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Abstract

In this paper, we study the stability property for a class of switched linear systems whose subsystems
are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the
continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable,
a common quadratic Lyapunov function exists for the subsystems and thus the switched system is
exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a
desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is
less than a certain value (calculated using the decay rate), then the switched system is exponentially stable
with the desired decay rate.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last two decades, there has been increasing interest in stability analysis and controller
design for switched systems; see the survey papers [9,2,18], the recent books [10,19] and the
references cited therein. The motivation for studying switched systems arises from many aspects.
It is known that many practical systems are inherently multimodal in the sense that several
dynamical subsystems are required to describe their behavior, which may depend on various
environmental factors. Since these systems are essentially switched systems, powerful analysis or
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design results for switched systems are helpful for dealing with real systems. Another important
observation is that switching among a set of controllers for a specified system can be regarded
as a switched system, and that switching has been used in adaptive control to assure stability in
situations where stability can not be proved otherwise [3,13], or to improve the transient response
of adaptive control systems [14]. Also, the methods of intelligent control design are based on
the idea of switching among different controllers [12,7]. Therefore, study of switched systems
contributes greatly in switching controller and intelligent controller design.

When focusing on stability analysis of switched systems, there are three basic problems in
stability and design of switched systems: (i) find conditions for stability/stabilizability under
arbitrary switching; (ii) identify the limited but useful class of stabilizing switching laws; and
(iii) construct a stabilizing switching law. There are many existing works on these problems
for the case where the switched systems are composed of continuous-time subsystems. For
Problem (i), Ref. [15] showed that when all subsystems are stable and commutative pairwise, the
switched linear system is stable under arbitrary switching. Ref. [8] extended this result from the
commutation condition to a Lie-algebraic condition. Ref. [24] showed that a class of symmetric
switched systems are asymptotically stable under arbitrary switching since a common Lyapunov
function, in the form of V (x) = xTx , exists for all the subsystems. Refs. [5,1,22,26] considered
Problem (ii) using piecewise Lyapunov functions, and Refs. [6,30] considered Problem (ii) for
switched systems with pairwise commutation or Lie-algebraic properties. Ref. [17] considered
Problem (iii) by dividing the state space associated with appropriate switching depending on
the state, and Ref. [23] considered quadratic stabilization, which belongs to Problem (iii), for
switched systems composed of a pair of unstable linear subsystems by using a linear stable
combination of unstable subsystems. Related to both Problems (ii) and (iii), Ref. [21] presented
the convergence rate evaluation for simultaneously triangularizable switched systems, and
Ref. [20] investigated the controllability and reachability of switched linear control systems. As
regards the robustness stability/stabilization issue, Ref. [28] considered quadratic stabilizability
of switched linear systems with polytopic uncertainties, and Ref. [16] dealt with robust quadratic
stabilization for switched LTI systems by using piecewise quadratic Lyapunov functions so that
the synthesis problem can be formulated as a matrix inequality feasibility problem. Refs. [4,24,
25,27] extended the consideration to stability analysis problems for switched systems composed
of discrete-time subsystems.

Motivated by the observation that all these papers deal with switched systems composed
of only continuous-time subsystems or only discrete-time ones, the authors considered in a
recent paper [29] a new type of switched systems which are composed of both continuous-
time and discrete-time dynamical subsystems. It was pointed out there that it is very easy to
find many applications involving such switched systems. For example, for a continuous-time
plant, if we design a set of continuous-time controllers and a set of discrete-time controllers,
and we choose an appropriate controller at every time instant, then the entire feedback system
is in fact a switched system composed of both continuous-time and discrete-time subsystems.
A cascaded system composed of a continuous-time plant, a set of discrete-time controllers and
switchings among the controllers is also a good example. Another example of a system of this
kind is a continuous-time plant controlled either by a physically implemented regulator or by a
digitally implemented one (and a rule of switching between them). Ref. [29] gave some analysis
and design results for several kinds of such switched systems, for example, the case where
commutation condition holds, and the case of switched symmetric systems.

This paper aims to extend the results for switched symmetric systems in [29] to switched
normal systems. It can be seen later that normal systems include symmetric systems,



2250 G. Zhai et al. / Nonlinear Analysis 65 (2006) 2248–2259

skew-symmetric systems, orthogonal systems and some other cases, and thus the extension
in this paper is not trivial. For such switched systems, we show that when all continuous-
time subsystems are Hurwitz stable and all discrete-time subsystems are Schur stable, a
common quadratic Lyapunov function exists for the subsystems and thus the switched system is
exponentially stable under arbitrary switching. We also discuss the applicability of the result to
the switching control problem. We show that when unstable subsystems are involved, if the total
activation time ratio between unstable subsystems and stable ones is less than a specified value
(which is computed by using a desired decay rate), then the switched system is exponentially
stable with the desired decay rate. Three numerical examples are given to show the effectiveness
of the results.

2. Preliminaries and switched system description

In this section, we give some definitions and lemmas concerning normal systems, and then
describe the switched system we consider in this paper.

Definition 1. A continuous-time system

ẋ(t) = Ax(t) (1)

or a discrete-time system

x(k + 1) = Ax(k) (2)

is said to be normal if

AT A = AAT. (3)

Definition 2. A real square matrix Q is said to be orthogonal if QT Q = I .
The following lemma characterizes a normal system matrix by orthogonally equalizing it to a

block-diagonal matrix consisting of its eigenvalues (Theorem 4.10.69 in [11]).

Lemma 1. Suppose that A ∈ Rn×n is normal, its real eigenvalues are λ1, . . . , λr , and its
complex eigenvalues are a1 ± b1i, . . . , as ± bs i, where the ai ’s and bi ’s are real, bi �= 0,
r + 2s = n. Then, there exists an orthogonal matrix Q such that

QT AQ = diag{λ1, . . . , λr ,Λ1, . . . ,Λs }, (4)

where

Λi =
[

ai bi

−bi ai

]
, i = 1, . . . , s. (5)

The following two lemmas play a key role in the next section.

Lemma 2. If the continuous-time system (1) is normal and Hurwitz stable, then

AT + A < 0. (6)

Proof. We obtain from (4) that

QT(AT + A)Q = diag{2λ1, . . . , 2λr , 2a1, 2a1, . . . , 2as, 2as}. (7)

Since A is Hurwitz stable, we obtain that λi < 0 (1 ≤ i ≤ r) and a j < 0 (1 ≤ j ≤ s) and thus
QT(AT + A)Q < 0. This completes the proof. �
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Lemma 3. If the discrete-time system (2) is normal and Schur stable, then

AT A − I < 0. (8)

Proof. We obtain from (4) that

QT(AT A)Q = (QT AT Q)(QT AQ)

= diag{λ1, . . . , λr ,ΛT
1 , . . . ,ΛT

s }diag{λ1, . . . , λr ,Λ1, . . . ,Λs }
= diag{λ2

1, . . . , λ
2
r , a2

1 + b2
1, a2

1 + b2
1, . . . , a2

s + b2
s , a2

s + b2
s }. (9)

Since A is Schur stable, we obtain |λi | < 1 (1 ≤ i ≤ r) and
√

a2
j + b2

j < 1 (1 ≤ j ≤ s) and

thus QT(AT A)Q < I , which is equivalent to (8). �

In this paper, we consider the switched system which is composed of a set of continuous-time
subsystems

ẋ(t) = Aci x(t), i = 1, . . . , Nc (10)

and a set of discrete-time subsystems

x(k + 1) = Ad j x(k), j = 1, . . . , Nd (11)

where x(t), x(k) ∈ Rn are the subsystem states, the Aci ’s and Ad j ’s are constant matrices
of appropriate dimension, and Nc(Nd ) denotes the number of continuous-time (discrete-time)
subsystems. To discuss the stability of the overall switched system, we assume for simplicity
that the sampling period of all the discrete-time subsystems is τ (the discussion can be easily
extended to the case where the discrete-time subsystems have different sampling periods). Since
the states of the discrete-time subsystems can be viewed as piecewise constant vectors between
sampling points, we can consider the value of the system states in the continuous-time domain.
For example, if subsystem Ac1 is activated on [t0, t1] and then subsystem Ad1 is activated for m
steps and subsystem Ac2 is activated from then to t2, the time domain is divided into

[t0, t2] = [t0, t1] ∪ [t1, t1 + mτ ] ∪ [t1 + mτ, t2] (12)

and the system state takes the form

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eAc1(t−t0)x(t0), t ∈ [t0, t1]
Ak−1

d1 x(t1), t ∈ [t1 + (k − 1)τ, t1 + kτ ) (1 ≤ k ≤ m)

Am
d1x(t1) t = t1 + mτ

eAc2(t−t1−mτ )x(t1 + mτ ), t ∈ [t1 + mτ, t2].
(13)

Although x(t) is not continuous with respect to time t due to the existence of discrete-time
subsystems, the solution x(t) is uniquely defined at all time instants, and thus various stability
properties in the time domain can be discussed.

Throughout this paper, we make the following assumption.

Assumption 1. All the subsystems in (10) and (11) are normal, i.e.,

AT
ci Aci = Aci AT

ci , AT
d j Ad j = Ad j AT

d j (14)

hold for all i = 1, . . . , Nc , and j = 1, . . . , Nd .



2252 G. Zhai et al. / Nonlinear Analysis 65 (2006) 2248–2259

Remark 1. For switched symmetric systems, it is assumed in [25,29] that AT
ci = Aci and/or

AT
d j = Ad j . Obviously, Assumption 1 includes such symmetric systems. Furthermore, it also

covers the cases of AT∗ A∗ = I (orthogonal), AT∗ = −A∗ (skew symmetric) and some other cases.

3. Arbitrary switching

In this section, we discuss the case where arbitrary switching is possible for the switched
system composed of (10) and (11). Since arbitrary switching includes the case of dwelling on a
certain subsystem for all time, we make the following necessary assumption.

Assumption 2. All Aci ’s are Hurwitz stable and all Ad j ’s are Schur stable.
It is known that Assumption 2 is not enough to guarantee stability under arbitrary switching.

That is, a switched system composed of stable subsystems could be unstable if the switching
was not done appropriately [9,1]. However, when all subsystems are normal, we will show in the
following that the switched system is exponentially stable under arbitrary switching.

Theorem 1. Under Assumptions 1 and 2, the switched system composed of (10) and (11) is
exponentially stable under arbitrary switching.

Proof. Since all subsystems are normal and stable, according to Lemma 1, we obtain

AT
ci + Aci < 0, i = 1, . . . , Nc;

AT
d j Ad j − I < 0, j = 1, . . . , Nd .

(15)

This implies that P = I is a common solution to the Lyapunov matrix inequalities

AT
ci P + P Aci < 0, i = 1, . . . , Nc;

AT
d j P Ad j − P < 0, j = 1, . . . , Nd ,

(16)

and thus V (x) = xTx is a common Lyapunov function for all the subsystems.
To show the exponential stability of the system, we first find two positive scalars αc and

αd < 1 such that

AT
ci + Aci < −2αc I, AT

d j Ad j − α2
d I < 0 (17)

hold for all i and j . Then, in the period where a continuous-time subsystem is activated, we
obtain V̇ (x(t)) < −2αcV (x(t)), and in the period where a discrete-time subsystem is activated,
V (x(k + 1)) < α2

d V (x(k)).
For any time t > 0, we can always divide the time interval [0, t] as t = tc + mτ (m ≥ 0),

where tc is the total duration time on continuous-time subsystems and mτ is the total duration
time on discrete-time subsystems. It is not difficult to obtain that no matter what the activation
order is,

V (x(t)) ≤ e−2αctcα2m
d V (x(0)) (18)

and thus

|x(t)| ≤ e−αt |x(0)| (19)

where α = min{αc,
ln(α−1

d )

τ
} > 0. This completes the proof. �
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Fig. 1. The system trajectory in Example 1.

Remark 2. It has been shown in the proof of Theorem 1 that when all subsystems are normal
and (Hurwitz or Schur) stable, V (x) = xTx is a common quadratic Lyapunov function for them.

Example 1. Consider the switched system composed of one continuous-time subsystem given
by

Ac1 =
[−0.6 0.8
−0.8 −0.6

]
(20)

and one discrete-time subsystem given by

Ad1 =
[

0.45 0.6
−0.6 0.45

]
. (21)

It is easy to confirm that both Ac1 and Ad1 are normal, Ac1 is Hurwitz stable and Ad1 is Schur
stable. Suppose that the sampling period of subsystem Ad1 is 0.1. Fig. 1 shows the convergence of
the system trajectory where Ac1 and Ad1 are activated alternately with respectively time periods
1 and 5 steps (i.e., time period 0.5). The initial state is [100 100]T, and the mark “*” in the
upper part of Fig. 1 indicates the state change when the discrete-time subsystem Ad1 is activated.
The lower part of Fig. 1 connects all the sampling points of subsystem Ad1 into a continuous
trajectory. �

At the end of this section, we note that Theorem 1 is very useful in many switching control
problems. Suppose that we have on hand an open-loop feedback system

ẋ(t) = Ax(t) + Bu(t) (22)

where x(t) is the state, u(t) is the control input, A, B are constant matrices of appropriate
dimension. We also suppose that we can design a set of state feedback controllers u(t) =
Ki x(t) (i = 1, . . . , Nm ) such that each A + B Ki is normal and Hurwitz stable. This is possible
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in many cases. For example, when

A =
[

1 3
2 4

]
, B =

[
1 0
0 −1

]
, (23)

it is easy to see that any K =
[

k1 k2
k3 k4

]
, where k1 < −1, k1 + k4 = 3 and k3 − k2 = 5, will make

A + B K normal and Hurwitz stable.
If we can (or have to) choose one from the set of controllers at every time instant, the

whole system is a switched system that is composed of Hurwitz stable subsystems. Since this
is a special case of Theorem 1 (no discrete-time subsystems exist), we see that the system is
exponentially stable no matter how we switch among these controllers. This observation is very
important in real applications when we want more flexibility to take other control specifications
into consideration.

Obviously, the above discussion is also applicable to discrete-time feedback control systems,
and to the case of output feedback switching control problems. Furthermore, a more interesting
problem may be feedback control systems which are composed of a continuous-time plant and
both continuous-time and discrete-time controllers.

Example 2. For the system (22) with (23), we set

K1 =
[−1.5 1

6 4.5

]
, K2 =

[−2 −1
4 5

]
(24)

to obtain two closed-loop system matrices

Ac1 =
[−0.5 4

−4 −0.5

]
, Ac2 =

[−1 2
−2 −1

]
(25)

which are normal and Hurwitz stable.
Now, we set the initial state as x0 = [1 1]T and randomly generate 8 positive time periods

among (0.01, 1) as T1 = 0.95, T2 = 0.23, T3 = 0.61, T4 = 0.49, T5 = 0.89, T6 = 0.76,
T7 = 0.46, T8 = 0.02. Then, we activate subsystems Ac1 and Ac2 alternately with time periods
T1, T2, . . . , T7, T8. Fig. 2 shows the convergence of the system trajectory under such random
activation periods. �

4. Time-controlled switching

In this section, assuming that some subsystems are not stable, we consider Problem (ii) for the
switched system. We propose a class of time-controlled switching laws which specify the time
ratio between stable subsystems and unstable ones.

For simplicity, we suppose that Ac1 and Ad1 are unstable, and all the other subsystems are
stable. It will be seen later that other cases can be dealt with using completely the same approach.

According to Lemma 1, there exists an orthogonal matrix Qc1 such that

QT
c1(AT

c1 + Ac1)Qc1 = diag{2λc1
1 , . . . , 2λc1

r1, 2ηc1
1 , 2ηc1

1 , . . . , 2ηc1
s1, 2ηc1

s1}, (26)

where λc1
1 , . . . , λc1

r1 are Ac1’s real eigenvalues, and ηc1
1 , . . . , ηc1

s1 are the real parts of Ac1’s
complex eigenvalues. Since Ac1 is not Hurwitz stable, there is at least one nonnegative number
among them. For design purposes, we define the scalar

βc = max{λc1
1 , . . . , λc1

r1, η
c1
1 , . . . , ηc1

s1}. (27)
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Fig. 2. The system trajectory in Example 2

Fig. 3. The system trajectory in Example 3.

It is then easy to see that βc ≥ 0 and

AT
c1 + Ac1 ≤ 2βc I. (28)

Similarly, for Schur unstable Ad1, there exists an orthogonal matrix Qd1 such that

QT
d1(AT

d1 Ad1)Qd1 = diag{(λd1
1 )2, . . . , (λd1

u1)
2, (ηd1

1 )2, (ηd1
1 )2, · · · , (ηd1

v1)2, (ηd1
v1)2}, (29)

where λd1
1 , . . . , λd1

u1 are Ad1’s real eigenvalues, and ηd1
1 , . . . , ηd1

v1 are the absolute values of Ad1’s
complex eigenvalues. Since Ad1 is not Schur stable, there is at least one number among them
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whose absolute value is not less than 1. If we define

βd = max{|λd1
1 |, . . . , |λd1

u1|, ηd1
1 , . . . , ηd1

v1}, (30)

then βd ≥ 1 and

AT
d1 Ad1 ≤ β2

d I. (31)

According to (28), when subsystem Ac1 is activated, we obtain V̇ (x(t)) ≤ 2βcV (x(t)).
According to (31), when subsystem Ad1 is activated, we obtain V (x(k + 1)) ≤ β2

d V (x(k)).
Since the subsystems other than these two subsystems are assumed to be stable, without loss of
generality, we assume that (17) is satisfied for i �= 1 and j �= 1 with the same scalars αc and αd .

Now, for any time t > 0, we assume that the time interval [0, t] is divided as t =
tc1 + tcs + md1τ + mdsτ , where tc1 is the total activation time of Ac1, tcs is the total activation
time of other continuous-time subsystems, md1τ is the total activation time of Ad1, and mdsτ is
the total activation time of other discrete-time subsystems. Then, it is easy to obtain

V (x(t)) ≤ e2βctc1e−2αctcs β
2md1
d α

2mds
d V (x(0)). (32)

Using β = max{βc,
ln(βd)

τ
} in the above leads to

V (x(t)) ≤ e2β(tc1+md1τ )e−2α(tcs+mdsτ )V (x(0)), (33)

where α is the same as that defined in the proof of Theorem 1. Noting that Tu = tc1 + md1τ is
the total activation time of unstable subsystems, and Ts = tcs + mdsτ is the total activation time
of stable subsystems, we consider the following time-controlled switching law:

Time-controlled switching law. Let Tu and Ts be the total activation time of all unstable
subsystems and stable ones, respectively, and let α∗ < α be the desired decay rate of the overall
system. Keep the ratio between Tu and Ts satisfying

Tu

Ts
≤ α − α∗

β + α∗ . (34)

In fact, we obtain from (34) that

(β + α∗)Tu ≤ (α − α∗)Ts . (35)

Then, combining this with (33), we obtain

|x(t)| ≤ e−α∗t |x(0)|. (36)

We summarize the above discussion in the following theorem.

Theorem 2. Under Assumption 1 and the time-controlled switching law (34), the switched
system is exponentially stable with decay rate α∗. �

Remark 3. Compared with the existing result in [26], where switched systems including both
stable and unstable subsystems were also dealt with, there is no requirement on average dwell
time as regards any single subsystem. Thus, we do not have to worry about the switching
frequency, which is a desirable property in real applications. It is easy to see that the time-
controlled switching law (34) is not involved in the number of switchings, which usually appears
in the average dwell time scheme. The reason is that for the switched normal systems under
consideration, we have shown that V (x) = xTx together with the time-controlled switching
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law is in fact a kind of common quadratic Lyapunov-like function in the present case. We used
“Lyapunov-like” here since it is not a Lyapunov function in the usual sense, especially for
unstable subsystems, yet it is an auxiliary scalar-valued function involved with a direct method
and exponential stability of the entire system is guaranteed.

Example 3. Consider the switched system composed of one continuous-time subsystem given
by

Ac1 =
[

0.6 0.8
−0.8 0.6

]
(37)

and one discrete-time subsystem given by

Ad1 =
[

0.3 0.4
−0.4 0.3

]
. (38)

It is easy to confirm that both Ac1 and Ad1 are normal, Ac1 is Hurwitz unstable and Ad1 is Schur
stable. Then, it is easy to compute

βc = 0.6, αd = 0.5. (39)

If we choose τ = 1 as the sampling period of Ad1, then

α = ln(α−1
d )

τ
= 0.69, β = βc = 0.6. (40)

According to Theorem 2, if the desired decay rate α∗ = 0.4, then the time ratio of Ac1 and Ad1
should satisfy

Tu

Ts
≤ α − α∗

β + α∗ = 0.69 − 0.4

0.6 + 0.4
= 0.29. (41)

In order to meet this requirement, we activate Ac1 and Ad1 alternately with respectively time
periods 2.9 and 10 steps. Fig. 3 shows that the system trajectory still converges to zero very
quickly in this case (with the same initial state [100 100]T). �

Remark 4. It is finally noted that the discussion and result in this section can be applied to
controller failure time analysis of feedback control systems when the original system matrix is
normal and the feedback is designed so that the closed-loop system is also normal. In this case,
the overall system can be viewed as a switched system composed of the original unstable system
and the stable closed-loop system.

5. Concluding remarks

In this paper, we have studied the stability property for a class of switched systems which are
composed of both continuous-time and discrete-time LTI normal subsystems. We have shown
that when all continuous-time subsystems are Hurwitz stable and all discrete-time subsystems are
Schur stable, a common quadratic Lyapunov function V (x) = xTx exists for the subsystems and
that the switched system is exponentially stable under arbitrary switching. We have shown that
when unstable subsystems are involved, if the activation time ratio between unstable subsystems
and stable ones is less than a specified value, then the switched system is guaranteed to be
exponentially stable with the desired decay rate.
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Comparing with the three basic problems mentioned in the introduction, we note that the
results in this paper point to Problem (i) and part of Problem (ii). At present, we are trying
to take advantage of the structure of switched normal systems in dealing with the stabilization
problem (Problem (iii)). Furthermore, although we still have not proved it, we are conjecturing

that if the expanded matrix
[

A B
C D

]
is normal, then the stable system with input and output

ẋ = Ax + Bw, z = Cx + Dw (42)

or its discrete-time counterpart will have a quadratic Lyapunov function V (x) = xTx in the L2
sense. If this is true, then we can prove that the switched system composed of normal stable
subsystems with the same L2 gain γ will be stable and keep the L2 gain γ under arbitrary
switching. This problem is part of our future research.
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