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Abstract We consider the problem of state-feedback stabilization for multi-channel sys-
tems in the differential-game theoretic framework where the class of admissible strategies
for the players is induced from a solution set of the individual objective functions that are
associated with certain dissipativity inequality properties. In such a framework, we char-
acterize the feedback Nash equilibria over an infinite-time horizon via a set of non-fragile
stabilizing state-feedback solutions corresponding to the constrained dissipativity problems.
Moreover, we show that the existence of a weak-optimal solution to the constrained dissi-
pativity problem is a sufficient condition for the existence of a feedback Nash equilibrium,
whereas the set of non-fragile stabilizing state-feedback solutions is fully described in terms
of a set of dilated linear matrix inequalities.

Keywords Differential games · Dissipativity inequalities · Multi-channel system · Nash
strategy · Dilated linear matrix inequality · Robust stabilization

1 Introduction

In this paper, we consider a multi-channel system governed by several players (or decision
makers) where the stability of the overall closed-loop system is a common objective while
each player aims to minimize different types of objective functions. In such a scenario, Nash
strategy offers a suitable framework to study an inherent robustness or non-fragile property
of the strategies under a family of information structures, since no player can improve his
payoff by deviating unilaterally from the Nash strategy once the equilibrium is attained (e.g.,
see references [14], [21], [22], [15], [29], [4], [5], [11]).
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In the past, several theoretical results have been established to characterize control re-
lated problems in the context of Nash equilibria via a game theoretic interpretation [27], [23],
[25], [30], [1], [31], [4] and [32]. For example, the existence of open-loop Nash strategies
for linear-quadratic games over a finite time-horizon, assuming that all strategies lie in com-
pact subsets of an admissible strategy space, has been addressed in [33], [21] and [28]; the
existence of Nash Strategies for linear-quadratic differential games over an infinite-horizon
has been studied in detail in [27], [25], [1], [4] and [31]. We also note that some of these
works have discussed the uniqueness of the optimal strategies for linear-quadratic games
with structured uncertainties, where the bound for the objective function is based on the
existence of a set of solutions for appropriately parameterized Riccati equations. Moreover,
in the area of multiobjective H2/H∞ control theory, the concept of differential games has
been applied by interpreting uncertainty (or neglected dynamics) as a fictitious player while
the model of the system is supposed to be well known; where the fictitious player is usually
introduced in the criteria through a weighting matrix (e.g., see references [10], [19], [3],
[30], [7] and [5]).

On the other hand, the use of different simplified models of the same system has been
employed for capturing certain information structures, models or objective functions that
individual players may hold about the overall system. Thus, the resulting problem can be
best described by nonzero-sum differential games where the individual players are allowed
to minimize different types of objective functions (e.g., see references [27], [8], [17], [26]).
An extensive survey on the area of noncooperative dynamic games is provided in the book
by Başar and Olsder [4].

Our main focus in this paper is to take this line of approach, where individual players
have different objective functions that are associated with certain information structures,
i.e., the dissipativity inequality property of the multi-channel system, where the optimal-
ity concept is that of Nash equilibrium. We characterize the feedback Nash equilibria over
an infinite-time horizon via a set of stabilizing state-feedback solutions corresponding to a
family of perturbed multi-channel systems with dissipativity inequality properties (see [34],
[35], [37] and references therein for a review of systems with dissipative properties). We
further show that the existence of a weak-optimal solution to the constrained dissipativity
problem is a sufficient condition for the existence of a feedback Nash equilibrium, with the
latter also having a nice property of strong time consistency.

The rest of the paper is organized as follows. In Section 2, we present a verifiable sta-
bility condition for a multi-channel system in terms of a set of dilated linear matrix in-
equalities (LMIs), with a certain dissipativity inequality property being used to extend the
stability condition when there is a model perturbation in the system. Section 3 presents the
main results, where we provide a sufficient condition for the existence of Nash equilibria via
weak-optimal solutions of the differential game corresponding to the dissipativity inequality
property of the system. Finally, Section 4 provides some concluding remarks.

Throughout the paper, we use the following notations. For a matrix A ∈ Rn×n, He (A)
denotes a hermitian matrix defined by He (A) = A+ AT , where AT is the transpose of A.
For a matrix B ∈ Rn×p, B⊥ ∈ R(n−r)×n denotes an orthogonal complement of B, which
is a matrix satisfies B⊥B = 0 and B⊥B⊥T > 0, with r = rankB. R+ denotes the set of
non-negative real numbers, which is R+ , {x ∈ R |x ≥ 0}. Sn+ denotes the set of strictly
positive definite real matrices. Uρ denotes a compact uncertainty set.
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2 Preliminaries

Consider a continuous-time N -channel system

ẋ(t) = Ax(t) +
N∑
i=1

Biui(t), x(0) = x0 (1)

where A ∈ Rn×n, Bi ∈ Rn×ri , x(t) ∈ Rn is the state of the system, and ui(t) ∈ Rri is a
control input to the ith-channel of the system.

For this system, consider the set of all stabilizing state-feedback gains

KN =

{
(K1,K2, . . . ,KN )

∣∣∣ ( A+
N∑
i=1

BiKi
)

is a Hurwitz matrix
}

(2)

where Ki ∈ Rri×n for i = 1, 2, . . . , N .
Then, we characterize the set KN in terms of a set of dilated LMIs as follows.

Theorem 1 The set of all stabilizing state-feedback gains KN in (2) is well defined if there
exist X ∈ Sn+, U ∈ Rn×n, ε > 0, Wi ∈ Rn×n and Li ∈ Rri×n for i = 1, 2, . . . , N such
that [

0 XẼ

ẼTX 0

]
+He

([
Ã

−W̃D

] [
ẼT εI

])
≺ 0 (3)

with Ã = [AU B1L1 B2L2 · · · BNLN ], W̃D = blockdiag{U,W1,W2, . . . ,WN} and
Ẽ = [ I I I · · · I ].

Once this condition is satisfied, then the state-feedback gains that achieve stabilization
are given by

Ki = LiW
−1
i (4)

with non-singular solutions U and Wi for i = 1, 2, . . . , N .1

Proof Sufficiency: Note that[
Ã

−W̃D

]⊥
=
[
I ÃW̃−1

D

]
,

[
Ẽ

εI

]⊥
=
[
εI −Ẽ

]
. (5)

Then, eliminating W̃D from (3) by using these matrices, we have two inequalities

[
I ÃW̃−1

D

] [ 0 XẼ

ẼTX 0

] [
I

(W̃−1
D )T ÃT

]
= He

(
(A+

N∑
i=1

BiKi)X
)
≺ 0 (6)

[
εI −Ẽ

] [ 0 XẼ

ẼTX 0

] [
εI

−ẼT

]
= −2ε(N + 1)X ≺ 0. (7)

Hence, we see that (6) and (7) state exactly the Lyapunov stability condition with X ∈ Sn+
and state-feedback gains Ki = LiW

−1
i for i = 1, 2, . . . , N .

1 Recently, a similar dilated LMIs condition has been investigated by Fujisaki and Befekadu [12] in the
context of reliable decentralized stabilization for multi-channel systems.
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Necessity: Suppose the system in (1) is stable with state-feedback gains Ki = LiW
−1
i

for i = 1, 2, . . . , N . Then, there exists a sufficiently small ε > 0 that satisfies

He
(
(A+

N∑
i=1

BiKi)X
)
+
1

2
εÃX̃DÃ

T ≺ 0. (8)

with X̃D = block diag
{
X,X, . . . ,X

}
.

Note that X̃D � 0 and X̃DẼT = ẼTX, employing the Schur complement for (8), then
we have [

He
(
(A+

∑N
i=1BiKi)X

)
εÃX̃D

εX̃DÃ
T −2εX̃D

]
=

[
He(ÃW̃−1

D ẼTX) εÃW̃−1
D X̃D +XẼ − ẼX̃D

εX̃D(ÃW̃
−1
D )T + ẼTX − X̃DẼT −2εX̃D

]
=

[
0 XẼ

ẼTX 0

]
+He

([
ÃW̃−1

D
−I

]
X̃D

[
ẼT εI

])
≺ 0.

This means that (3) holds with W̃D = X̃D . 2

Remark 1 In this paper, we assume that the pair (A, [B1 B2 · · · BN ]) is stabilizable.

Consider next a multi-channel system with a perturbation term, i.e.,

ẋ(t) = (A+ uρ∆A)x(t) +
N∑
i=1

Biui(t) (9)

where uρ ∈ [−ρ, ρ], ρ ∈ R+ is the uncertainty level and ∆A ∈ Rn×n is the perturbation
term in the system. Here we assume that the perturbed matrix (A+uρ∆A) lies in a compact
uncertainty set Uρ.2

In what follows, we assume there exits a set of stabilizing state-feedback gains KN that
maintains the stability of the system in (1) and this set is completely characterized via a
solution of (3). Then, we will estimate an upper bound ρ̂ ∈ R+ on the uncertainty level
for which the state-feedback gains preserve robust (or non-fragile) stability property of the
perturbed multi-channel system.

Theorem 2 Suppose X ∈ Sn+, U ∈ Rn×n, ε > 0, Wi ∈ Rn×n and Li ∈ Rri×n for
i = 1, 2, . . . , N that characterize the set of stabilizing state-feedback gains in Theorem 1
are given. For a given α > 0, β ≥ 1 and Z ∈ Sn+, if there exist Y ∈ Sn+ and an upper bound
ρ̂ ∈ R+ that satisfy

β−1Z � Y � Z (10)[
I

W̃−1
D ẼT

]T [
uρ̂He(∆ATY ) Y Ã

ÃTY 0

] [
I

W̃−1
D ẼT

]
� −αZ. (11)

Then, the perturbed multi-channel system in (9) is stable for all instances of perturbation
uρ̂ ∈ [−ρ̂, ρ̂] in the system.

2 Note that the existence of a solution for state trajectories is well-defined and it is always upper semicon-
tinuous in x0 (e.g., see references [9] and [18]).
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Proof To prove the above theorem, we require the following system

ẋ(t) = (A+ uρ∆A+
N∑
i=1

BiKi)x(t) + 0n×1ũ(t)

ỹ(t) = x(t) + 0n×1ũ(t) (12)

to satisfy certain dissipativity inequality property for all instances of perturbation in the
system.

Define the following supply rate

w(ỹ(t), ũ(t)) =

[
ỹ(t)
ũ(t)

]T [−αZ 0
0 I

] [
ỹ(t)
ũ(t)

]
(13)

with Z ∈ Sn+ and α > 0. We clearly see that if the system in (12) is stable for all instances
of perturbation. Then, the following dissipation inequality will hold

V (x(0)) +

∫ t

0

w(ỹ(t), ũ(t))dt ≥ V (x(t)) (14)

for all t ≥ 0 with non-negative quadratic storage function V (x(t)) = x(t)TY x(t), Y ∈ Sn+
that satisfies V (0) = 0.

Condition (14) with (13) further implies the following

He
(
(A+ uρ∆A+

N∑
i=1

BiKi)
TY

)
� −αZ. (15)

Therefore, there exists an upper bound ρ̂ ∈ R+ for which the dissipativity condition in (15)
will hold true for all instances of perturbation in the system.

Then, we have the following result

He

(
(ÃW̃−1

D ẼT + uρ̂∆A)
TY

)
=[

I

W̃−1
D ẼT

]T [
uρ̂He(∆ATY ) Y Ã

ÃTY 0

] [
I

W̃−1
D ẼT

]
� −αZ (16)

with uρ̂ ∈ [−ρ̂, ρ̂].3

On the other hand, let us define the following matrix interval

IY =

{
Y
∣∣∣ β−1Z � Y � Z

}
(17)

where Z ∈ Sn+ and β ≥ 1 are assumed to be known a priori. Suppose that Y satisfies the
conditions in (10) and (11), then the trajectories of the perturbed closed-loop system

ẋ(t) = (A+ uρ∆A+
N∑
i=1

BiKi)x(t)

3 Note that the upper bound ρ̂ continuously depends (in the weak sense) on x0 and Ki, i = 1, 2, . . . , N .
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satisfy

d

dt
(xT (t)Y x(t)) = xT (t)He

(
(A+ uρ∆A+

N∑
i=1

BiKi)
TY

)
x(t)

≤ −αxT (t)Zx(t)

≤ −αxT (t)Y x(t). (18)

Note that condition (18) further implies the following two conditions

xT (t)Y x(t) ≤ exp(−αt)xT (0)Zx(0) (19)

and

xT (t)Zx(t) ≤ β exp(−αt)xT (0)Zx(0). (20)

Hence, conditions (18), (19) and (20) stating, equivalently, that Y ∈ IY is a dissipativity
certificate with supply rate (13) for all instances of perturbation in (12) (e.g., see references
[2], [6]). 2

Remark 2 We remark that if there exists a solution set X for Theorem 2 that gives a mini-
mum distance between X and the set IY = {Y | β−1Z � Y � Z}, i.e., infY ∈IY ‖X − Y ‖,
then we essentially have a weak-optimal solution. This solution is unique since IY is a con-
vex and compact set [20]. Moreover, finding an upper bound ρ̂ ∈ R+ and Y from a closed
and convex set IY is equivalent to solving the verification problem, i.e., the constrained
dissipativity control problem (e.g., see reference [13]).

In the next section, we will see that such additional information structure, i.e., the dissi-
pativity inequality property, about the system is indeed useful in the context of differential
games.

3 Main results

In this section, we establish an equivalence result between the set of non-fragile state-
feedback gains corresponding to constrained dissipativity problem and the feedback Nash
equilibria. we specifically provide a game-theoretic interpretation in which several players
(or decision makers) are influencing cooperatively the overall system, where the individ-
ual players have different objective functions that are associated with certain information
structures, i.e., the dissipativity inequalities, of the following systems

ẋ(t) = (A+ uρj∆Aj +
N∑
i=1

BiKi)x(t) + 0n×1ũ(t)

ỹ(t) = x(t) + 0n×1ũ(t) (21)

where uρj ∈ [−ρj , ρj ], ρj ∈ R+ and ∆Aj ∈ Rn×n are the uncertainty levels and the
perturbation terms associated with the jth-player, respectively. We further assume that each
perturbed system matrix (A + uρj∆Aj) lies in a compact uncertainty set Uρj for j =
1, 2, . . . , N and (K1,K2, . . . , KN ) ∈ KN .
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Introduce the following continuous mappings

Jj(x0, uρj ,K(−j)) : Rn× Uρj×KN → R+ (22)

for j = 1, 2, . . . , N .4

Moreover, an N -tuple (K∗1 ,K
∗
2 , . . . ,K

∗
N ) ∈ KN , ( i.e., K∗ , (K∗1 ,K

∗
2 , . . . ,K

∗
N )) is

called a feedback Nash equilibrium if the following inequality holds

Jj(x0, uρ̂j ,K
∗
(−j)) ≤ Jj(x0, uρ̂j ,K

∗) (23)

for each x0 ∈ Rn and all instances of perturbation uρ̂j ∈ [−ρ̂j , ρ̂j ] and state-feedback
matrix Γj ∈ Rrj×n for j = 1, 2, . . . , N such that

K∗(−j) , (K∗1 , . . . ,K
∗
j−1, Γj ,K

∗
j+1, . . . ,K

∗
N ) ∈ KN . (24)

In the following, we assume that the strategy space for each player is restricted to linear
time-invariant state-feedback gains, and the resulting multi-channel closed-loop system is
also assumed to be stable for all (or some) initial conditions x0 ∈ Rn.

Introduce the following set of supply rate functions

W(ỹ(t),ũ(t)) =

{
wj(ỹ(t), ũ(t))

∣∣∣ wj(ỹ(t), ũ(t)) = [ ỹ(t)ũ(t)

]T [−αjZj 0
0 I

] [
ỹ(t)
ũ(t)

]
,

for j = 1, 2, . . . , N

}
(25)

and a matrix interval set IYj

IYj =
{
Yj

∣∣∣ β−1
j Zj � Yj � Zj

}
(26)

with αj > 0, βj ≥ 1 and Zj ∈ Sn+ for j = 1, 2, . . . , N that are assumed to be known
a priori.

In light of Theorem 2 and above discussion, we have the following theorem which pro-
vides a sufficient condition for the existence of feedback Nash equilibria.

Theorem 3 Suppose Xj ∈ Sn+, Uj ∈ Rn×n, W ′j ∈ Rn×n, L′j ∈ Rrj×n and εj > 0 for
j = 1, 2, . . . , N and Wi ∈ Rn×n, Li ∈ Rri×n for i = 1, 2, . . . , N that characterize the set
of stabilizing state-feedback gains in (2) are given by the solution of the following dilated
LMIs condition [

0 XjẼ

ẼTXj 0

]
+He

([
Ã(−j)
−W̃D(−j)

] [
ẼT εjI

])
≺ 0 (27)

where Ã(−j) = [AUj B1L1 · · · Bj−1Lj−1

...BjL′j
...Bj+1Lj+1 · · · BNLN ] and W̃D(−j) =

blockdiag{Uj ,W1, . . . ,Wj−1,W
′
j ,Wj+1, . . . ,WN}withKj = LjW

−1
j and Γj = L′jW

′−1
j .

4 In this paper, the game is essentially defined in the framework of an incomplete information, since
the jth-player’s objective function involves different uncertainty information, i.e., uρj , about the system.
However, we remark that the jth-player decides his own strategy by solving the optimization problem with
the opponents’ strategies (K1, . . . ,Kj−1,Kj+1, . . . ,KN ) fixed.
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Then, for a given αj > 0, βj ≥ 1 and Zj ∈ Sn+, there exists Yj ∈ IYj that satisfies

sup
(x0,uρj,Γj)∈R

n×Uρj×Rrj×n
Jj(x0, uρj ,K(−j)) = ρ̂j . (28)

Furthermore, the closed-loop systems in (21) are stable for all instances of perturbation
uρ̂j ∈ [−ρ̂j , ρ̂j ] with K∗j ∈ arg sup

Γj∈Rrj×n Jj(x0, uρ̂j ,K
∗
(−j)) for all j ∈ {1, 2, . . . , N}.5

Proof Suppose all the perturbed systems in (21) satisfy the following dissipativity inequal-
ities

Vj(x(0)) +

∫ t

0

wj(ỹ(t), ũ(t))dt ≥ Vj(x(t)) (29)

for all t ≥ 0 with non-negative quadratic storage functions Vj(x(t)) = x(t)TYjx(t) and
Yj ∈ IYj that satisfy Vj(0) = 0 for j = 1, 2, . . . , N .

Thus, the trajectories of each perturbed closed-loop system (i.e., for j = 1, 2, . . . , N )

ẋ(t) = (A+ uρj∆Aj +
N∑
i=1

BiK
∗
i )x(t)

satisfy

d

dt
(xT (t)Yjx(t)) = xT (t)He

(
(A+ uρj∆Aj +

N∑
i=1

BiK
∗
i )
TYj

)
x(t)

≤ −αjxT (t)Zjx(t)

≤ −αjxT (t)Yjx(t). (30)

for all instances of perturbation uρ̂j ∈ [−ρ̂j , ρ̂j ] in the system.
Then, the rest of the proof follows the same lines as that of Theorem 1. In fact, replacing

the following

Ã = Ã(−j)(W̃D(−j))
−1, W̃D = W̃D(−j) and X = Xj

with Ã(−j) = [AUj B1L1 · · · Bj−1Lj−1

...BjL′j
...Bj+1Lj+1 · · · BNLN ] and W̃D(−j) =

blockdiag{Uj ,W1, . . . ,Wj−1,W
′
j ,Wj+1, . . . ,WN} in Theorem 1 immediately gives the

condition in (27) of Theorem 3. Note that K∗j and Γj are given by

K∗j = LjW
−1
j and Γj = L′jW

′−1
j

for j = 1, 2, . . . , N .
Moreover, the N -tuple (Y1, Y2, · · · , YN ) ∈

∏N
j=1 IYj is a collection of dissipativity

certificates corresponding to a set of supply rates (25) for all instances of perturbation in
(21). 2

5 In general, simultaneously solving a set of optimization problems, i.e., solving (28) together with (27),
is not easy since it is a non-convex optimization problem which involves finding a solution satisfying at the
intersection of a set of constrained quadratic functionals [38] (c.f. Remark 2, Section 2 above).
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We next present a more realistic game-theoretic interpretation in terms of the upper
uncertainty bounds ρ̂j ∈ R+ for all j ∈ {1, 2, . . . , N} that describe the N -tuple uncer-
tainty set (uρ̂1 , uρ̂2 , · · · , uρ̂N ) ∈

∏N
j=1[−ρ̂j , ρ̂j ] together with the existence of stabilizing

state-feedback gains that provide a sufficient condition for obtaining a set of feedback Nash
equilibria.

Hence, we have the following equivalent statements:

(i). ∃K∗ ∈ KN , ∀x0, ∀uρ̂j ∈ [−ρ̂j , ρ̂j ], ∀K∗(−j) ∈ KN , ∀j ∈ {1, 2, . . . , N} such that

Jj(x0, uρ̂j ,K
∗
(−j)) ≤ Jj(x0, uρ̂j ,K

∗). (31)

(ii). The dilated LMIs condition in (27) and the dissipativity inequalities of (29) with a set
of supply rates W(ỹ(t),ũ(t)) in (25) fully describes the set of non-fragile stabilizing
state-feedback gains.

The equivalence between (i) and (ii) leads to characterization of feedback Nash equilib-
ria over an infinite-time horizon in terms of stabilizing solutions of a set of dilated LMIs.

Furthermore, the exact characterization of the feedback Nash equilibria is given by the
following two theorems.

Theorem 4 Let Xj ∈ Sn+, Uj ∈ Rn×n, W ′j ∈ Rn×n, L′j ∈ Rrj×n and εj > 0 for
j = 1, 2, . . . , N and Wi ∈ Rn×n, Li ∈ Rri×n for i = 1, 2, . . . , N be a solution set for the
dilated LMIs condition in (27). Then, there exists an N -tuple (K∗1 ,K

∗
2 , . . . ,K

∗
N ) ∈ KN

feedback Nash equilibrium with respect to the upper uncertainty bounds ρ̂j ∈ R+ for
j = 1, 2 . . . , N of (28).

Proof The first part of this theorem is already provided in Theorem 3, i.e., from the standard
argument of the stabilizability of the pair (A, [B1 B2 · · · BN ]), we can always find an
N -tuple (K∗1 ,K

∗
2 , . . . ,K

∗
N ) ∈ KN and Γj for all j ∈ {1, 2 . . . , N} such that (27) holds.

Applying (28) of Theorem 3 together with the dissipativity certificates Yj ∈ IYj and a set
of supply ratesW(ỹ(t),ũ(t)) (25) for all instances of perturbation in (21), we will then obtain
an upper bound ρ̂j ∈ R+ for a fixed (x0,K

∗) ∈ Rn ×KN so that

Jj(x0, uρ̂j ,K
∗
(−j)) ≤ Jj(x0, uρ̂j ,K

∗)

for all j ∈ {1, 2, . . . , N}.
Hence, we immediately see that the N -tuple (K∗1 ,K

∗
2 , . . . ,K

∗
N ) ∈ KN satisfies the

feedback Nash equilibrium. 2

Remark 3 The class of admissible strategies for all players are generated through a set of
individual objective functions that are induced from dissipativity inequalities of (29) with a
set of supply rates (25).

Theorem 5 If the N -tuple (K∗1 ,K
∗
2 , . . . ,K

∗
N ) ∈ KN is a feedback Nash equilibrium with

respect to the objective function values of (28), then there exists a solution set Xj ∈ Sn+,
Uj ∈ Rn×n, W ′j ∈ Rn×n, L′j ∈ Rrj×n and εj > 0 for j = 1, 2, . . . , N and Wi ∈ Rn×n,
Li ∈ Rri×n for i = 1, 2, . . . , N that satisfies the dilated LMIs condition of (27).

Proof Suppose the N -tuple (K∗1 ,K
∗
2 , . . . ,K

∗
N ) ∈ KN is a feedback Nash equilibrium such

that

Jj(x0, uρ̂j ,K
∗
(−j)) ≤ Jj(x0, uρ̂j ,K

∗)
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where the value for the continuous mapping Jj(x0, uρj ,K) : Rn× Uρj× KN → R+ is
claimed as

sup
(x0,uρj,Γj)∈R

n×Uρj×Rrj×n
Jj(x0, uρj ,K(−j)) = ρ̂j

with K∗j ∈ arg sup
Γj∈Rrj×n Jj(x0, uρ̂j ,K

∗
(−j)) for all j ∈ {1, 2, . . . , N}.

Then, we can always find a solution set that satisfies the dilated LMIs condition in (27)
for which the closed-loop systems in (21) are robustly stable for all instances of perturbations
(uρ̂1 , uρ̂2 , · · · , uρ̂N ) ∈

∏N
j=1[−ρ̂j , ρ̂j ]. 2

Remark 4 Note that all closed-loop systems in (21) satisfy the dissipative inequality prop-
erties of (29) with a set of supply rates (25) for all j ∈ {1, 2, . . . , N} and instances of
perturbation uρ̂j ∈ [−ρ̂j , ρ̂j ].

Finally, the feedback Nash equilibrium has a strong time consistency property. This fact
corresponds to the information structure that is associated with the dissipative inequalities
of the system where the equilibrium trajectory xeq(t) (or the equilibrium point x(0) = x0)
of the system if it is truncated part in the time interval [T,∞), where T > 0, asymptotically
represents an equilibrium (c.f. references [36], [39]).6 This further implies any (sub-)game
starting at t = T , does not depend on the initial condition xeq(T ) (e.g., see references [24],
[16]). Moreover, the differential game, where the class of admissible strategies for all players
is induced from a solution set of the individual objective functions (22), is an infinite-time
horizon game. Thus, this game has non-unique feedback Nash equilibrium solutions that are
associated with a set of non-fragile stabilizing state-feedback gains of Theorem 3.

Remark 5 Note that the equivalence between (i) and (ii) (i.e., Theorem 4: (ii) ⇒ (i) and
Theorem 5: (i) ⇒ (ii)) leads exactly to characterization of the feedback Nash equilibrium
via a set of non-fragile stabilizing state-feedback solutions of the dilated LMIs.

4 Concluding remarks

In this paper, we have looked the problem of state-feedback stabilization for a multi-channel
system in the framework of differential game, where the class of admissible strategies for the
players is induced from a solution set of the objective functionals that are realized through
certain dissipativity inequalities. In such a scenario, we characterized the feedback Nash
equilibria over an infinite-time horizon via a set of non-fragile stabilizing state-feedback
gains corresponding to constrained dissipativity problems. Moreover, we showed that the
existence of a weak-optimal solution to the constrained dissipativity problem is a sufficient
condition for the existence of a feedback Nash equilibrium, with the latter having a nice
property of strong time consistency.
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6 Note that the stability behavior is considered here over an infinite-time horizon.
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