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Abstract— This paper presents a scheduling strategy for a
collection of discrete-time networked control systems (NCSs)
subjected to communication constraints. Communication con-
straints under consideration include medium access constraint,
network-induced delays and packet-dropouts. A feedback con-
trol system with the communication constraints is modelled
as a switched delay system which switches on the open-loop
and closed-loop models according to whether the feedback
control loop gains access to the network or not. Delay-dependent
sufficient conditions for exponential stability with L2 gain
performance are developed for the switched system. Based on
the stability conditions, sufficient conditions are presented on
the existence of scheduling policy that simultaneously stabilizes
the collection of NCSs. Simulation on network-based control of
unstable batch reactor systems is performed to demonstrated
the effectiveness of the proposed scheduling strategy.

I. INTRODUCTION

Shared communication network is increasingly being used

to support information exchange in control of a group of

spatially distributed systems. This is very typical setups

when using the base station to control and coordinate mul-

tiple mobile robots [1], unmanned aerial vehicles (UAVs)

and autonomous air vehicles (AAVs) [2], through a wire-

less/wired network. Control systems whose control loops are

closed over a wired or wireless communication network are

known as networked control systems (NCSs). Motivation

for using communication network in control comes from

higher system testability and resource utilization, as well as

lower cost, reduced weight and power, simpler installation

and maintenance [3]. However, many practical networks

are subjected to communication constraints that make the

analysis and design of NCSs be typically harder than that of

classical control systems. NCSs require novel control design

methodologies that differ in nature from the tradition control

viewpoint to account for the presence of communication

constraints in the closed-loops. For example, (i) data packets

transmitted over networks are usually subjected to random

or time-varying delays, and/or even may be lost during the
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information transmission, see for example the recent servery

paper [4] and references listed therein; and (ii) because of

the limitation on channel capacity, the shared communication

medium imposes access constraints: only a limited number of

the network nodes are allowed to transmit their data packets

at any time instant [3], [5], [6], [7].

Simultaneous stability analysis for a group of NCSs

has recently received increasing attention [5], [6], [8], [9],

[10]. In the NCSs setting, medium access constraint was

introduced by Hristu-Varsakelis in [5], [6], where only a

few of the family of plants can gain the shared network

access to exchange information with their remotely located

controllers at any one time, while others must wait. The

medium access constraint raises the issue of communication

scheduling strategies that determine how and when each

control loop gains access to the network. A static periodic

network allocation sequence was presented in [5] for si-

multaneous stability of the collection of linear systems, and

the network allocation policy was improved in [8] with the

introduction of an interrupt-based communication strategy.

In [9], the rate monotonic scheduling algorithm was applied

to schedule a set of NCSs. A time-division scheduling policy

was developed in [10] by employing average dwell time

technique combined with piecewise Lyapunov-like functions.

These studies are carried out under the assumption that data

packets are transmitted over an idealized shared network

such that network-induced delays and data packet dropouts

are not present in the network. In [11], network-induced

delays less than a sample period were modelled as polytopic

uncertainties in a sample-data control framework and robust

control methods were applied to the polytopic systems.

In this paper, medium access constraint introduced in [5],

[6], network-induced delays, and data packet dropouts are

simultaneously taken into account in the shared communica-

tion network. The collection of NCSs under consideration

is modelled as a group of switched systems with time-

varying delays. The modelling approach makes us apply the

ideas already developed in the switched system framework

[12], [13], [14] for the simultaneous stability analysis for

the NCSs in the presence of communication constraints.

Hoverer, the existing results on the stability of switched delay

systems cannot be directly applied to analyse the stability of

NCSs. The main contributions of the paper include: (i) delay-

dependent sufficient conditions for exponential stability with

weighted L2 gain are presented for the switched delayed

systems composed with both stable and unstable subsystems;

and (ii) simultaneous stability is developed for the NCSs

under a static periodic scheduling policy.
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Fig. 1. Communication of controller-plants through a shared communica-
tion medium.

II. NCS MODEL

In this paper, we consider the NCSs consisting of a col-

lection of discrete-time linear plants whose feedback control

loops are closed via a shared communication network, as

illustrated in Fig. 1. The dynamics of the i-th plant, i ∈
N = {1, ..., N}, is given by

xi(k + 1) = Aixi(k) + Biui(k) + Giωi(k) (1)

zi(k) = Cixi(k) + Diωi(k) (2)

where xi(k) ∈ R
ni are the system states, ui(t) ∈ R

ri are

the control inputs, zi(k) ∈ R
li are the controlled outputs,

and ωi(k) ∈ R
pi are the disturbance inputs, which belong to

L2[0,∞).
Consider state-feedback network-based controllers:

ui(k) = Kixi(k). (3)

Assumption 1: [5], [6] Because of limited communication

capacities, not all the control loops in the NCSs can be

addressed at the same time. At each discrete-time instant,

only Cmax of the N plants (Cmax < N ) are allowed to

communicate with their remote controllers while others must

wait.

Assumption 2: [5], [6] When a plant fails to communicate

with its corresponding controller, the open-loop system might

be unstable; otherwise, the plant gains access to communi-

cate with its controller and the resulting closed-loop system

is stable.

Assuming that the network communication is unreliable,

there may exist transmission delays and packet-dropouts in

practical communication channel. Let P = {q1, q2, . . .} be

a subsequence of 1, 2, 3 . . ., which denotes the sequence of

time points of successful data transmissions from the sensors

to actuators. Let ξ̄i = maxqk∈P{ξi(qk)} be the maximum

packet-dropout upper bounds, where ξi(qk) are the number

of accumulated data packet dropouts from the last updating

instant qk to the next updating instant qk+1.

Transmission delay: It is supposed that the signal trans-

mission delays τi(qk) satisfy

τ i ≤ τi(qk) ≤ τ i (4)

where τ i and τ i are constant positive scalars representing

the lower and upper bounds of transmission delays in the

network, respectively. From the viewpoint of the zero-hold,

the control input is given by

ui(k) = Kixi(qk − τi(qk)), qk ≤ k ≤ qk+1 − 1 (5)

where qk+1 is the next updating instant of the actuators after

qk, and the initial condition of the control input is set to zero,

i.e., ui(l) = 0, 0 ≤ l ≤ q1 − 1.

Packet-dropout: Note that ξ̄i = maxqk∈P{ξi(qk)} are the

maximum packet-dropout upper bounds, which gives

0 ≤ ξi(qk) ≤ ξ̄i (6)

According to the above analysis, and inequalities (4) and (6),

it can be seen that

1 ≤ qk+1 − qk ≤ ξ̄i + 1 + τ i (7)

which implies that the interval between any two successive

updating instants is upper bounded by ξ̄i +1+ τ i. Based on

the above analysis, systems (1) with (5) can be described by

xi(k + 1) = Aixi(k) + BiKixi(qk − τi(k)) + Giωi(k) (8)

where qk ≤ k ≤ qk+1 − 1, qk ∈ P . Let di(k) = k − qk +
τi(qk), thus it follows that qk − τi(qk) in (8) can expressed

as

qk − τi(qk) = k − di(k) (9)

From (7), it can be seen that

di ≤ di(k) ≤ di (10)

where di = τ i and di = 2τ i + ξ̄i. Substituting (9) into (8),

it follows

xi(k + 1) = Aixi(k) + BiKixi(k − di(k)) + Giωi(k) (11)

Under Assumption 1, some control loops of the plants

are open for some time because the shared network link

is occupied by another users. Thus, the i-th control system

(11), i ∈ N = {1, ..., N} switches on its open-loop and

closed-loop status, which can be described by the following

switched system:

xi(k + 1) = Aiσi(k)xi(k) + Adiσi(k)xi(k − di(k))

+Giσi(k)ωi(k) (12)

where the switching signals σi(k) : Z+ = {0, 1, 2, . . .} →
{1, 2} are piecewise constant functions of time k. Let sub-

system “1” denote the case of the closed-loop status, and

subsystem “2” describe the control loop being open, i.e.,

Ai1 = Ai, Adi1 = BiKi, Gi1 = Gi (13)

Ai2 = Ai, Adi2 = 0, Gi2 = Gi (14)

Remark 1: In practical applications, it might be desirable

to make control components like sensors, actuators, and

controllers work intermittently. For example, control com-

ponents are suspended from time to time for an economic

or system life under consideration [15]. On the other hand,

occasional failures of feedback control often occur in real-

world applications since control signals are not transmitted

perfectly or control components are complete outage [15].

In these cases, the control system with intermittent feedback

could be described by a switched system and the switching

signal depends on whether the controller works or not.
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Under Assumptions 1-2 and considering the transmission

delay and packet-dropout effects, the objective of the paper is

to design a scheduling policy such that all systems in (1) and

(2) are exponentially stabilized with L2 gain performance.

III. STABILITY OF SWITCHED SYSTEMS

This section dedicates to deriving delay-dependent stabil-

ity conditions for discrete-time switched systems with time-

varying delays. In Section II, a single control system is mod-

elled as a switched delay system composed of stable closed-

loop subsystem and unstable open-loop subsystem. Recently,

switched Lyapunov function method was extensively used to

assess asymptotic stability of discrete-time switched delay

systems [16], [17], [18], where arbitrary switching signal was

considered and thus every subsystem in switched systems

was required to be stable. So far, few result has appeared

to test asymptotic stability for discrete-time switched delay

systems with unstable subsystems [19]. In [19], average

dwell time technique [20] was utilized to design a stabilizing

switching signal for delay switched systems with unstable

subsystem, where the delay was assumed to be constant. But,

the delays involved in system (12) are time-varying, thus,

these existing results cannot be used to analyse the stability

of system (12). For the sake of brevity, the subscript i will

be dropped in the section.

Definition 1: [10] For any discrete-time instant k > 0,

let αc(k) denote the total time interval of the plant being

closed-loop (attended by the controller) during [0 k), and

the ratio
αc(k)

k is said to be the attention rate of the plant,

and let N(k) denote the total number of switchings between

closed-loop with open-loop during [0 k), which is said to be

the attention frequency.

Consider the subsystem of the switched delay system (12)

given by

x(k + 1) = Ajx(k) + Adjx(k − d(k)) + Gjω(k). (15)

For system (15), choose the following positive definite

quadratic functionals:

Vj(k) = V1j(k) + V2j(k) + V3j(k) + V4j(k)

V1j(k) = xT (k)Pjx(k)

V2j(k) =
0∑

δ=−d+1

k−1∑

l=k−1+δ

yT (l)λk−1−l
j Z1jy(l)

+

−d∑

δ=−d+1

k−1∑

l=k−1+δ

yT (l)λk−1−l
j Z2jy(l)

V3j(k) =
k−1∑

l=k−d

xT (l)λk−1−l
j Q1jx(l)

+
k−1∑

l=k−d

xT (l)λk−1−l
j Q2jx(l) (16)

V4j(k) =

−d+1∑

δ=−d+1

k−1∑

l=k+δ

xT (l)λk−1−l
j Q3jx(l)

y(l) = x(l + 1) − x(l)

where λj > 0, Pj > 0, Q1j ≥ 0, Q2j ≥ 0, Q3j ≥ 0,

Z1j > 0, Z2j > 0, j ∈ {1, 2}.

It should be mentioned that the positive definite quadratic

functional (16) is similar to the Lyapunov-Krasovskii func-

tional in [21], i.e., if λj = 1, functional (16) shrinks to the

one in [21] where it is used to derive asymptotic stability

conditions for non-switched delay system. Along any state

trajectory of system (15), an exponential decay or increase

estimate of Vj(k) in (16) is firstly presented in the following

lemma, which plays an important role in the development.

Lemma 1: For given scalars γj > 0, λj > 0 and d ≥ d ≥
0, if there exist matrices Pj > 0, Q1j ≥ 0, Q2j ≥ 0, Q3j ≥
0, Z1j > 0, Z2j > 0, Vj = [V T

1j V T
2j V T

3j V T
4j V T

5j ]
T , Wj =

[WT
1j WT

2j WT
3j WT

4j WT
5j ]

T , Sj = [ST
1j ST

2j ST
3j ST

4j ST
5j ]

T ,

j ∈ {1, 2}, such that the following inequalities
[

Φj Πj

∗ Ωj

]
< 0, j ∈ {1, 2} (17)

hold, then along any state trajectory of system (15) with the

time-varying delay (9), the following inequalities satisfy

Vj(k + 1) ≤ λjVj(k) − Γj(k) (18)

where

Γj(k) = zT (k)z(k) − γ2
j ωT (k)ω(k), (19)

∗ denotes the symmetric terms in a symmetric matrix, and

Φj =




Φ11j Φ12j Φ13j Φ14j Φ15j

∗ Φ22j Φ23j Φ24j Φ25j

∗ ∗ Φ33j Φ34j ST
5j

∗ ∗ ∗ Φ44j −WT
5j

∗ ∗ ∗ ∗ Φ55j




,

Πj = [ΞT
1jPj dΞT

2jZ1j d̃ΞT
2jZ2j c1jVj c2jWj c3jSj ],

Ωj = diag{−Pj − dZ1j − d̃Z2j − c1jZ1j

− c2jZ2j − c3jZ3j},
Ξ1j = [Aj Adj 0 0 Gj ], Ξ2j = [Aj − I Adj 0 0 Gj ],

Φ11j = −λjPj +Q1j +Q2j +(d̃+1)Q3j +V1j +V T
1j +CT C,

Φ12j = −V1j + V T
2j + W1j − S1j , Φ13j = V T

3j + S1j ,

Φ14j = V T
4j − W1j , Φ15j = V T

5j + CT D,

Φ22j = −λd
jQ3j − V2j − V T

2j + W2j + WT
2j − S2j − ST

2j

(for 0 < λj ≤ 1), or

Φ22j = −λ
d
jQ3j − V2j − V T

2j + W2j + WT
2j − S2j − ST

2j

(for λj ≥ 1),

Φ23j = S2j − V T
3j + WT

3j − ST
3j ,

Φ24j = −V T
4j −WT

2j−ST
4j +WT

4j , Φ25j = −V T
5j +WT

5j−ST
5j ,

Φ33j = −λ
d
jQ1j + S3jq + ST

3jq , Φ34j = −W3j + ST
4j ,

Φ44j = −λd
jQ2j − W4j − WT

4j , Φ55j = −γ2
j I + DT D,

Z3j = Z1j + Z2j , d̃ = d − d, c1j = (λ−d
j − λ2

j )/(1 − λj),

c2j = (λ−d
j − λ

d+1
j )/(1 − λj), c3j = λ

d+1
j + λ

d
j .

Proof: The proof follows the similar approach as

Theorem 1 in [21] and will be omitted for conciseness.

Remark 2: By iterative substitutions, inequality (18)

yields

Vj(k) ≤ λ
(k−k0)
j V (k0) −

k−1∑

s=k0

λ
(k−s−1)
j Γj(s) (20)
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where Γj(s) is defined in (19), which implies that the

functional Vj(k) in (16) along any state trajectory of system

(15) with ω(t) = 0 has an exponential decay rate λj

(0 < λj < 1) or increase rate λj (λj > 1). When λj = 1,

inequality (17) gives delay-dependent sufficient conditions

for asymptotical stability with L2 gain γj for system (15).

Based on the above exponential decay or increase estimate

of Vj(k) in Lemma 1, the following result gives exponential

stability and preserving weighted L2 gain for system (12).

Lemma 2: Consider the switched delay system (12) and

(2) with subsystem (13) and subsystem (14). Supposed that

there exists a piecewise quadratic Lyapnov-like function

candidate

V (k) =

{
V1(k), if closed-loop

V2(k), if open-loop
(21)

satisfying (18) and

V1(k) ≤ µV2(k), V2(k) ≤ µdλV1(k) (22)

where 0 < λ1 < 1, λ2 > λ1, µ > 1, dλ = (λ2

λ1
)d−1 ≥ 1.

Then the switched system (12) and (2) is exponentially stable

with decay rate 0 < ρ < 1 and weighted L2 gain
√

cγ0

(γ0 = maxj∈{1,2} γj) under the switching signal σ(k) with

the following conditions:

i) The attention rate satisfies

αc(k)

k
≥ lnλ2 − lnλ∗

lnλ2 − lnλ1
(23)

ii) The attention frequency satisfies

N(k) ≤ N0 + k/Ta,

N0 =
lnc

2lnµ + lndλ
, Ta > T ∗

a =
2lnµ + lndλ

2lnρ − lnλ∗
(24)

where Ta and N0 are said to be the average dwell time

and the chatter bound [20], respectively, λ1 < λ∗ <
ρ2 < 1, c > 0.

Proof: See Appendix A.

IV. SCHEDULING

This section aims to provide a systematic method to find

the policy for establishing and terminating communication

between each system and its controller in a way that stabi-

lizes all systems with preserving L2 gains. To this end, the

conception of “schedulability” is defined as follows.

Definition 2: Under Assumptions 1-2, a collection of

NCSs sharing the limited network resource is said to be

schedulable if there exists a scheduling policy such that all

N systems are stabilized and have certain desired L2 gains.

Lemma 3: Under Assumptions 1-2, consider the collec-

tion of NCSs (1) and (2) with communication constraints as

shown in Fig. 1. the collection of NCSs is schedulable if the

piecewise quadratic Lyapnov-like function (21) satisfies (18)

and (22) for any individual control system, and the following

condition holds:

N∑

i=1

lnλi2

lnλi2 − lnλi1
< Cmax (25)

where 0 < λi1 < 1, λi2 > 1, Cmax < N , and Cmax denotes

the maximum number of plants which can communicate with

their remote controllers at any time instant. Moreover, the

scheduling policy can be adopted in the following periodic

scheduling way:

i) Choose T = max1≤i≤N{Li}, where Li is a positive

integer sufficiently large to satisfy the average dwell

time condition in (24) for the i-th plant. For example,

we may set Li = ⌈T ∗
ai⌉, where T ∗

ai is the lower bound

of the average dwell time Tai, and ⌈·⌉ denotes the upper

integer bound.

ii) Close Cmax control loops for their plants at any time

instant. Activate the control loops from 1 to N in order,

and let the i-th control loop work for a time interval of

length ⌈βiT ⌉ for i = 1, . . . , N , where the designed

parameters can be chosen as

βi =
lnλi2 − lnλ∗

i

lnλi2 − lnλi1
, λ∗

i = λ−ε
i2 , λ−ε

i2 < ρ2 < 1,

ε = 1 − 1

Cmax

N∑

i=1

lnλi2

lnλi2 − lnλi1
, 0 < ε ≤ ε (26)

Proof: The proof follows the constructive approaches

as Theorem 2 in [10] and Lemma 2 in [11], and will be

omitted for conciseness.

Remark 3: The form of schedulable condition (25) is

similar to the continuous-time one in [8], [6], [10], which

only depends on the estimates for the convergence rate λi1 of

the i-th closed-loop system and the convergence/divergence

rate λi2 of the i-th open-loop plant. To obtain a large value

of N , it is desirable that λi1 and λi2 are small. This is

reasonable since small convergence rate (λi1 < 1) means

that the states of i-th closed-loop system converge fast when

the plant be attended by its controller, while small divergence

rate (λi2 > 1) implies that the states of the open-loop system

does not diverge greatly.

From (16), it is easy to verify the inequality (22) is guaran-

teed if the following inequalities are satisfied:

Piα ≤ µPiβ , Q1iα ≤ µQ1iβ , Q2iα ≤ µQ2iβ ,
Q3iα ≤ µQ3iβ , Z1iα ≤ µZ1iβ , Z2iα ≤ µZ2iβ ,
α, β ∈ {1, 2}, i = 1, 2, . . . , N

(27)

Applying Lemmas 1 and 2, thus, we obtain already simul-

taneous stability conditions for the collection of NCSs. In

Section III, the subscript i has been dropped for the sake of

brevity, while it will be picked up in the following theorem

for clarity.

Theorem 1: Under Assumptions 1-2, consider the collec-

tion of NCSs (1) and (2) with communication constraints

as shown in Fig. 1. For given controller gains Ki, a integer

0 < Cmax < N , scalars γij > 0, 0 < λi1 < 1, λi2 > λi1,

di ≥ di ≥ 0, µi ≥ 1, if there exist positive-definite matrices

Pij > 0, Q1ij ≥ 0, Q2ij ≥ 0, Q3ij ≥ 0, Z1ij > 0, Z2ij > 0,

and appropriately dimensioned matrices Vijq , Wijq , Sijq ,

i = 1, 2, . . . , N , j ∈ {1, 2}, such that inequalities (17) in

Lemma 1 and (27), and the schedulable condition (25) hold.

Then, there exists a scheduling policy such that all N systems

in (1) and (2) are exponentially stable with weighted L2
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gains
√

ciγi0 (ci > 0, γi0 = maxj∈{1,2} γij) and decay

rates 0 < ρi < 1.

Remark 4: To obtain a large value of N , it is desirable

that λij are small according to Remark 3. Small average

dwell time lower bound T ∗
a is also desirable [20], [12], [15].

(17) and (27) are bilinear matrix inequality (BMI) because of

the product of unknown scalars and matrices. The following

method can be used to find λij and µi:

Step 1: Choose sufficiently large initial λ0
ij and µ0

i such that

there exists a feasible solution to (17) and (27).

Step 2: Set λij = λ0
ij , µi = µ0

i and solve LMIs (17) and (27).

Step 3: If there exists a feasible solution to (17) and (27), and

then return to Step 2 after decreasing λ0
ij and µ0

i to

some extent. Otherwise, exist.

V. EXAMPLE

Consider an unstable batch reactor (BR) [3] described by

ẋ = Acx + Bcu (28)

where parameters are obtained from [3]. The equivalent

discrete-time model is described by

x(k + 1) = Ax(k) + Bu(k) (29)

where A = eAch, B =
∫ h

0
eAcsdsBc, and h is the sampling

period. Assume h = 0.05s, network-induced delay 0 ≤
τ(k) ≤ 1, the maximum packet-dropout bound is ξ̄ = 1,

and controller gain is given by

K =

[
0.3296 −0.3977 0.1870 −0.6036
2.5291 0.2441 1.7956 −1.1687

]
.

For simplicity, suppose that Cmax = 1, i.e, only one plant

can close its feedback loop at any time instant. By Remark

4, we obtain λ1 = 0.73, λ2 = 1.25 and µ = 1.36. Further,

we have

λ̃ =
lnλ2

lnλ2 − lnλ1
= 0.4149

which results in 2 ∗ λ̃ = 0.8298 < 1 and N = 2 satisfying

(25). Therefore, it can be concluded from Lemma 3 that such

two identical unstable batch reactors can share a common

commination network. It should be mentioned that the two

unstable batch reactors can also share a common controller

because they have the same dynamics.

Assuming the desired decay rate ρ = 0.998 and using

the scheduling policy in Lemma 3, we have the following

parameters: ε = ε̄ = 0.1702, λ∗ = 0.9627, β = 0.4855, T =
32.3939, ⌈βiT ⌉ = 17. Label one of the two batch reactors

as BR1, and the other as BR2. Therefore, the static period

scheduling policy is determined: the scheduling is cyclic with

closing the control loop: BR1 → BR2 → BR1, and each

duration on the batch reactor is 17 time steps. Hence the

time period of the scheduling policy is 34 time steps.

Let the initial states x1(0) = x2(0) = [1, 0, 0, 0]. Under

the above period scheduling policy, the state trajectories of

the discrete-time model of BR1 and BR2 are shown in Figs.

2 and 3, respectively, where the network-induce delay and

the data packet dropout are generated randomly.
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Fig. 2. State trajectories of BR1.
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Fig. 3. State trajectories of BR2.

VI. CONCLUSIONS

In this paper, a switched delay system approach has been

applied in the study of simultaneous stabilization with L2

gain performances for a collection of NCSs under commu-

nication constraints. Sufficient stability conditions have been

presented for an individual plant whose feedback control

loop is closed/open via a shared unreliable communication

network. Simultaneous stability of the collection of NCSs

has been proposed under a static periodic scheduling policy.

Future work will be devoted to jointly design feedback

control and scheduling policy for the NCSs.

APPENDIX A: PROOF OF LEMMA 2

Without loss of generality, we assume that the plant is

closed-loop during [k2l k2l+1), and its control loop is open

during [k2l+1 k2l+2), l = 0, 1, · · · , where k0 = 0.

i) If k ∈ [k2l+1 k2l+2), it follows from (20), (22), and

Definition 1 that

V (k) ≤ µdλλ
k−k2l+1

2 λ
k2l+1−k2l

1 V2(k2l)

−µdλλ
k−k2l+1

2

k2l+1−1∑

s=k2l

λ
(k2l+1−s−1)
1 Γ0(s)

−
k−1∑

s=k2l+1

λ
(k−s−1)
2 Γ0(s)

≤ · · ·
≤ µ2N(k)d

N(k)
λ λ

αc(k)
1 λ

(k−αc(k))
2 V1(0)

−
k−1∑

s=0

µ2(N(k)−N(s))d
(N(k)−N(s))
λ

λ
αc(k)−αc(s)
1 λ

(k−αc(k)+αc(s)−s−1)
2 Γ0(s) (30)
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where Γ0(k) = zT (k)z(k) − γ2
0ωT (k)ω(k), and λ2 >

λ1 and N(k) = l + 1 are used.

ii) According to the Definition 1, it is clear that N(k) = l
for k ∈ [k2l k2l+1). Following the discussion on k ∈
[k2l+1 k2l+2), if k ∈ [k2l k2l+1) we also have V (k) is

not more than the last term in (30).

Based on the above discussions, we can conclude that V (k)
is not more than the last term in (30) for any k > 0. From

(23), we have

(lnλ2 − lnλ1)αc(k) ≥ (lnλ2 − lnλ∗)k

which is equivalent to

λ
αc(k)
1 λ

k−αc(k)
2 ≤ (λ∗)k (31)

From (24), we have

µ2N(k)d
N(k)
λ ≤ eN0(2lnµ+lndλ)e(k/Ta)(2lnµ+lndλ)

≤ cek(2lnρ+lnλ∗) = c(
ρ2

λ∗
)k (32)

When ω(k) = 0 and Γj(s) = 0, combining (30), (31) and

(32) yields

V (k) ≤ cρ2kV (0) (33)

From the piecewise Lyapunov-like function (21) and (33), it

follows that there exist constant a > 0 and b > 0 such that

a‖x(k)‖2 ≤ V (k), V (0) ≤ b‖x(0)‖2
δ

which means that system (12) is robustly exponentially

stable with decay rate 0 < ρ < 1 when ω(k) = 0,

where ‖ · ‖ denotes the Euclidean norm and ‖x(0)‖δ =
sup−d≤δ≤0{‖x(δ)‖}.

Under the zero initial condition, system (12) with weighted

L2 gain can be verified as follows. For x(k) = 0 and V (k) ≥
0, it follows from (30) that

k−1∑

s=0

µ2(N(k)−N(s))d
(N(k)−N(s))
λ λ

αc(k)−αc(s)
1

× λ
(k−αc(k)+αc(s)−s−1)
2 Γ0(s) ≤ 0 (34)

Multiplying both sides of (34) by µ−2N(k)d
−N(k)
λ λ

−αc(k)
1

λ
−(k−αc(k)−1)
2 yields

k−1∑

s=0

µ−2N(s)d
−N(s)
λ (λ∗)−sΓ0(s) ≤ 0 (35)

where the inequality (λ∗)−s ≤ λ
−αc(s)
1 λ

−s+αc(s)
2 is used

according to (31). Considering µ ≥ 1, dλ ≥ 1, and (32), we

have

c−1(
ρ2

λ∗
)−s ≤ µ−2N(s)d

−N(s)
λ ≤ 1 (36)

Combining (35) and (36) gives

k−1∑

s=0

(
λ∗

ρ2
)szT (s)z(s) ≤ cγ2

0

k−1∑

s=0

ωT (s)ω(s) (37)

which means that system (12) with weighted L2 gain
√

cγ0
according to the definition of weighted L2 gain in Definition
3 [22], where 0 < λ∗/ρ2 < 1.
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