈ I), δ
H(qH0 , s) = pn+1, and δ

G(qG0 , s) = pn+2.
Then Definition 9(i)–(viii) guarantee Pi(s) = Pi(si) for each i ∈ I .
Due to the `1th, . . . , `jth components of qMe being f -components,
Conditions (C0) and (C`1), . . . , (C`j) hold. That is, σ ∈ Σ̃c ∩ Σc,e,
and for each `r , either σ 6∈ Σ`r ,c or δ

H(p′`r , σ ) and δ
G(pn+2, σ ) are

defined but δH(pn+1, σ ) is undefined.
(2) It can be similarly proved according to Definition 13. �

Theorem 2. Lm(H) is k-reliably Σ̃c-coobservable if and only if
Lm(Me) = Lm(Md) = ∅.

Proof. (⇒) If Lm(Me) 6= ∅, then there is a marked state in
Me, denoted as qMe = (p1, . . . , pn, pn+1, pn+2). From Eq. (9), qMe
must contain j f -components, where k ≤ j ≤ n. Without loss of
generality, we denote the j f -components as p`1 , . . . , p`j , where
`1, . . . , `j ∈ I . By Proposition 2(1), there is q

′Me = (p′1, . . . , p
′
n,

pn+1, pn+2) ∈ QMe without containing any f -component, and,
there are s1, s2, . . . , sn, s ∈ Σ∗ and σ ∈ Σ̃c ∩ Σc,e such that
δH(qH0 , s) = pn+1, δ

G(qG0 , s) = pn+2, and δ
H(qH0 , si) = p

′

i , Pi(s) =
Pi(si) for each i ∈ I . Moreover, for each `r , either `r 6∈ In(σ ) or
s`rσ ∈ L(H) and sσ ∈ L(G) but sσ 6∈ L(H). According to Eq. (6),
`r 6∈ As,σ for all r ∈ {1, 2, . . . , j}. Consequently, |As,σ | ≤ n − j ≤
n − k due to k ≤ j ≤ n. By Definition 7, Lm(H) is not k-reliably
Σ̃c-coobservable.
If Lm(Md) 6= ∅, then there is a marked state q
Md
1 = (pG11,

pH11, . . . , p
G
1n, p

H
1n, p

H
n+1) in Md. From Eq. (11), q

Md
1 must contain j f -

components, where k ≤ j ≤ n. Without loss of generality, we de-
note the j f -components as p`1 , . . . , p`j , where `1, . . . , `j ∈ I . By
Proposition 2(2), there is qMd2 = (p

G
21, p

H
21, . . . , p

G
2n, p

H
2n, p

H
n+1)with-

out containing any f -component, and, there are s1, s2, . . . , sn, s ∈
Σ∗ and σ ∈ Σ̃c ∩Σc,d such that δH(qH0 , s) = p

H
n+1, and δ

G(qG0 , si) =
pG2i, δ

H(qH0 , si) = pH2i, Pi(s) = Pi(si) for each i ∈ I . Moreover,
for each `r , either `r 6∈ In(σ ) or sσ ∈ L(H), s`rσ ∈ L(G) but
s`rσ 6∈ L(H). From Eq. (6), `r 6∈ As,σ for all r ∈ {1, 2, . . . , j}. As
a result, |As,σ | ≤ n − j ≤ n − k due to k ≤ j ≤ n. By Definition 9,
Lm(H) is not k-reliably Σ̃c-coobservable.
(⇐) If Lm(H) is not k-reliably Σ̃c-coobservable, then by Defini-

tion 9, there are s ∈ L(H) and σ ∈ Σ̃c such that |As,σ | ≤ n − k. If
σ ∈ Σc,e, then |As,σ | ≤ n − k implies that there are `1, . . . , `k ∈
I − As,σ . Thus, for each `j (1 ≤ j ≤ k), either σ 6∈ Σ`j,c or there is
s`j ∈ P

−1
`j
P`j(s) such that s`jσ ∈ L(H) although sσ ∈ L(G)−L(H). By

Definition 9, there is a state inMewhere the `1th, . . . , `kth compo-
nents are f -components. Therefore, Lm(Me) 6= ∅. If σ ∈ Σc,d, then
from |As,σ | ≤ n−k, we know that there are `1, . . . , `k ∈ I−As,σ . So
for each `j (1 ≤ j ≤ k), either σ 6∈ Σ`j,c or there is s`j ∈ P

−1
`j
P`j(s)∩

L(H) with s`jσ ∈ L(G) − L(H) although sσ ∈ L(H). Therefore, by
Definition 13, there is a state inMd where the `1th, . . . , `kth com-
ponents are f -components. So Lm(Md) 6= ∅. �

Remark 4. Theorem 2 shows that deciding the k-reliable Σ̃c-
coobservability of Lm(H) is equivalent to checking if Lm(Me) and
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Fig. 3. Σc,d-discriminator of 2-reliable Σ̃c -coobservabilityMd in Example 3.
Lm(Md) are empty. With a similar analysis of Theorem 3.1 in Rudie
and Willems (1995), not only constructing Me and Md but also
searching the paths from the initial state to the marked states
(i.e., the strings in Lm(Me) and Lm(Md)) can be done in polynomial
time with respect to |Q G| and |Q H | for a fixed number of the local
supervisors. Therefore, together with the aforementioned fact that
the test of the Σ̃uc-controllability is polynomial, we can check the
existence of a k-reliable decentralized supervisor in polynomial
time with respect to |Q G| and |Q H |.

In order to illustrate the approach proposed above, we provide
an example.

Example 2. We consider the DES G and specification K given in
Example 1. The sets of local observable and controllable events are
the same as those of Example 1. In the following, we first verify the
2-reliable Σ̃c-coobservability of K by Theorem 2, and then prove
that there is a 2-reliable decentralized supervisor.
According to Definitions 8 and 12, the Σc,e-discriminator Me

and theΣc,d-discriminatorMd of 2-reliable Σ̃c-coobservability are
constructed as Figs. 1 and 2, respectively, in which for simplicity,
only a part of Me and a part of Md are displayed. The 2-f and 3-f
states are marked states ofMe andMd.
Notice that there are no 2-f or 3-f states in Me and Md shown

in Figs. 1 and 2, i.e., Lm(Me) = Lm(Md) = ∅. Consequently,
by Theorem 2, we have the conclusion that K is 2-reliably Σ̃c-
coobservable.
On the other side, K is Σ̃uc-controllable since KΣ̃uc ∩ L(G) =

{σ3, σ4, σ3σ5, σ4σ5} ⊆ K , where Σ̃uc = {σ3, σ4, σ5}. By Theorem1,
we have the same result obtained in Example 1 that there is a 2-
reliable decentralized supervisor. �

Example 3. We consider the same DES G and the same local
observable and controllable event sets as those in Example 1, but
the specification is changed into K = σ4σ5+σ3σ5σ2, then theΣc,d-
discriminatorMd of 2-reliable Σ̃c-coobservability is constructed as
Fig. 3, where for simplicity, only part ofMd is displayed. The 2-f and
3-f states are marked states ofMd.
Notice that there is a 2-f state (0, f , 3, f , 3, 3, 3) inMd (labeled

by an underline in Fig. 3), i.e., Lm(Md) 6= ∅. By Theorem 2, K is not
2-reliably Σ̃c-coobservable. So, there is no 2-reliable decentralized
supervisor by Theorem 1. �

5. Conclusion

In this paper, the reliable decentralized supervisory control
problem under the general architecture was addressed. A exis-
tence condition of reliable decentralized supervisors was pro-
posed by using the notions of Σ̃uc-controllability and k-reliable
Σ̃c-coobservability. We further presented a polynomial-time algo-
rithm to verify the k-reliable Σ̃c-coobservability.
Based on these results, it is interesting to compute the supremal

or infimal Σ̃uc-controllable and Σ̃c-coobservable sublanguage for
a given specification language that is neither Σ̃uc-controllable nor
k-reliably Σ̃c-coobservable. We will investigate this problem in
subsequent work.
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