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We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By
considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and
this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched
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1. Introduction

In the last two decades, there has been increasing interest
in stability analysis and controller design for switched sys-
tems; see the survey papers (DeCarlo et al., 2000; Liber-
zon and Morse, 1999), the recent book (Liberzon, 2003)
and the references cited therein. In (Liberzon and Morse,
1999; Liberzon, 2003), it is pointed out that there are
three basic problems in stability and design of switched
systems: (i) find conditions for stability under arbitrary
switching, (ii) identify the limited but useful class of sta-
bilizing switching laws, and (iii) construct a stabilizing
switching law. The necessary condition for the first prob-
lem is that all subsystems are stable. When arbitrary

switching cannot be guaranteed, including the case where
unstable subsystems are involved, we have to consider the
second and third problems.

In this paper, we focus our attention on the first prob-
lem. There are several existing works on Problem (i), most
of which deal with the case where the switched systems
are composed of continuous-time subsystems. Narendra
and Balakrishnan (1994) showed that when all subsystems
are stable and pairwise commutative, the switched linear
system is stable under arbitrary switching. Liberzon et al.
(1999) extended this result from the commutation condi-
tion to a Lie algebraic condition. Zhai (2003) showed that
a class of switched symmetric systems are asymptotically
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stable under arbitrary switching since a common quadratic
Lyapunov function, in the form of V (x) = xT x, exists for
all subsystems. The works (Zhai, 2003; Zhai et al., 2002b)
extended the considerations to stability analysis problems
for switched systems composed of discrete-time subsys-
tems.

Motivated by the observation that all these papers
deal with switched systems composed of only continuous-
time subsystems or only discrete-time ones, Zhai et
al. (2004) considered the new type of switched sys-
tems which are composed of both continuous-time and
discrete-time dynamical subsystems. As was also pointed
out in (Zhai et al., 2004), it is easy to find many
applications involving this kind of switched systems,
e.g., continuous-time systems with impulsive effects,
where the impulsive effect/state jump can be modeled as
discrete-time subsystems. Another example of a system
of this kind is a continuous-time plant controlled either by
a physically implemented regulator or by a digitally im-
plemented one (and a switching rule between them). We
also point out that a lot of other practical systems, includ-
ing bipedal robots and networked control systems, can be
modeled in this framework. Zhai et al. (2004) made some
analysis and obtained design results for several kinds of
such mixed-type switched systems. For example, in the
case where a commutation condition holds, and the case of
switched symmetric systems, it is shown that if all subsys-
tems are stable, then there exists a common quadratic Lya-
punov function for all subsystems and thus the switched
system is exponentially stable under arbitrary switching.
Recently, the authors extended the results for switched
symmetric systems (Zhai et al., 2004) to switched normal
systems (Zhai et al., 2006). For such switched systems,
it is shown that when all continuous-time subsystems are
Hurwitz stable and all discrete-time subsystems are Schur
stable, a common quadratic Lyapunov function exists for
the subsystems and that the switched system is exponen-
tially stable under an arbitrary switching. Some discus-
sions are also given for the case where unstable subsys-
tems are involved.

In this paper, we aim to apply the Lie algebraic ap-
proach, proposed in (Liberzon et al., 1999; Agrachev and
Liberzon, 2001), to switched systems which are com-
posed of both continuous-time and discrete-time subsys-
tems, where unstable subsystems may be included. By
considering a Lie algebra generated by all subsystem ma-
trices, we show that if all subsystems are Hurwitz/Schur
stable and this Lie algebra is solvable, then there is a com-
mon quadratic Lyapunov function for all subsystems and
thus the switched system is exponentially stable under ar-
bitrary switching. In the case where not all subsystems are
stable and the Lie algebra is solvable, we show that there
is a common quadratic Lyapunov-like function for all sub-
systems and the switched system is exponentially stable
with a reasonable decay rate under a dwell time scheme.

Two numerical examples are provided to demonstrate the
results.

It is noted here that this paper is motivated mainly
by three existing papers (Liberzon et al., 1999; Zhai et
al., 2004; Zhai et al., 2001b). The extension of the Lie
algebraic condition from the case where all subsystems
are stable (Liberzon et al., 1999) to the case where un-
stable subsystems are included (Zhai et al., 2001b) is not
trivial, and the same is true when dealing with the case
where both continuous-time and discrete-time subsystems
exist (Zhai et al., 2004). In fact, as will be seen later,
we modify the proof in (Liberzon et al., 1999) to fit our
present setting where both continuous-time and discrete-
time subsystems, and furthermore both stable and unstable
subsystems, exist.

2. System Description and Preliminaries

We consider the switched system which is composed of a
set of continuous-time LTI subsystems

ẋ(t) = Acix(t) , i = 1, . . . , Nc (1)

and a set of discrete-time LTI subsystems

x(k + 1) = Adjx(k) , j = 1, . . . , Nd, (2)

where x(t), x(k) ∈ R
n are the subsystem states, and Aci’s

and Adj’s are constant matrices of appropriate dimen-
sions. Nc ≥ 1 and Nd ≥ 1 are the numbers of continuous-
time subsystems and discrete-time ones, respectively.

Remark 1. Note that the above system is rather different
from sampled-data systems which are usually composed
of a continuous-time system and a discrete-time controller
with some (time-invariant or time-variant) sampling peri-
ods. However, as an important application, the above set-
ting can be adapted to sampled-data control. For example,
for a physical system which may be subject to a long sam-
pling period and a very short sampling period, we design
a continuous-time controller for the very short sampling
period and a discrete-time controller for the long sampling
period. Then the two closed-loop systems can be regarded
as a switched system composed of both continuous-time
and discrete-time subsystems as (1) and (2).

To discuss the stability of the overall switched sys-
tem, we assume for simplicity that the sampling periods
of all the discrete-time subsystems are of the same value
τ (the discussion can be easily extended to the case where
the discrete-time subsystems have different sampling pe-
riods). Since the states of the discrete-time subsystems
can be viewed as piecewise constant vectors between sam-
pling points, we can consider the value of the entire sys-
tem states in continuous-time domain. For example, if
Subsystem Ac1 is activated on [t0, t1] and then Subsystem
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Ad1 is activated for m steps and Subsystem Ac2 is acti-
vated from then to t2, the time domain is divided into

[t0, t2] = [t0, t1] ∪ [t1, t1 + mτ ] ∪ [t1 + mτ, t2] (3)

and the system state takes the form of

x(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eAc1(t−t0)x(t0) , t ∈ [t0, t1]

Ak−1
d1 x(t1) , t ∈ [t1 + (k − 1)τ, t1 + kτ) ,

1 ≤ k ≤ m

eAc2(t−t1−mτ)Am
d1x(t1) , t ∈ [t1 + mτ, t2].

(4)
Although x(t) is not continuous with respect to time t due
to the existence of discrete-time subsystems, the solution
x(t) is uniquely defined at all time instants, and thus vari-
ous stability properties can be discussed in the continuous-
time domain. This kind of approach has been frequently
used in the analysis and design of digital control systems.

Throughout this paper, we assume that at least one
stable (continuous-time or discrete-time) subsystem exists
among (1) and (2). Without loss of generality, we assume
here that Subsystems Ac1,. . . , Acsc

(0 ≤ sc ≤ Nc) and
Subsystems Ad1,. . . , Adsd

(0 ≤ sd ≤ Nd, sc + sd ≥ 1)
are stable while the others (if they exist) are not stable.

In the end of this section, we give some preliminaries
of a Lie algebra. Most of the material is picked up from
(Liberzon et al., 1999; Agrachev and Liberzon, 2001). In-
terested readers are referred to these or more detailed text-
books on Lie algebras (Gorbatsevich et al., 1994; Samel-
son, 1969).

A Lie algebra is a finite-dimensional vector space
equipped with a Lie bracket, i.e., a bilinear, skew-
symmetric map L × L → L satisfying the Jacobi identity
[a, [b, c]]+[b, [c, a]]+[c, [a, b]] = 0. In the case of a matrix
Lie algebra, the standard Lie bracket is defined as

[A,B]
�
= AB − BA.

If L1 and L2 are linear subspaces of a Lie algebra L, we
write [L1,L2] for the linear space spanned by all the prod-
ucts [L1, L2] with L1 ∈ L1 and L2 ∈ L2, and we define
the sequence L(k) inductively as follows:

L(1) �
= L , L(k+1) �

= [L(k),L(k)] ⊂ L(k) . (5)

If L(k) = 0 for some k sufficiently large, then L is called
solvable. For example, if L is a Lie algebra generated by
two matrices A and B, we have

L(1) = span{A,B, [A,B], [A, [A,B]], . . . },
L(2) = span{[A,B], [A, [A,B]], [B, [A,B]], . . . },
L(3) = span{[[A,B], [A, [A,B]]], . . . },

(6)

and so on.

The following result plays a key role in our sub-
sequent discussion. It is known as Lie’s theorem and
can be found in most textbooks on Lie algebra theory
(Gorbatsevich et al., 1994; Samelson, 1969).

Lemma 1. Let L be a solvable Lie algebra over an alge-
braically closed field, and let ρ be a representation of L on
a vector space V of finite dimension n. Then, there exists
a basis {v1, v2, . . . , vn} of V such that for each X ∈ L
the matrix ρ(X) in that basis takes the upper-triangular
form ⎡

⎢⎢⎢⎣
λ1(X) · · · ∗

...
. . .

...

0 · · · λn(X)

⎤
⎥⎥⎥⎦ , (7)

where λ1(X), . . . , λn(X) are its eigenvalues.

This lemma will be used in Section 4 for the Lie al-
gebra composed of all subsystem matrices in the switched
system.

3. Stability Analysis Using CQLF/CQLLF

In this section, we discuss the stability of the switched sys-
tem using the approach of common quadratic Lyapunov
(or Lyapunov-like) functions.

Definition 1. If all the subsystems are Hurwitz/Schur
stable (i.e., sc = Nc, sd = Nd) and there is a common
positive definite matrix P satisfying

AT
ciP + PAci < 0 , i = 1, . . . , Nc , (8)

AT
djPAdj − P < 0 , j = 1, . . . , Nd , (9)

then V (x) = xT Px is called a common quadratic Lya-
punov function (CQLF) for all the subsystems.

It is easy to see that when a CQLF exists, there are
two positive scalars αcs and αds < 1 such that

AT
ciP + PAci < −2αcsP,

AT
djPAdj − α2

dsP < 0 (10)

hold for all i and j.

Remark 2. Obviously, the necessary condition for the
existence of a CQLF is that all continuous-time subsys-
tems are Hurwitz stable and all discrete-time subsystems
are Schur stable. There are many switched systems in
which all the subsystems have a CQLF. For example, we
showed (Zhai, 2003) that if all the subsystems are (Hur-
witz or Schur) stable and symmetric, then V (x) = xT x
(P = I) is a CQLF. The result was extended in (Zhai et
al., 2006) to switched normal systems (AT

ciAci = AciA
T
ci ,

AT
djAdj = AdjA

T
dj). In (Zhai et al., 2004), we proved

constructively that if all the subsystems are (Hurwitz or
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Schur) stable and commutative pariwise, then there exists
a CQLF for all the subsystems.

Theorem 1. If there is a CQLF for all the subsystems, the
switched system composed of (1) and (2) is exponentially
stable under arbitrary switching.

Proof. To show exponential stability, we first find positive
scalars αcs and αds satisfying (10). Then, in the period
where a continuous-time subsystem is activated, we ob-
tain V̇ (x(t)) < −2αcsV (x(t)), and in the period where
a discrete-time subsystem is activated, V (x(k + 1)) <
α2

dsV (x(k)).
For any time t > 0 (when a discrete-time subsys-

tem is active at t, we refer to t tacitly as the last sampling
point since the state does not change until the next sam-
pling point), we can always divide the time interval [0, t]
as t = tc+mτ (m ≥ 0), where tc is the total duration time
on continuous-time subsystems and mτ is the total dura-
tion time on discrete-time subsystems. It is not difficult to
obtain that whatever the activation order is,

V (x(t)) ≤ e−2αcstcα2m
ds V (x(0)) (11)

and thus

|x(t)| ≤
√

λM (P )
λm(P )

e−αst|x(0)|, (12)

where

αs = min
{

αcs,
ln(α−1

ds )
τ

}
> 0,

λM (P ) and λm(P ) denote the largest and smallest eigen-
values of P , respectively. Since we did not add any lim-
itation on the switching signals, the switched system is
exponentially stable under arbitrary switching.

Now, we deal with the case where not all the subsys-
tems are Hurwitz/Schur stable. To proceed, we need the
following definition:

Definition 2. If not all the subsystems are Hurwitz/Schur
stable and there is a common positive definite matrix P
satisfying

(Aci + αcsI)T P + P (Aci + αcsI) < 0,

i = 1, . . . , Ncsc
, (13)

(Aci − αcuI)T P + P (Aci − αcuI) < 0,

i > Ncsc
, (14)(

Adj

αds

)T

P

(
Adj

αds

)
− P < 0, j = 1, . . . , Ndsd

, (15)

(
Adj

αdu

)T

P

(
Adj

αdu

)
− P < 0, j > Ndsd

, (16)

with scalars αcs > 0, αcu > 0, 0 < αds < 1 and αdu >
1, then V (x) = xT Px is called a common quadratic
Lyapunov-like function (CQLLF) for all the subsystems.

Remark 3. In Definition 2, the matrix inequalities (13)
and (15) are the same as (10), which corresponds to the
stable subsystems, while (14) and (16) are for the unsta-
ble subsystems. For any unstable Aci, it is easy to find
positive real αcu such that Aci −αcuI is stable. The same
holds with unstable Adj . The key point is that all the ob-
tained stable matrices must correspond to a common pos-
itive definite matrix.

Now, let us investigate what happens when Definition
2 is true. According to the matrix inequalities in Defini-
tion 2, in the period where a continuous-time subsystem
is activated we obtain

V̇ (x(t)) <

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2αcsV (x(t)) when the subsystem
is stable,

2αcuV (x(t)) when the subsystem
is unstable.

(17)
Similarly, in the period where a discrete-time subsystem
is activated we obtain

V (x(k + 1))

<

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α2
dsV (x(k)) when the subsystem

is stable,

α2
duV (x(k))when the subsystem

is unstable.

(18)

For any time t > 0, we can always divide the time
interval [0, t] as t = tcs + tcu + (ms + mu)τ , where
tcs and tcu are the total duration times on stable and un-
stable continuous-time subsystems, respectively, and msτ
and muτ are the total duration times on stable and unsta-
ble discrete-time subsystems, respectively. Then it is not
difficult to obtain that whatever the activation order is,

V (x(t)) ≤ e−2αcstcs+2αcutcuα2ms

ds α2mu

du V (x(0)) . (19)

Defining

αs = min

{
αcs,

ln(α−1
ds )

τ

}
> 0,

αu = max

{
αcu,

ln(αdu)
τ

}
> 0,

we obtain

V (x(t)) ≤ e−2αsts+2αutuV (x(0)) , (20)

where ts = tcs + msτ is the total duration time on stable
subsystems and tu = tcu + muτ is the total duration time
on unstable subsystems.



Extended Lie algebraic stability analysis for switched systems. . . 451

For any given positive scalar α < αs, we consider
the following dwell time scheme:

tu
ts

≤ αs − α

αu + α
, (21)

which specifies an upper bound to the distance between
the total duration time on unstable subsystems and stable
ones.

Since (21) is equivalent to

− 2αsts + 2αutu ≤ −2α(ts + tu) = −2αt, (22)

from (20) we obtain

|x(t)| ≤
√

λM (P )
λm(P )

e−αt|x(0)| . (23)

We summarize the above discussion in the following
theorem:

Theorem 2. If there is a CQLLF for all the subsystems
satisfying (13)–(16), the switched system composed of (1)
and (2) is exponentially stable with decay rate α under the
dwell time scheme (21).

Remark 4. If we desire the decay rate αs, then accord-
ing to (21) the total activation time on unstable subsystems
(tu) must be zero, which means that unstable subsystems
are not activated. This is in accordance with Theorem 1.
Further, α can be very close to αs if tu is chosen suffi-
ciently small, which is also reasonable.

4. Lie Algebraic Conditions

We first state a result which will be used later in the proof
of the main theorem.

Lemma 2. All leading principal minors of a Hermitian
matrix are real. A Hermitian matrix H is positive definite
(i.e., x∗Hx > 0,∀x 
= 0) if and only if all its leading
principal minors are positive.

Now, we state and prove the first main theorem of
this section.

Theorem 3. If all the subsystems are Hurwitz/Schur sta-
ble and the Lie algebra{

Aci, i = 1, . . . , Nc; Adj , j = 1, . . . , Nd

}
LA

(24)

is solvable, then there exists a CQLF for all the subsys-
tems, and thus the switched system composed of (1) and
(2) is exponentially stable under arbitrary switching.

Proof. According to Theorem 1, the proof is reduced to
finding a CQLF for all the subsystems. Without loss of
generality, we assume here for simplicity that n = 3.

Translating Lemma 1 into the present situation, we
see that if the Lie algebra (24) is solvable, then there exists
a nonsingular complex matrix U such that for all i and j
we have

Aci = U−1ÃciU , Adj = U−1ÃdjU , (25)

where the complex matrices Ãci and Ãdj are upper-
triangular.

We first show that there exists a real positive definite
matrix P̃ such that

Ã∗
ciP̃ + P̃ Ãci < 0 , Ã∗

djP̃ Ãdj − P̃ < 0 . (26)

Especially, we choose P̃ with a real diagonal form as P̃ =
diag{p̃1, p̃2, p̃3}, and thus we have

−Ã∗
ciP̃ − P̃ Ãci

=

⎡
⎢⎢⎣

−2p̃1(�Ãci)11 −p̃1(Ãci)12 −p̃1(Ãci)13
∗ −2p̃2(�Ãci)22 −p̃2(Ãci)23

∗ ∗ −2p̃3(�Ãci)33

⎤
⎥⎥⎦

(27)

and

−Ã∗
djP̃ Ãdj + P̃

=

⎡
⎢⎢⎣

p̃1(1−|(Ãdj)11|2) −p̃1(Ãdj)∗11(Ãdj)12

∗ p̃2(1−|(Ãdj)22|2)−p̃1|(Ãdj)12|2
∗ ∗

−p̃1(Ãdj)∗11(Ãdj)13

−p̃1(Ãdj)∗12(Ãdj)13 − p̃2(Ãdj)∗22(Ãdj)23

p̃3(1−|(Ãdj)33|2)−p̃1|(Ãdj)13|2−1p̃2|(Ãdj)23|2

⎤
⎥⎥⎦.

(28)

Since all the subsystems are assumed to be Hur-
witz/Schur stable, (�Ãci)11 < 0 and |(Ãdj)11| < 1 hold
for all i and j. Then we can choose positive p̃1 arbitrarily
so that the first leading principal minors of (27) and (28),
namely, −2p̃1(�Ãci)11 and p̃1(1 − |(Ãdj)11|2) are both
positive.

Next, since (�Ãci)22 < 0 and |(Ãdj)22| < 1, we can
always find a sufficiently large positive scalar p̃2 such that
for fixed p̃1, the second leading principal minors of (27)
and (28), namely, both∣∣∣∣∣∣

−2p̃1(�Ãci)11 −p̃1(Ãci)12

∗ −2p̃2(�Ãci)22

∣∣∣∣∣∣ (29)

and∣∣∣∣∣∣
p̃1(1−|(Ãdj)11|2) −p̃1(Ãdj)∗11(Ãdj)12

∗ p̃2(1−|(Ãdj)22|2)−p̃1|(Ãdj)12|2

∣∣∣∣∣∣
(30)
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are positive.
Finally, since (�Ãci)33 < 0 and |(Ãdj)33| < 1, for

fixed p̃1 and p̃2, we can always find a sufficiently large
positive scalar p̃3 such that the third leading principal mi-
nors (i.e., the determinants) of (27) and (28) are both pos-
itive.

In this way, we have chosen p̃1, p̃2 and p̃3 so that all
the leading principal minors of (27) and (28) are positive.
Therefore, according to Lemma 2, (26) is satisfied with
the chosen P̃ . Using the obtained P̃ , we substitute (25)
into (26) to obtain

P̃UAciU
−1 + (U−1)∗AT

ciU
∗P̃ < 0,

(U−1)∗AT
djU

∗P̃UAdjU
−1 − P̃ < 0, (31)

which are respectively equivalent to

PAci + AT
ciP < 0 , AT

djPAdj − P < 0 , (32)

where P = U∗P̃U .
We write the complex matrix P as P = �(P ) +√−1(P ). Since P is Hermitian, (P ) is skew-

symmetric, from which xT Px = xT�(P )x > 0 (x 
= 0)
is obtained. Thus, �(P ) is a real positive definite matrix.
Similarly, we can easily obtain

AT
ci�(P ) + �(P )Aci < 0,

AT
dj�(P )Adj −�(P ) < 0, (33)

which implies that �(P ) is the common Lyapunov matrix
we want to compute. This completes the proof.

Remark 5. It is understood from the proof of Theorem
3 that the result can be extended to the case where both
upper-triangular and lower-triangular Ãci’s (or Ãdj’s) ex-
ist. This means that if the Lie algebra (24) is not solvable,
we can try to replace some subsystem matrices with their
transposes in (24) and then check the new Lie algebra.

Remark 6. As was also pointed out in (Liberzon et al.,
1999), although we have showed the existence condition
of CQLF constructively, the computation depends on the
value of the transformation matrix U . Since obtaining the
value of U may need some efforts when using standard
numerical methods, it may be more efficient to solve the
LMIs (8) and (9) with respect to P > 0 directly, using the
existing LMI software or the stochastic method proposed
in (Liberzon and Tempo, 2003).

Next, we deal with the case where not all the subsys-
tems are stable.

Theorem 4. If not all the subsystems are stable and the
Lie algebra (24) is solvable, then there exists a CQLLF for
all the subsystems and thus the switched system composed
of (1) and (2) is exponentially stable with decay rate α
under the dwell time scheme (21).

Proof. Since the Lie algebra (24) is solvable, there exists
a nonsigular complex matrix U such that (25) holds for all
i, j, where Ãci, Ãdj are upper-triangular.

For Hurwitz stable Acis, there always exists a pos-
itive scalar αcs such that Aci + αcsI remains Hurwitz
stable. For Hurwitz unstable Aci’s, there always exists a
positive scalar αcu such that Aci−αcuI is Hurwitz stable.
Similarly, for discrete-time subsystems, we find a positive
scale αds < 1 for Schur stable Adj such that Adj/αds re-
mains Schur stable, and αdu > 1 for unstable Adj such
that Adj/αdu becomes Schur stable.

From (25) we compute

Aci + αcsI = U−1(Ãci + αcsI)U,

i = 1, . . . , Ncsc
(34)

Aci − αcuI = U−1(Ãci − αcuI)U, i > Ncsc
(35)

Adj

αds
= U−1 Ãdj

αds
U, j = 1, . . . , Ndsd

(36)

Adj

αdu
= U−1 Ãdj

αdu
U, j > Ndsd

(37)

and note that all the matrices Ãci + αcsI (1 ≤ i ≤ Ncsc
),

Ãci − αcuI (Ncsc
< i ≤ Nc), Ãdj/αds (1 ≤ j ≤ Ndsd

)
and Ãdj/αdu (Ndsd

< j ≤ Nd) are Hurwitz/Schur stable
and are still upper-triangular.

Then, using the same technique as in the proof of
Theorem 3, we can obtain a common positive definite
(diagonal) matrix P for Aci + αcsI (1 ≤ i ≤ Ncsc

),
Aci − αcuI (Ncsc

< i ≤ Nc), Adj/αds (1 ≤ j ≤ Ndsd
)

and Adj/αdu (Ndsd
< j ≤ Nd). This completes the proof

of the existence of a CQLLF. According to Theorem 2, the
switched system is exponentially stable with decay rate α
under the dwell time scheme (21).

5. Examples

Example 1. Consider the switched system with one
continuous-time subsystem and one discrete-time subsys-
tem whose system matrices are

Ac =

[
−0.5 −0.5

0.1 −0.3

]
, Ad =

[
0.4 0.2

0.2 0.3

]
. (38)

It is easy to confirm that Ac is Hurwitz stable and Ad is
Schur stable.

Some standard Lie brackets are computed as

[Ac, Ad] =

[
−0.1200 0.0100

0.0500 0.1200

]
,

[Ac, [Ac, Ad]] =

[
−0.0260 −0.1220

−0.0140 0.0260

]
,
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[Ad, [Ac, Ad]] =

[
−0.0080 0.0490

−0.0530 −0.0080

]
,

[[Ac, Ad], [Ac, [Ac, Ad]]] =

[
−0.0060 −0.0298

−0.0060 0.0060

]
,

[[Ac, Ad], [Ad, [Ac, Ad]]] =

[
−0.0030 −0.0119

−0.0119 0.0030

]
,

(39)

and

[[[Ac, Ad], [Ac, [Ac, Ad]]] , [[Ac, Ad], [Ad, [Ac, Ad]]]]

=

[
−0.0004 0.0000

0.0001 0.0004

]
. (40)

It is seen from further computations that the Lie al-
gebra {Ac, Ad}LA is solvable with k = 5, and thus the
switched system is exponentially stable under arbitrary
switching.

Suppose that the sampling period of Subsystem Ad is
0.01. Figure 1 shows the convergence of the system state
and the norm when Ac and Ad are activated alternatively
with a randomly generated time series (0.5, 3 steps, 0.6, 2
steps, 0.25, 4 steps) with the initial state [100 100]T . The
asterisk in the left part of Fig. 1 describes the discrete-
time state change, and the right part of Fig. 1 shows that
the norm of the system state converges to zero quickly.

Example 2. Modify the matrix Ac in Example 1 and use
the same Ad as

Ac =

[
0 −0.5

0.1 0.2

]
, Ad =

[
0.4 0.2

0.2 0.3

]
. (41)

It is easy to confirm that Ac in the above equation is equal
to the matrix Ac in (38) plus 0.5I , and thus the Lie alge-
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Fig. 1. System state and its norm in Example 1.

bra {Ac, Ad}LA here is also solvable without any need to
compute the Lie brackets.

Since Ac’s eigenvalues are 0.1 ± 0.2
√−1, we set

αcu = 0.2 to make Ac −αcuI Hurwitz stable. Also, since
Ad’s eigenvalues are (0.7 ±√

0.17)/2, we set αds = 0.9
so that Ad/αds remains Schur stable. Defining the sam-
pling period as τ = 0.1, we obtain αs = ln(α−1

ds )/τ =
1.054 and αu = αcu = 0.2. If we choose the decay rate
as α = 0.1, then according to (21), the dwell time scheme
is tu/ts ≤ (αs − α)/(αu + α) ≈ 3.17. To satisfy this re-
quirement, we choose activating Ac with 3.1 and then Ad

with 10 steps, alternately. Figure 2 shows the convergence
of the system state and the norm, where the initial state is
[200 100]T .

-100 0 100 200
-50

0

50

100

150

200

250

x
1

x
2

0 0.5 1 1.5
0

50

100

150

200

250

t

no
rm
 o
f x

Fig. 2. System state and its norm in Example 2.

6. Conclusion

Lie algebraic conditions have been established for the
stability of a class of switched systems, where both
continuous-time and discrete-time linear subsystems ex-
ist and unstable subsystems may be included. The results
are theoretically attractive, and the computation is not in-
volved. Future work includes extention to the case of non-
linear subsystems.
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