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Abstract— This paper addresses the optimal task automaton
decomposabilization applicable in top-down cooperative control
of multi-agent systems. In [1], we proposed a divide-and-
conquer approach for task automaton decomposition. In that
result, given the global specification, represented as an automa-
ton, and the logical behavior of the multi-agent system, modeled
as a parallel distributed system, we proposed a necessary and
sufficient condition for task automaton decomposition for two
agents, such that the parallel composition of subtask automata
is bisimilar to the original task automaton. This work completes
the decomposition result of [1], by proposing a decomposabi-

lization result. In this work, as the main contributions, firstly,
we introduce a guideline for the basic design of private and
common events, based on the specification. Secondly, after the
basic event pattern attribution, the decomposability condition is
checked, and if the task automaton is not decomposable, a suf-
ficient condition is given to make it decomposable by assigning
some of the private events to be common. The method is then
proven to be optimal in the sense of minimum number of event
conversions leading to minimum increment in the required
communication capacity. An example is given to illustrate the
concept and significance of optimal task decomposabilization.

I. INTRODUCTION

Multi-agent system is a broad rapidly developing area

with increasing interest of researches in many fields such as

distributed surveillance, target following, distributed defence

systems, underwater or space exploration, assembling and

transportation, large scale manufacturing systems, and rapid

emergency response [2]. The cooperative control of multi-

agent systems, that are typically distributed in nature, is still

in its infancy and possess significant technical and theoretical

challenges that fall beyond the conventional control methods

[3], [4].

The experimental results on multi-agent systems have

shown that sophisticated collective capabilities can be

achieved through the collaboration of simple agents with

simple local interaction rules. Namely, a team of cooper-

ative agents shows more functionality and reliability than

a single or even a collection of multi-skilled agents that

have no cooperations [5]-[8]. These studies induce increasing

motivations towards more research efforts in this area. Most

of these research activities in multi-agent systems, so far,

have been devoted to bottom-up methods to know how and

what kind of team behavior can be generated by a given set

of local control rules [9], [10]. A more important problem,

however, is the design of these local control and interac-

tion rules such that given desired global behaviors can be
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achieved, cooperatively, by design [11]. The desired global

specification could be very complicated, and the objectives

and design may fall beyond the traditional output regulation

or path planning [3], [4], [12], [13]. Moreover, the bottom-

up scenario in swarming robotics may fail to guarantee the

correctness by design, due to lack of understanding on how

to manipulate the local rules to achieve the global behavior.

To avoid the iterative trial and error design procedure, a new

efficient and formal method is required to design the local

control laws and interaction rules in order to achieve the

global specification in a correct-by-design manner.

To achieve such an ambitious research goal, in [1] we

proposed a “divide-and-conquer” approach by decomposing

a global specification into sub-specifications for individual

agents. The decomposition was developed in such a way

that satisfaction of these sub-specifications lead to global

desired behavior, by design. In this work, we assume that

the global specification is given as an automaton, defined

over the union of all local events. Accordingly, the logical

behavior [14] of a multi-agent system can be modeled as a

parallel distributed systems, the parallel composition of local

plant automata [15].

In [1], the decomposition approach was developed based

on a so-called natural projection scheme that obtains each

local task automaton by ignoring the transitions that are not

defied on its corresponding local event set. The cooperative

collection (defined by parallel composition) of these sub-task

automata would be equivalent (in the sense of bisimilarity)

to the original task automaton. Given a task automaton and

distribution of events to local event sets, it is always possible

to do such kind of projections, but we have shown [1] that

it is not always possible to decompose an automaton into

sub-automata by natural projection, such that the parallel

composition of these sub-automata is bisimilar to the original

automaton. Furthermore, we have found [1] that an automa-

ton is decomposable with respect to two local event sets if

and only if for any two successive or adjacent private events

from different private event sets, both orders of these events

should be legal, and furthermore, the global automaton is

required to contain the interleaving of local strings that share

the first common event.

The results in [1], however, rely on the predefined sets

of private and common events for each agent. This is

a strong assumption and implies that the communication

pattern between the agents is known. Usually, one needs

to design the communication pattern as well in multi-agent

systems. Furthermore, if a global task automaton is not

decomposable, a natural follow-up question is how to modify
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the event pattern for each agent to make the global task

automaton decomposable. To address these two problems,

this paper has two main contributions: Firstly, based on the

global specification, we introduce a method to define the

private and common events among the local event sets. In this

framework, an event can be either an “observation”(sensor

reading) or an “action” (the pair of actuator’s command and

feedback). The method starts with a preliminary attribution of

the events, based on the basic requirements on coordination

on some observations or actions. Secondly, after this setting

of the functionality, the decomposability condition mentioned

in [1] is checked, and if the task automaton is not decom-

posable, then, for a class of automata, the paper proposes a

sufficient condition to make it decomposable by transforming

some of the private events to the common ones. Furthermore,

this decomposabilization is guaranteed to be optimal in the

sense of minimum number of common events leading to

minimum increasing on communication links between the

agents.

The rest of the paper is organized as follows. Preliminary

lemmas, notations, definitions and problem formulation are

represented in Section II. Section III introduces the concept

of “common observation” as well as ”common action” be-

tween two agents and shows that how one can transform a

private event into a common event, in different situations.

This section then proposes a sufficient condition for optimal

decomposabilization of a class of undecomposable global

task automata. An example is then given in Section IV to

illustrate the concept of optimal task automaton decompos-

abilization. Finally, the paper concludes with remarks and

discussions in Section V.

II. PROBLEM FORMULATION

We first recall the definition of an automaton [17].

Definition 1: (Automaton) An automaton is a tuple A =
(Q, Q0, E, δ) consisting of

• a set of states Q;

• a set of initial states Q0 ⊆ Q;

• a set of events E that causes transitions between the

states, and

• a transition relation δ ⊆ Q×E×Q such that (q, e, q′) ∈
δ if and only if δ(q, e) = q′ (or q

e
→ q′ ).

The transition relation can be extended to a finite string

of events, S ∈ E∗, where E∗ stands for Kleene−Closure
of E (the set of all finite strings over elements of E), as

follows δ(q, ε) = q, and δ(q, Se) = δ(δ(q, S), e) for S ∈ E∗

and e ∈ E. We focus on deterministic task automata that

are simpler to be characterized, and cover a wide class of

specifications. The qualitative behavior of a deterministic

system is described by the set of all possible sequences

of events starting from initial states. Each such a sequence

is called a string, and a collection of strings represents the

language generated by the automaton, denoted by L(A). The

existence of a transition over string S ∈ E∗ from a state

q ∈ Q, is denoted by δ(q, S)!, and considering a language

L, by δ(q, L)! we mean ∀ω ∈ L : δ(q, ω)!.

To describe the decomposability condition in the main

result and during the proofs, we define successive event pair

and adjacent event pair as the following two definitions.

Definition 2: (Successive event pair) Two events e1 and

e2 are called successive events if ∃q ∈ Q : δ(q, e1)! ∧
δ(δ(q, e1), e2)! or δ(q, e2)! ∧ δ(δ(q, e2), e1)!.

Definition 3: (Adjacent event pair) Two events e1 and e2

are called adjacent events if ∃q ∈ Q : δ(q, e1)! ∧ δ(q, e2)!.
To compare the behavior of the task automaton and the

collective behavior of its decomposed automata, we use the

simulation relation [16], defined as follows.

Definition 4: (Simulation) Let two automata Ai =
(

Qi, Q
0
i , E, δi

)

, i = 1, 2. A relation R ⊆ Q1 × Q2 is

said to be a simulation relation from A1 to A2 (denoted

by A1 ≺ A2) if

1) ∀q0
1 ∈ Q0

1, ∃q0
2 ∈ Q0

2 :
(

q0
1 , q

0
2

)

∈ R
2) ∀ (q1, q2) ∈ R, δ1(q1, e) = q′1, then ∃q′2 ∈ Q2 such

that δ2(q2, e) = q′2, (q
′

1, q
′

2) ∈ R.

The mutual symmetric similarity between A1 and A2 is

called bisimilarity relation and is denoted by A1
∼= A2. Two

automata are (bi)similar when the (bi)simulation relation is

defined over all (Q1 × Q2) Q1, for all e ∈ E.

In this paper, we assume that the task automaton AS and

the sets of local events Ei are all given. It is further assumed

that A is deterministic automaton while its event set E is

obtained by the union of local event sets, i.e., E = ∪iEi.

The problem is to check whether the task automaton AS can

be decomposed into sub-automata ASi
on the local event

sets Ei, respectively, such that the collection of these sub-

automata ASi
is equivalent somehow to AS , when put them

together. The equivalence is in the sense of bisimilarity

as defined above, while the clustering process for these

sub-automata ASi
could be in the usual sense of parallel

composition as defined below. Parallel composition is used

to model the interactions between automata and represent the

logical behavior of multi-agent systems. Parallel composition

is formally defined as

Definition 5: (Parallel Composition) [17] Let Ai =
(

Qi, Q
0
i , Ei, δi

)

, i = 1, 2 be automata. The parallel com-

position (synchronous composition) of A1 and A2 is the

automaton A1||A2 = (Q, Q0, E, δ), defined as

• Q = Q1 × Q2;

• Q0 = Q0
1 × Q0

2;

• E = E1 ∪ E2;

• ∀(q1, q2) ∈ Q, e ∈ E : δ((q1, q2), e) =






















(δ1(q1, e), δ2(q2, e)) , if

{

δ1(q1, e)!, δ2(q2, e)!
e ∈ E1 ∩ E2

;

(δ1(q1, e), q2) , if δ1(q1, e)!, e ∈ E1\E2;

(q1, δ2(q2, e)) , if δ2(q2, e)!, e ∈ E2\E1;

undefined, otherwise
In [1], we used natural projection to obtain the local task

automata from global task automaton. Natural projection can

be defined over strings as pEi
= pi : E∗ → E∗

i , or over

automata by Pi(AS) : AS → ASi
, where, ASi

are obtained

from AS by replacing its events that are belonged to E\Ei by

ε-moves, and then, merging the ε-related states. The natural

projection is formally defined as follows.
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Definition 6: (Natural Projection) Consider a global event

set E and its local event sets Ei, i = 1, 2, with E = E1∪E2.

Then, the natural projection pi : E∗ → E∗

i is inductively

defined on strings as pi(ε) = ε, and ∀S ∈ E∗, e ∈ E :

pi(Se) =

{

pi(S)e if e ∈ Ei;

pi(S) otherwise.
Now, consider an automaton AS = (Q, Q0, E, δ) and

local event sets Ei, i = 1, 2, with E = E1 ∪ E2. Then,

the natural projection of AS with respect to Ei is defined

as Pi(AS) = (Qi = Q/∼Ei
, Q0

i = Q0
/∼Ei

, Ei, δi), with

δi([q]Ei
, e) = [q′]Ei

if there are states q1 and q′1 such that

q1 ∼Ei
q, q′1 ∼Ei

q′, and δ(q1, e) = q′1. Here, [q] denotes

the equivalence class of the state q defined on ∼ Ei, where,

the relation ∼ Ei is the least equivalence relation on the set

Q of states such that δ(q, e) = q′ ∧ e /∈ Ei ⇒ q ∼Ei
q′.

To investigate the interactions of transitions in two au-

tomata, particularly in P1(AS) and P2(AS), the interleaving

of strings is defined as follows.

Definition 7: Consider two sequences q1

e1→ q2

e2→

...
en→ qn and q′1

e′

1→ q′2
e′

2→ ...
e′

m→ q′m, the interleav-

ing of their corresponding strings, S = e1e2...en and

S′ = e′1e
′

2...e
′

m, is denoted by S|S′, and defined as

S|S′ = L{PA(q1, S)||PA′(q′1, S
′)}, where, PA(q1, S) =

({q1, ..., qn}, {q1}, {e1, ..., en},δPA) with δPA(qi, ei) =
qi+1, i = 1, ..., n − 1, and PA′(q′1, S

′) is defined, similarly.

Based on these definitions we may now formally define

the decomposability of an automaton with respect to parallel

composition and natural projections as follows.

Definition 8: (Automaton decomposability) A task au-

tomaton AS with the event set E and local event sets

Ei, i = 1, 2, E = E1 ∪ E2, is said to be decomposable

with respect to parallel composition and natural projections

Pi : AS → Pi (AS), i = 1, 2, when P1(AS)||P2(AS) ∼= AS .

In [1], we have shown that not all automata are decom-

posable with respect to parallel composition and natural pro-

jections. Consequently, a necessary and sufficient condition

was proposed for task automaton decomposition with respect

to two local event sets as

Lemma 1: (Theorem 1 in [1]) A deterministic automaton

AS = (Q, Q0, E = E1∪E2, δ) is decomposable with respect

to parallel composition and natural projections Pi : AS →
Pi(AS), i = 1, 2, such that AS

∼= P1(AS)||P2(AS) if and

only if it satisfies the following decomposability conditions

(DC): ∀e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈ Q, S ∈ E∗,

• DC1 : [δ(q, e1)!∧δ(q, e2)!]∨δ(q, e1e2)!∨δ(q, e2e1)! ⇒
δ(q, e1e2)! ∧ δ(q, e2e1)!;

• DC2 : δ(q, e1e2S)! ⇔ δ(q, e2e1S)!, and

• DC3 : ∀S, S′ ∈ E∗, sharing the same first appearing

common event a ∈ E1 ∩E2, S 6= S′, q ∈ Q: δ(q, S)!∧
δ(q, S′)! ⇒ δ(q, p1(S)|p2(S

′))! ∧ δ(q, p1(S
′)|p2(S))!.

The next follow-up question is that if an automaton is not

decomposable then how we can design the event pattern such

that it becomes decomposable. Moreover, if it is possible to

do so, how we can do it in an optimal way such that it

needs minimum number of common events. This problem is

addressed in the next section and it is formally stated as

Problem 1: Consider a deterministic task automaton AS

with event set E and 2 agents. If AS is not decomposable,

how can we optimally design the private and common events

of local event sets such that AS becomes decomposable

with respect to parallel composition and natural projections

Pi : AS → Pi(AS), i = 1, 2 with the minimum number of

common events?

III. TASK AUTOMATON DECOMPOSABILIZATION

This section is devoted to Problem 1. This problem can

be arisen in either the first stage of the design, that the

sensors and actuators should be designed for each agent;

or when a global task automaton is given with a fixed

event pattern and its decomposition fails due to lack of

communication on some of the private events. In this case,

the private and common event sets for some agents should be

modified to make the global task decomposable. To formulate

this problem, we synthetically distinguish the events by two

types:

• observation: which is a sensor reading from an external

measurement;

• action: which is a pair of a command to, and a feedback

from an actuator.

An observation is a private event for an agent in which

possesses the corresponding sensor. This observation can be

a common event with the other agent if

• it is shared through communication;

• the second agent also is equipped with an identical

sensor to read the same measurement, and both agents

communicate on this event and interpret it as the same

label, or

• two sensors in two agents read two different measure-

ments, but inform each other about these readings and

interpret them with same label.

Fig. 1. Illustration of observation and action common events.
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The example of the first case is when one robot observes a

target and alerts the other robot (Figure 1 (a)). This event

is used in both robots as “target detected”. It can be also

the case that both robots are equipped with sensors and

observe the same target. This “target detected” event also

can be considered as a common event (Figure 1 (b)). The

third case for instance refers to the case that two robots with

two cameras, observe two different targets. But, if only the

existence of a target is important rather than a specific target,

again this event can be shared through the communication to

be considered as a common event (Figure 1 (c)). By “label”

we mean the symbol of the event that is used as an input in

each local event set. For example, target recognition by two

sensors in two robots can be either adopted as two different

labels (private events) “Robot 1 recognized the target” and

“Robot 2 recognized the target”, or, by the same label as

“target recognized”.

Another type of event could be action that consists of a

pair of command and feedback; a command is sent to an

actuator, and its activation is sensed and feedbacked to the

agent. Similar to the “observation”, an “action” is initially

private event and it could be a common event with the other

agent, if

• its command and feedback are shared through commu-

nication;

• the second agent is also equipped with an identical

actuator to activate and feedback the activation of the

same operation, and both agents communicate on this

event and interpret it as the same label, or

• two actuators in two agents are synchronized to accom-

plish two different operations, but inform each other

about these commands and feedbacks, and interpret

them with same label.

The example of the first case is when one robot opens a screw

and the other robot is informed about the command for this

screwing and about the accomplishment of this operation

(Figure 1 (d)). The example for the second case is when

two robots synchronously push a door (Figure 1 (e)). In this

case, each robot needs an actuator (motor driver here), and

should synchronize on the pushing command as well as on

the feedback from the accomplishment of this task. Both

robots interpret this event as the same label of “pushing

the door”. The third case refers, for example, to the case

that robots push two different objects. Here, both robots are

equipped with actuators, synchronize on their commands and

feedbacks and interpret both actions with the same label of

“pushing” (Figure 1 (f)).

After setting this basic required functionality of the agents

and their capabilities (the set of sensors and actuators for

each agent), the number of sensors and actuators are fixed,

and still, some of the private events may need to become

common via the communication links, to make AS decom-

posable. The core idea is to find the set of private events

between two local event sets, such that they violate the

decomposability conditions DC1 and DC2, stated in Lemma

1, and let one event among each such event pair to become

a common event. This method, however, is applicable to the

class of automata that satisfy DC3. Moreover, this approach

may offer different sets of private events to become common

events. Since conversion of each private event to a common

event demands an extra communication link capacity, the

optimal decomposition is then introduced based on minimum

number of such conversions. Assuming the satisfaction of

DC3, for all sets of private events that may convert to

common events to remove the violation of DC, the optimal

decomposition algorithm will therefore seek the set with

the minimum cardinality. This concept is illustrated in the

following simple example and serves as the essential idea in

the main result.

Example 1: Consider the automaton

// •
e2 //

e1
))SSSSSS •

e3 // •

•

with local event sets

E1 = {e1, e3} and E2 = {e2}. This automaton is

undecomposable due to violation of DC by e2 ∈ E2\E1

and {e1, e3} ∈ E1\E2. To make it decomposable, one event

among the set {e1, e2} and another event among the set

{e2, e3} should become common. This implies that either

{e2} or {e1, e3} should become common. Therefore, in

order for optimal decomposition, {e2} is chosen to become

common due to its minimum cardinality. It is obvious that

in this case only one event should become common while

if {e1, e3} was chosen, then two events were required to

become common.

In order to automate this procedure, following operators

are introduced to capture the sets of private events that

cause the violation of DC. Consider the global task

automaton AS with local event sets Ei for n = 2 agents

such that E = E1 ∪ E2, and suppose that AS satisfies

DC3. In this case, the satisfaction of DC is reduced

to DC1 and DC2. Then, the violating set operator

V1,2 : AS → (E1\E2 × E2\E1) ∪ (E2\E1 × E1\E2),
indicates the set of private event pairs that violate

DC (violating pairs), and is defined as V1,2(AS) :=
{(e1, e2) ∈ {(E1\E2, E2\E1), (E2\E1, E1\E2)}|∃q ∈ Q
s.t. [[δ(q, e1)! ∧ δ(q, e2)!] ∨ δ(q, e1e2)!] ∧ ¬[δ(q, e1e2)! ∧
δ(q, e2e1)!] or ¬[δ(q, e1e2S)! ⇔ δ(q, e2e1S)!]},

for some S ∈ E∗. Moreover, W1,2 : AS →
(E1\E2) ∪ (E2\E1) is defined as W1,2(AS) :=
{e|∃e′s.t.(e, e′) ∈ V1,2(AS) ∨ (e′, e) ∈ V1,2(AS)}, and

shows the set of private events that contribute in

V1,2(AS) (violating events). Furthermore, V e
1,2 : AS →

(E1\E2 × E2\E1) ∪ (E2\E1 × E1\E2) is defined as

V e
1,2(AS) := {(e1, e2) ∈ V1,2(AS)|e ∈ {e1, e2}}, and

finally, we define W e
1,2 : AS → (E1\E2) ∪ (E2\E1)

as W e
1,2(AS) := {e′ ∈ (E1\E2) ∪ (E2\E1)|(e, e′) ∈

V e
1,2(AS) ∨ (e′, e) ∈ V e

1,2(AS)}. W e
1,2(AS) is the set of

events that have been paired up with e in AS , violating DC.

To remove the violation of DC, it suffices that for every

violating pair, at least one of its events become common

between E1 and E2. Since some of the pairs share events,

the minimum number of event conversion would be obtained

by forming a set of events that are most frequently paired
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to form the violating pairs. Such choice of events offers a

set of private events that span all violating pairs. Therefore,

the maximum appearance of an event in violation of DC

can be captured by comparing |W e
1,2(AS)| for all events in

W1,2(AS). Here, |.| denotes the set’s cardinality.

This procedure is stated formally in the following Algo-

rithm to be used in the main result for optimal automaton

decomposition.

Algorithm 1:

1) Set 0V1,2(AS) = V1,2(AS), 0W1,2(AS) = W1,2(AS),
0D1,2(AS) = ∅, k = 1;

2) color the events in 0W1,2(AS) whose conversion to

common events violates DC3;

3) mark an uncolored unmarked event ek from the set
k−1W1,2(AS) with the maximum |k−1W e

1,2(AS)|;
4) form kV1,2(AS) and kW1,2(AS) by removing all ele-

ments in k−1V1,2(AS) that correspond to ek;

5) update kW e
1,2(AS) for all events in kW1,2(AS), update

kD1,2(AS) = k−1D1,2(AS)∪{ek}, set k = k+1 and

got to set 2;

6) continue, until there exists no uncolored unmarked

event, at k = K;

7) D1,2(AS) is the set of all the marked events, i.e.,

D1,2(AS) = KD1,2(AS).

Where, kV1,2(AS) and kW1,2(AS) are V1,2(AS) and

W1,2(AS) in the k − th iteration.

Based on this formulation, an undecomposable task au-

tomaton can become decomposable with minimum number

of conversions of private events to common events, as the

following theorem.

Theorem 1: Consider a deterministic task automaton AS ,

satisfying DC3, with local event plants APi
, and local

event sets Ei, i = 1, 2, such that E = E1 ∪ E2. If AS

is not decomposable with respect to parallel composition

and natural projections Pi : AS → Pi(AS), i = 1, 2,

and 0V1,2(AS) contains no event pair with both colored, it

becomes optimally decomposable if all events in D1,2(AS),
derived from Algorithm 1, become common events between

E1 and E2.

Proof: We first define sets kF1,2(AS) and kF e
1,2(AS)

to be the sets of unordered pairs from kV1,2(AS)
and kV e

1,2(AS), respectively, by removing the repeti-

tive pairs, indicating the links between the violating

events (violating links) contributing in kV1,2(AS) and
kV e

1,2(AS), respectively. In each iteration k, the event

ek with the maximum |k−1W e
1,2(AS)| is marked, and

its corresponding violating pairs are removed until in

the K − th step all violating pairs of V1,2 are re-

moved. Therefore, kD1,2(AS) − k−1D1,2(AS) = {ek},

|kD1,2(AS)| = |k−1D1,2(AS)| + 1, |D1,2(AS)| =
K , k−1F1,2(AS) − kF1,2(AS) = k∆F1,2(AS) and

|kF1,2(AS)| − |k−1F1,2(AS)| = −|k∆F1,2(AS)| =
−|W ek

1,2(AS)|. Here, kD1,2(AS) and k∆F1,2(AS) are the set

of marked events and removed violating links in the k − th
iteration, respectively.

Furthermore, since the removing violating links in each

iteration will not appear in the next iterations then

k∆F1,2(AS) ∩ l∆F1,2(AS) = ∅, ∀k, l ∈ {1, ..., K}, k 6= l,
and since the algorithm continues until all violating pairs are

removed, then,
K
∪

k=1

k∆F1,2(AS) = F1,2(AS), and hence,

{k∆F1,2(AS)}, k ∈ {1, ..., K} partitions F1,2(AS).
Since in each step k, one event ek is added to kD1,2 and

|W ek

1,2| violating links are removed from the set k−1F1,2(AS),
then the number of violating links is reduced with the mini-

mum gradient decent − max
ek∈

k−1W1,2

|W ek

1,2|. When all violating

links are removed in the K − th step, then D1,2(AS) =
K will be minimum due to minimum gradient decent of
kF1,2 with respect to iteration number k. Therefore, the

number of these partitions is minimum if the size of each

partition is maximum in each iteration, i.e., |k∆F1,2(AS)| =
|k∆F1,2(AS)|max∀k ∈ {1, ..., K} ⇒ K = Kmin, that

is, ∀k ∈ {1, ..., K} : |W ek

1,2| = max
ek∈

k−1W1,2

|W ek

1,2| ⇒

|D1,2(AS)| = |D1,2(AS)|min, and the proof is completed.

IV. EXAMPLE

This section examines an example to illustrate the concept

of optimal task automaton decomposabilization.

Example 2: Consider two robots in a manufacturing sta-

tion, that are supposed to perform operations e1, e2, e3, e4,

e5, e6 and e7, according to the order specified in the task

automaton AS :

•
e7 // •

// • //e6 // • //a // •
e3

��6
66

66
6

e5

CC������ e2 // •
e1 // •

e4 // •
e5 // •

•
e4 // •

e5 // •
with the local event sets E1 = {e1, e3, e5, e7, a},

E2 = {e2, e4, e6, a}. The set of pairs that violate DC

(the set of violating pairs) is obtained as V1,2(AS) =
{(e1, e2), (e1, e4), (e2, e3), (e2, e5), (e3, e4), (e4, e5)}, with

W1,2(AS) = {e1, e2, e3, e4, e5}. It can be seen that the

private events e6 and e7 and the common event a are

not included in W1,2(AS) as they have no contribution in

violation of DC. Algorithm 1 is applied to find D1,2(AS)
as follows. During the algorithm we denote W1,2(AS) and

V1,2(AS) with W1,2 and V1,2, for simplicity. The initial sets
0V e

1,2 and 0W e
1,2 for violating events are obtained as:

e 0V e
1,2

0W e
1,2

e1 {(e1, e2), (e1, e4)} {e2, e4}
e2 {(e1, e2), (e2, e3), (e2, e5)} {e1, e3, e5}
e3 {(e2, e3), (e3, e4)} {e2, e4}
e4 {(e1, e4), (e3, e4), (e4, e5)} {e1, e3, e5}
e5 {(e2, e5), (e4, e5)} {e2, e4}
Two events e2 and e4 have the same |0W e

1,2| which

equals to max
e∈0W1,2

|0W e
1,2| = 3. Therefore, we can chose

either 1D1,2(AS) = {e2} or 1D1,2(AS) = {e4}. Note that

none of them are colored, i.e., they do not violate DC3. The

reason is that e2 appears not in more than one branch after a.
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Moreover, the transition after e4 in two distinct branches, is

the same, and hence, there will be no violating interleaving

of these two branches. If one choose 1D1,2(AS) = {e2},

then 1V1,2(AS) = {(e1, e4), (e3, e4), (e4, e5)} and
1W e

1,2(AS) = {e1, e3, e4, e5}, and

e 1V e
1,2

1W e
1,2

e1 {(e1, e4)} {e4}
e3 {(e3, e4)} {e4}
e4 {(e1, e4), (e3, e4), (e4, e5)} {e1, e3, e5}
e5 {(e4, e5)} {e4}

Since max
e∈1W1,2

|1W e
1,2| = |1W e4

1,2| = 3, then

2D1,2(AS) = {e2, e4}, and consequently, 2V1,2(AS) = ∅,
2W1,2(AS) = ∅, |2W1,2(AS)| = 0 and the algorithm

ends, here. If, however, e4 was chosen, instead of

e2, then 1V1,2(AS) = {(e1, e2), (e2, e3), (e2, e5)} and
1W1,2(AS) = {e1, e2, e3, e5}, and

e 1V e
1,2

1W e
1,2

e1 {(e1, e2)} {e2}
e2 {(e1, e2), (e2, e3), (e2, e5)} {e1, e3, e5}
e3 {(e2, e3)} {e2}
e5 {(e2, e5)} {e2}

Since max
e∈1W1,2

|1W e
1,2| = |1W e2

1,2| = 3, then 2D1,2(AS) =

{e4, e2}, and consequently, 2V1,2(AS) = ∅, 2W1,2(AS) = ∅,

|2W1,2(AS)| = 0 and the algorithm ends, here, resulting

the same D1,2(AS) = {e4, e2} as previous choice. Different

choices for kD1,2(AS) may result in different final sets,

however, the cardinality of final D1,2(AS) will be unique

due to update of kV1,2(AS) based on maximum |kW1,2(AS)|
in each iteration.

V. CONCLUSION

The paper proposed a formal method for optimal au-

tomaton decomposabilization, to complete the previous result

[1] on task automaton decomposition, applicable in a top-

down decentralized cooperative control of distributed discrete

event systems. Given a set of agents whose logical behaviors

are modeled in a parallel distributed system with fixed

event pattern (private and common events) for each agent,

and a global task automaton, [1] provided a necessary and

sufficient condition for decomposability of an automaton

with respect to parallel composition and natural projections

into two local event sets. This work completes the results of

[1], as following two contributions: Firstly, this paper gives a

procedure to initially define the private and common events

based on the atomic propositions of the global specification,

and shows that how a private event can become a common

one. Secondly, once the initial event pattern is attributed for

sensors and actuators based on the required functionality,

if the global task automaton is not decomposable, we have

proposed a sufficient condition for optimal task automaton

decomposabilization by converting some (as minimum as

possible) private events to common events between two

agents. This optimality would be appreciated for design as

it leads to less number of communication links. This result

is given for a team of two agents. Generalization of this

method into an arbitrary finite number of local plants is

under development. Furthermore, this method is restricted to

the class of global task automata that satisfy DC3. Another

future work could be the extension of this result into the

whole class of deterministic task automata.
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